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Abstract

We consider the valued field K := R((Γ)) of formal series (with real coeffi-
cients and monomials in a totally ordered multiplicative group Γ ). We investigate
how to endow K with a logarithm l, which satisfies some natural properties such
as commuting with infinite products of monomials. In [KM10], we studied deriva-
tions on K. Here, we investigate compatibility conditions between the logarithm
and the derivation, i.e. when the logarithmic derivative is the derivative of the
logarithm. We analyse sufficient conditions on a given derivation to construct a
compatible logarithm via integration of logarithmic derivatives. In [Kuh00], the
first author described the exponential closureKEL of (K, l). Here we show how to
extend such a log-compatible derivation onK toKEL.

1 Introduction
Consider the valued field K := R((Γ)) of generalised series, with real coefficients and
monomials in a totally ordered multiplicative group Γ . We undertook the investigation
∗Current address : Université de Versailles, 45 av. des États-Unis 78035 Versailles cedex, France
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of these fields in a series of publications [KKS97], [Kuh00], [FKK10] and [KM10].
We endeavor to endow these formal algebraic objects with the analogous of classical
analytic structures, such as exponential and logarithmic maps, derivation, integration
and difference operators. Hardy fields, extensively studied by M. Rosenlicht, are the
natural domain for asymptotic analysis. Our investigations thus lead us to analyse the
relationship between Hardy fields and generalised series fields. This paper is a further
step in this direction. In particular, we interprete here some key ideas of [Ros83] in the
formal setting of generalised series.

In [KKS97], we proved that if Γ , 0, then K cannot be endowed with a logarithm (i.e.
an isomorphism of ordered groups from its multiplicative group of positive elements
onto its additive group). We established however thatK always admits a pre-logarithm,
i.e. a non surjective logarithm. In this paper, we take a closer look at this aspect. We in-
vestigate how to endowK with a (non surjective) logarithm l, which moreover satisfies
some natural properties such as commuting with infinite products of monomials.

In [KM10], we studied derivations onK and introduced in particular Hardy type deriva-
tions (that is, derivations that behaves like derivations in a Hardy field). For the analysis
of the derivations onK, we worked with the chain of fundamental monomials (Φ,4) of
Γ (see Section 2). We gave a necessary and sufficient condition for a map d : Φ→ K

to extend naturally to such a derivation. Here, we investigate compatibility conditions
between the logarithm and the derivation, i.e. when the logarithmic derivative is the
derivative of the logarithm.

In [Kuh00], the first author described the exponential closure KEL of (K, l). Here we
show how to extend such a log-compatible derivation on K to KEL. This exponential
closure KEL is an infinite towering extension, starting with a pre-logarithmic series
field, i.e. a generalised series field endowed with a pre-logarithm (see Definition 2.7).
Thus we begin in Section 3 by proving a criterion for a derivation on a pre-logarithmic
series field to be compatible (see Proposition 3.8). This result is applied in Section 4.
There, the main Theorem 4.10 deals with a Hardy type series derivation d, and gives
sufficient conditions on d to define a d-compatible pre-logarithm. This pre-logarithm is
constructed by a process of “iterated asymptotic integration” of the logarithmic deriva-
tives (Lemma 4.13). This process is based on the computation of specific asymptotic
integrals, which we do in Section 4.1. This allows us to provide many examples in Sec-
tion 5. In Section 6, given some pre-logarithmic series field endowed with a Hardy type
derivation, we show how to extend it to the corresponding exponential closure. Note
that this has been considered for fields of transseries in [Sch01, Ch. 4.1.4]. However,
our pre-logarithmic field (K, l) does not necessarily satisfy Axiom (T4) of [Sch01, Def-
inition 2.2.1]. The last Section 7 is devoted to the questions of asymptotic integration
and integration on EL-series fields.

In forthcoming papers, we extend our investigations to study Hardy type derivations
on the field of Surreal Numbers [Con01], and investigate difference operators on gen-
eralised series fields.
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2 Preliminaries.
We summarize notation and terminology from [KM10]. Recall the following corollary
to Ramsey’s theorem [Ros82]:

Lemma 2.1 Let Γ be a totally ordered set. Every sequence (γn)n∈N ⊂ Γ has an infinite
sub-sequence which is either constant, or strictly increasing, or strictly decreasing.

2.1 Hahn groups.
Definition 2.2 Let (Φ,4) be a totally ordered set, the set of fundamental monomials.
Consider the set H(Φ) of formal products γ of the form

γ =
∏

φ∈ supp γ

φγφ

where γφ ∈ R, and support of γ, supp γ := {φ ∈ Φ | γφ , 0}, is an anti-well-ordered
subset of Φ. We will refer to γφ as the exponent of φ. Multiplication of formal products
is pointwise, and H(Φ) is an abelian group with identity 1. We endow H(Φ) with the
anti lexicographic ordering 4 which extends 4 of Φ. Note that φ � 1 for all φ ∈ Φ.
The totally ordered abelian group H(Φ) is the Hahn group over Φ, which elements
are called the (generalised) monomials. The set Φ is the rank. By Hahn’s embedding
theorem [Hah07], every ordered abelian group Γ with rank Φ can be seen as a subgroup
of H(Φ).
From now on, we fix a totally ordered set (Φ,4) and a subgroup Γ of H(Φ).

Definition 2.3 The leading fundamental monomial of 1 , γ ∈ Γ is LF(γ) := max(supp γ),
and LF(1) := 1. This map verifies the ultrametric triangular inequality :

∀α, β ∈ Γ, LF (αβ) 4 max{ LF (α), LF (β)}

.
The leading exponent of 1 , γ ∈ Γ is the exponent of LF (γ). We denote it by LE (γ).
For α ∈ Γ set |α| := max {α , α−1}.

2.2 Generalised series fields.
Below, we adopt our notation as in [KM10].

Definition 2.4 Throughout this paper, K = R ((Γ)) will denote the generalised series
field. As usual, we write these series a =

∑
α∈Supp a

aαα, and denote by 0 the series with

empty support. Here Supp a = {α ∈ Γ | aα , 0} is anti-well-ordered in Γ.
For a ∈ K∗, its leading monomial is: LM (a) := max

(
Supp a

)
∈ Γ . The map LM :

K∗ → Γ is the canonical valuation on K. The leading coefficient of a is LC (a) :=
a LM (a) ∈ R. For nonzero a ∈ K, the term LC (a) LM (a) is called the leading term of
a, that we denote LT(a). We extend the notions of leading fundamental monomial and
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of leading exponent toK∗ by setting LF (a) := LF ( LM (a)), respectively LE (a) :=
LE ( LM (a)).

We extend the ordering 4 on Γ to a dominance relation on K by setting a 4 b ⇔
LM (a) 4 LM (b). We write: a � b ⇔ LM (a) = LM (b), and: a ∼ b ⇔ LT (a) =

LT (b). Let a � 1, b � 1 be two elements ofK. a and b are comparable if and only if
LF (a) = LF (b). We also set |a| := | LM (a)|.

The anti lexicographic ordering on K is defined as follows: ∀a ∈ K, a ≤ 0 ⇔
LC (a) ≤ 0 . We denote as usual K∗ := K \ {0}, and K>0 := {a ∈ K | a > 0}. Note that

(K>0, ·) is an ordered abelian group.

Remark 2.5 The results in this paper hold for the generalised series field with coef-
ficients in an arbitrary ordered exponential field C [Kuh00] containing R (instead of
R).

2.3 Pre-logarithmic sections.
Definition 2.6 We denote by K41 := {a ∈ K | a 4 1} the valuation ring of K. Sim-
ilarly, we denote by K≺1 := {a ∈ K | a ≺ 1} the maximal ideal of K41. We have
K41 = R⊕K≺1. We denote byK�1 := R

((
Γ�1

))
, the subring of purely infinite series.

We will use repeatedly the following direct sum, respectively direct product, decom-
positions of the ordered abelian groups (K,+,≤), respectively (K>0, ·,≤) [Kuh00, Ch.
1]:

K = K�1 ⊕ R ⊕ K≺1

K>0 = Γ . R>0 . (1 +K≺1)

Definition 2.7 Let K be a field of generalised series.

• The natural logarithm on 1-units is the following isomorphism of ordered groups
[All62]:

l1 : 1 +K≺1 → K≺1

1 + ε 7→
∑
n≥1

(−1)n−1 ε
n

n
(1)

• A pre-logarithmic section l ofK is an embedding of ordered groups

l : (Γ, ·,4)→ (K�1,+,≤).

• The pre-logarithm onK induced by a pre-logarithmic section l is the embedding
of ordered groups defined by:

l : (K>0, ·,≤) → (K,+,≤)
a = aαα(1 + εa) 7→ l(a) := log(aα) + l(α) + l1(1 + εa)

where log is the usual logarithm on positive real numbers and l1 the logarithm
on 1-units. The pair (K, l) is then called a pre-logarithmic series field.
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In particular, we are interested in pre-logarithmic sections that verify the Growth
Axiom Scheme :

Definition 2.8 Let (K, l) a pre-logarithmic series field. We say that the Growth Axiom
Scheme holds if and only if we have :

(GA) ∀α ∈ Γ�1, l(α) ≺ α.

Axiom (GA) is satisfied by non archimedean models of the theory Th(R, exp) of
the ordered field of real numbers with the exponential function (see [Kuh00, Ch. 3] for
more details).

3 Pre-logarithms and Derivations.

3.1 Defining pre-logarithms on generalised series fields.
We consider pre-logarithmic sections on a generalised series field K (see Definition
2.7), which satisfy the following property:

Definition 3.1 A map l : Γ → K�1 is a series morphism if it satisfies the following
axiom:

(L) ∀α =
∏

φ∈supp α

φαφ ∈ Γ, l(α) =
∑

φ∈supp α

αφl(φ).

Note that a series morphism l is in particular a group homomorphism. Moreover, a
series morphism l is a pre-logarithmic section if and only if it is order preserving (i.e.
for any α ≺ β in Γ, we have l(α) < l(β)).

We are interested in the following setting: given a map lΦ : Φ → K�1 \ {0},
we study necessary and sufficient conditions so that lΦ extends to a series morphism
lΓ : Γ→ K�1.

Recall the following definition from [KM10]:

Definition 3.2 Let I be an infinite index set and F = (ai)i∈I be a family of series inK.
Then F is said to be summable if the two following properties hold:

(SF1) Supp F :=
⋃
i∈I

Supp ai (the support of the family) is an anti-well-ordered subset

of Γ.

(SF2) For any α ∈ Supp F , the set S α := {i ∈ I | α ∈ Supp ai} ⊆ I is finite.

Write ai =
∑
α∈Γ

ai,αα, and assume that F = (ai)i∈I is summable. Then

∑
i∈I

ai :=
∑

α∈Supp F

(
∑
i∈S α

ai,α )α ∈ K

is a well defined element of K that we call the sum of F .
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Definition 3.3 Let
lΦ : Φ → K�1\{0}

φ 7→ lΦ(φ)

be a map. We say that lΦ extends to a series morphism on Γ if the following property
holds:

(SL) For any anti-well-ordered subset E ⊂ Φ, the family (lΦ(φ))φ∈E is summable.

Then the series morphism lΓ on Γ induced by lΦ is defined to be the map

lΓ : Γ→ K�1

obtained through the axiom (L) (which clearly makes sense by (SL)).

Note that, if the series morphism lΓ is a pre-logarithmic section, then it extends
to a pre-logarithm l on K>0 as in Definition 2.7. We are interested moreover in pre-
logarithms which verify (GA) (see Definition 2.8).

In the next Proposition 3.4, we provide a necessary and sufficient condition on a
map lΦ : Φ→ K so that the properties (SL) and (GA) hold. (In the sequel, we drop the
subscripts Φ and Γ of lΦ and lΓ to relax the notation).

Proposition 3.4 A map l : Φ → K�1 \ {0} extends to a series morphism on Γ if and
only if the following condition fails:

(HL1) there exists a strictly decreasing sequence (φn)n∈N ⊂ Φ and an increasing se-
quence (λ(n))n∈N ⊂ Γ such that for any n, λ(n) ∈ Supp l(φn).

Moreover, such an extension l is a pre-logarithmic section if and only if we have:

(HL2) l is an embedding of ordered sets, i.e. for any φ ≺ ψ ∈ Φ, 0 < l(φ) < l(ψ).

Moreover, such a pre-logarithmic section l satisfies (GA) if and only if we have:

(HL3) for any φ ∈ Φ, LF (l(φ)) ≺ φ.

Proof. Note that (HL1) is the exact analogue of (H1) in [KM10], replacing φ′/φ by
l(φ). The proof of the first statement is the exact analogue of the proof of [KM10,
Lemma 3.9], replacing φ′/φ by l(φ).

Let α =
∏

φ∈supp α

φαφ ∈ Γ. Assume that α � 1, thus LE(α) > 0. By the first

statement, l(α) =
∑

φ∈supp α

αφl(φ). Since by hypothesis l is order preserving on Φ, we

have LC(l(α)) = LE(α)LC(φ0) > 0 where φ0 = LF(α), so l(α) > 0.
For (HL3), we consider some monomial α =

∏
φ∈supp α

φαφ in Γ\{1}. Then LM(l(α)) =

LM(
∑

φ∈supp α

αφl(φ)) = LM(αφ0 l(φ0)) where φ0 = LF (α) and αφ0 > 0. So l(α) ≺ α for

any α if and only if, for any φ0 and αφ0 > 0, l(φ0) ≺ φ
αφ0
0 . This is equivalent to (HL3).

�

Remark 3.5 As in [KM10, Corollaries 3.12 and 3.13], one can give analogous partic-
ular cases of (HL1).
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3.2 Compatibility of pre-logarithms and derivations.
We recall the following definition from [KM10]:

Definition 3.6 A map d : K → K, a 7→ a′, verifying the following axioms is called a
series derivation:

(D0) 1′ = 0;

(D1) Strong Leibniz rule: ∀α =
∏

φ∈supp α

φαφ ∈ Γ, (α)′ = α
∑

φ∈supp α

αφ
φ′

φ
;

(D2) Strong linearity: ∀a =
∑

α∈Supp a

aαα ∈ K, a′ =
∑

α∈Supp a

aαα′.

Here we provide a criterion on the derivation to be compatible with the pre-logarithm:

Definition 3.7 Let (K, l) be a pre-logarithmic field endowed with a derivation d. Then

d is log-compatible if for all a ∈ K>0, we have l(a)′ =
a′

a
. In this case, we shall say

the pre-logarithm l is compatible with the derivation d or that d and l are compatible.

In the case of a series morphism and a series derivation, it is sufficient to verify the
compatibility condition for the fundamental monomials:

Proposition 3.8 Let (K, l, d) be a generalised series field endowed with a series mor-
phism l and a series derivation d. Then d is log-compatible if and only if the following
property holds:

(HL4) ∀φ ∈ Φ, l(φ)′ =
φ′

φ
.

Proof. Let a = α aα(1 + εa) ∈ K>0 where α =
∏

φ∈supp α

φαφ and aα ∈ R>0. Using (L),

(D1), (D2), we compute:

l(a)′ =

l(α) + log(aα) +

+∞∑
k=1

(−1)k−1εk
a

′
=

∑
φ∈supp α

αφl(φ)′ + 0 +

 +∞∑
k=1

(−1)k−1εk−1
a

 ε′a
On the other hand, we compute: a′ = (α aα(1+εa))′ = α′aα(1+εa)+α aαε′a. Therefore:

a′

a
=

α′

α
+

ε′a
1 + εa

. Now, by (D1): α′ = α
∑

φ∈supp α

αφ
φ′

φ
.

So :
a′

a
=

∑
φ∈supp α

αφ
φ′

φ
+

ε′a
1 + εa

=
∑

φ∈supp α

αφ
φ′

φ
+

 +∞∑
k=1

(−1)k−1εk−1
a

 ε′a.

Consequently: l(a)′ =
a′

a
if and only if

φ′

φ
= l(φ)′ for all φ ∈ supp α. �
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4 Pre-logarithms and integration for Hardy type deriva-
tions.

We recall the following definition from [KM10]:

Definition 4.1 A derivation d onK is a Hardy type derivation if :

(HD1) the sub-field of constants of K is R.

(HD2) d verifies l’Hospital’s rule : ∀a, b ∈ K∗ with a, b - 1 we have

a 4 b⇔ a′ 4 b′.

(HD3) the logarithmic derivation is compatible with the dominance relation: ∀a, b ∈

K with |a| � |b| � 1, we have
a′

a
<

b′

b
. Moreover,

a′

a
�

b′

b
if and only if a and b

are comparable.

4.1 The monomial asymptotic integral.
For the rest of this section, we assume that d is a Hardy type series derivation on K.

Notation 4.2 Set

∀φ ∈ Φ, θ(φ) := LM
(
φ′

φ

)
, Θ :=

{
θ(φ), φ ∈ Φ

}
, and θ̂ := g.l.b. 4Θ

if it exists in Γ.

Adopting the notation of [Ros83], we write below: Ψ :=
{

LM
(

a′

a

)
; a ∈ K∗, a - 1

}
.

We will make use of the following result [KM10, Theorem 4.3; Corollary 4.4]:

A series derivation on K is of Hardy type if and only if the following condition holds:

(H3’) ∀φ ≺ ψ ∈ Φ, θ(φ) ≺ θ(ψ) and LF
(
θ(φ)

θ(ψ)

)
≺ ψ.

Definition 4.3 We say that b ∈ K is an asymptotic integral of a ∈ K if b′ ∼ a,
equivalently if b′ ∼ LT(a). We say that b is an integral of a if b′ = a.

Theorem 4.4 A series a ∈ K∗ has an asymptotic integral if and only if a - g.l.b. 4Ψ.

This theorem is proved for Hardy fields in [Ros83, Proposition 2 and Theorem 1]. As
noted in [KM10], it suffices to observe that Rosenlicht’s proof only uses the properties
of what we call a Hardy type derivation in Definition 4.1. If d is moreover a series
derivation, it suffices to consider fundamental monomials as we establish below.
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Proposition 4.5 Assume that d is a Hardy type series derivation on K. Let a ∈ K∗

with a - 1. Then

LT
(

a′

a

)
= LE(a)LT

(
LF(a)′

LF(a)

)
.

More precisely LM
(

a′

a

)
= θ(LF(a)) and LC

(
a′

a

)
= LE(a)LC

(
LF(a)′

LF(a)

)
.

In particular, θ̂ = g.l.b. 4Ψ.

Proof. Let 1 - a = aαα + · · · ∈ K∗ with α =
∏

φ∈supp α

φαφ . Set φ0 = LF(a) = LF(α) and

αφ0 = LE(a) = LE(α). We compute:

a′ = aαα′ + · · · = aαα
(
αφ0

φ′0
φ0

+ · · ·

)
+ · · · = (aααφ0 )α

φ′0
φ0

+ · · ·

Therefore:

LT
(

a′

a

)
=

LT(a′)
LT(a)

=

(aααφ0 )αLT
(
φ′0
φ0

)
aαα

= αφ0 LT
(
φ′0
φ0

)
.

. �

[Ros83, Theorem 1] gives a parametrized family of asymptotic integrals of an
(asymptotically integrable) element a. For a Hardy type series derivations, we com-
pute in Proposition 4.8 below a specific asymptotic integral, which turns out to be a
non monic monomial (i. e. of the form rα with r ∈ R and α ∈ Γ), uniquely determined
by a.

Notation 4.6 We call the asymptotic integral computed in Proposition 4.8 below the
monomial asymptotic integral of a, and denote it by a.i.(a).

Lemma 4.7 Let α ∈ Γ with α , θ̂. There exists a uniquely determined fundamental

monomial ψα ∈ Φ which satisfies LF
(
α

θ(ψα)

)
= ψα.

Proof. First, suppose that α � θ̂. Take a monomial β � 1 with α �
β′

β
. Set φ :=

LF(β), so
β′

β
� θ(φ) by Proposition 4.5. Set β0 := min

{
β,

α

θ(φ)

}
and φ0 := LF(β0).

Since β < β0 � 1, we have φ < φ0, so θ(φ) < θ(φ0). We deduce that α � θ(φ0) and
α

θ(φ0) <
α

θ(φ) < β0 � 1. If we set φ1 := LF
(
α

θ(φ0)

)
, then φ1 < φ0. We compute:

LF
(
α

θ(φ1)

)
= LF

(
α

θ(φ0) .
θ(φ0)

θ(φ1)

)
. By (H3’): LF

(
θ(φ0)

θ(φ1)

)
≺ φ1. We obtain: LF

(
α

θ(φ1)

)
=

max
{

LF
(
α

θ(φ0)

)
; LF

(
θ(φ0)

θ(φ1)

)}
= φ1. Set ψα := φ1.
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Now suppose that α ≺ θ̂. Let α1 ∈ Γ such that α ≺ α1 4 θ̂. Set φ0 := LF
(
α

α1

)
, then

α

θ(φ0) =
α

α1
.
α1

θ(φ0) 4
α

α1
≺ 1. Set φ1 := LF

(
α

θ(φ0)

)
. We deduce that φ1 < φ0, and compute

LF
(
α

θ(φ1)

)
= φ1 as above. Set ψα := φ1. This concludes the proof of the existence of

ψα.
Consider now a monomial α - θ̂, and denote ψ1 and ψ2 two fundamental monomials

such that LF
(
α

θ(ψi)

)
= ψi for i = 1, 2. Assume for instance that ψ1 ≺ ψ2. We would have

LF
(
α

θ(ψ2)

)
= LF

(
α

θ(ψ1) .
θ(ψ1)

θ(ψ2)

)
= ψ2. Since LF

(
α

θ(ψ1)

)
= ψ1, we would have LF

(
θ(ψ1)

θ(ψ2)

)
=

ψ2, which contradicts (H3’). �

Proposition 4.8 Let a ∈ K∗ with a - θ̂, and set α := LM(a). Then:

a.i.(α) =
α

LE
(
α

θ(ψα)

)
LT

(
ψ′α
ψα

) and a.i.(a) = LC(a)a.i.(α)

Proof. Below, set m := a.i.(α) =
α

LE
(
α

θ(ψα)

)
LC

(
ψ′α
ψα

)
θ(ψα)

.

Since LF(m) = LF
(
α

θ(ψα)

)
= ψα, using Proposition 4.5, we compute:

LT
(

m′

m

)
= LE(m)LT

(
ψ′α
ψα

)
Since LE(m) = LE

(
α

θ(ψα)

)
, we compute:

LT(m′) = mLE(m)LT
(
ψ′α
ψα

)
=

α

LE
(
α

θ(ψα)

)
LT

(
ψ′α
ψα

) .LE
(
α

θ(ψα)

)
LT

(
ψ′α
ψα

)
= α ,

as desired.
Denote b := a.i.(a). We have: LT(b′) = LT (LC(a)m′) = LC(a)LT (m′) = LC(a)α =

LT(a), as desired. �

Notation 4.9 In the sequel, to simplify the notations, we will write ψ instead of ψα (of
Lemma 4.7) if the context is clear.

4.2 Constructing pre-logarithms as anti-derivatives.
In the following theorem, we give a criterion for (K, d) to carry a pre-logarithm, com-
patible with the derivation. Moreover, we will require this pre-logarithm to be induced
by a pre-logarithmic section which is a series morphism. The construction relies on the

computation of the anti-derivatives of
φ′

φ
, φ ∈ Φ.
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Theorem 4.10 Let d be a Hardy type series derivation on K. There exists a unique
pre-logarithmic section l on K which is a series morphism, for which the induced pre-
logarithm is compatible with the derivation, if and only if the following two conditions
hold:

1. θ̂ <
⋃
φ∈Φ

Supp
φ′

φ
;

2. ∀φ ∈ Φ, ∀τ(φ) ∈ Supp
φ′

φ
, a.i.(τ(φ)) � 1.

Moreover, this pre-logarithm verifies (GA).

Proof. To define a pre-logarithm l on K>0, it suffices to define a pre-logarithmic sec-
tion l on Γ. We set l(1) := 0. By (D1), for any α =

∏
φ∈supp α

φαφ ∈ Γ\{1}, we have

α′

α
=

∑
φ∈supp α

αφ
φ′

φ
. Assume that for any φ ∈ Φ, there exists l(φ) ∈ K�1 such that

(HL4) holds, i.e. l(φ)′ =
φ′

φ
. (The proof of the existence of such l(φ) ∈ K�1 will

be established below). We apply Proposition 3.4 to extend l to a series morphism on
Γ. Suppose, as in (HL1), that there exists a strictly decreasing sequence (φn)n∈N ⊂ Φ

and an increasing sequence (λ(n))n∈N ⊂ Γ such that for any n, λ(n) ∈ Supp l(φn). By
(HD2), τ(n) := LM((λ(n))′) defines an increasing sequence in Γ such that for any n,

τ(n) ∈ Supp
φ′n
φn

. This implies that [KM10, (H1)] holds, contradicting the fact that d is a

series derivation. Therefore, for any α ∈ Γ, we can indeed define l(α) :=
∑

φ∈supp α

αφl(φ).

Note that by (HD2), (HL2) holds. Thus l would be the pre-logarithmic section in-
duced by the given l on Φ. Furthermore, this series morphism l is compatible with the
derivation (Proposition 3.8).

It remains to prove the existence of such l(φ) ∈ K�1. We adapt to our context [Kuh,
Theorem 1], with the ”spherically complete” ultrametric space (K, u) where u(a, b) :=
LM(a − b), and the map f := d.

Lemma 4.11 ([Kuh], Theorem 1) Let φ ∈ Φ. We suppose that for any a ∈ K with

a′ ,
φ′

φ
, there exists b ∈ K such that:

(AT1) LM
(
b′ −

φ′

φ

)
� LM

(
a′ −

φ′

φ

)
;

(AT2) ∀c ∈ K, if LM (a − c) � LM (a − b), then LM (a′ − c′) � LM
(
a′ −

φ′

φ

)
.

Then there exists l(φ) ∈ K such that l(φ)′ =
φ′

φ
.

11



Proof. Let a ∈ K. By (D1) and (D2), we can denote LT
(
a′ −

φ′

φ

)
= c0ατ

(φ̃) for some

c0 ∈ R, α ∈ Supp a ∪ {1}, φ̃ ∈ supp α ∪ {φ} and τ(φ̃) ∈ Supp
φ̃′

φ̃
.

Claim 4.12 Provided Hypothesis 1 and 2 of Theorem 4.10, we consider α ∈ Γ, α - 1.

Then any monomial β = ατ(φ̃) ∈ Supp (α′) (where φ̃ ∈ supp α and τ(φ̃) ∈ Supp
φ̃′

φ̃
by

(D1)) admits an asymptotic integral. Moreover, ψβ = LF(α) and LE(β) = LE(α).

Indeed, by Lemma 4.7 and Proposition 4.8, we show that LF
ατ(φ̃)

θ(ψ)

 = ψ. Set ψ :=

LF(α), therefore ψ < φ̃. Denote by ψ̃ the unique fundamental monomial such that

LF
τ(φ̃)

θ(ψ̃)

 = ψ̃ (which exists since τ(φ̃) - θ̂ by Hypothesis 1). Since
τ(φ̃)

θ(ψ̃)
� 1 by

Hypothesis 2, we have ψ̃ ≺ φ̃. Consequently, ψ̃ ≺ ψ, so LF
θ(ψ̃)

θ(ψ)

 ≺ ψ by (H3’). Then,

using the ultrametric triangular inequality for LF, we compute:

LF
ατ(φ̃)

θ(ψ)

 = LF
ατ(φ̃)

θ(ψ̃)

θ(ψ̃)

θ(ψ)

 = LF(α) = ψ and LE(β) = LE(α).

Consequently, c0ατ
(φ̃) admits an asymptotic integral monomial. To conclude the proof

of (AT1), it suffices to set b := a − a.i.(c0ατ
(φ̃)).

Concerning (AT2), we consider c ∈ K such that

LM (a − c) � LM (a − b) = LM
(
a.i.(c0ατ

(φ̃))
)

=
ατ(φ̃)

θ(ψ) .

By (HD2), we have:

LM
(
a′ − c′

)
� LM

ατ(φ̃)

θ(ψ)

′ = ατ(φ̃) = LM
(
a′ −

φ′

φ

)
.

�

Note that l(φ) is defined up to addition by a real constant. We choose the l(phi)’s so
that this real constant is zero, i.e. 1 < Supp l(φ).
We prove now that l(φ) ∈ K�1 for any φ ∈ Φ. Suppose not, and denote by λ(φ) the
greatest monomial in Supp l(φ) such that λ ≺ 1. Then, LM (λ′) = λθ(ψ), where ψ =

LF(λ). We consider two cases. Either λθ(ψ) = τ ∈ Supp
φ′

φ
, which is impossible since

a.i.(τ) � 1 by Hypothesis 2. Or λθ(ψ) = λ̃τ̃ for some λ̃ � 1, φ̃ ∈ supp λ̃ and τ̃ ∈ Supp
φ̃′

φ̃
,

meaning that, up to multiplication by a real coefficient, λ is the asymptotic integral
monomial of λ̃τ̃. But, computing a.i.

(
λ̃τ̃

)
as in the proof of (AT1) in the preceding

lemma, we obtain:

LM
[
a.i.

(
λ̃τ̃

)]
=
λ̃τ(φ̃)

θ(ψ)

12



with ψ := LF
(
λ̃
)

= LF
 λ̃τ(φ̃)

θ(ψ)

 and LE
 λ̃τ(φ̃)

θ(ψ)

 = LE
(
λ̃
)
> 0. This means that

a.i.
(
λ̃τ̃

)
� 1: contradiction.

To conclude the proof of the theorem, we show that the pre-logarithm is uniquely deter-
mined, and that it verifies (GA). Indeed, let l1 and l2 be two pre-logarithms compatible

with d, and a ∈ K>0. So l1(a)′ =
a′

a
= l2(a)′, which means that l1(a) = l2(a) + c for

some c ∈ R. But if we take a = 1, then l1 = l2 = log, so l1(1) = l2(1) = 0 which implies
that c = 0.

Concerning (GA), since the derivation verifies l’Hospital’s rule (HD2), we observe

that, for any φ, the leading monomial of l(φ) is
θ(φ)

θ(ψ) where ψ is the fundamental mono-

mial such that LF
(
θ(φ)

θ(ψ)

)
= ψ (exists by Hypothesis 1.). By Hypothesis 2., we have

moreover that
θ(φ)

θ(ψ) � 1, so φ � ψ. Thus, we obtain LF(l(φ)) = ψ ≺ φ, as desired. �

In the next result and in its proof, we give a description of the l(φ)’s via a method that
we may call an iterated asymptotic integration.

Corollary 4.13 With the same hypothesis as in Theorem 4.10, for any φ ∈ Φ, if we
denote l(φ) =

∑
λ∈Supp l(φ)

dλλ ∈ K�1, then for any λ ∈ Supp l(φ), there is n ∈ N such that:

λ =

n∏
i=1

τ(φi)

θ(ψ) and dλ =

∏n
i=1 cτ(φi )(
β0c0,ψ

)n

where:

a) τ(φ1) = τ(φ) ∈ Supp
φ′

φ
and ψ = ψτ(φ) (Lemma 4.7: i.e. ψ verifies LF

(
τ(φ)

θ(ψ)

)
= ψ);

b) for any i = 2, . . . , n, cτ(φi)τ(φi) is a monomial of
φ′i
φi

for some φi 4 ψ with τ(φi) ≺ θ(ψ);

c) β0 = LE
(
τ(φ)

θ(ψ)

)
> 0 and c0,ψ = LC

(
ψ′

ψ

)
;

d) for any k = 1, . . . , n, LF

 k∏
i=1

τ(φi)

θ(ψ)

 = ψ and LE

 k∏
i=1

τ(φi)

θ(ψ)

 = β0 > 0.

Proof. Let φ ∈ Φ. We set the iterated asymptotic integration of
φ′

φ
as being the fixed

point of the following map f (we prove below that such a fixed point is well defined,
unique and equal to l(φ)). Given a series l =

∑
λ∈S

dλλ (which can be thought as an

approximation of l(φ)), by (D1) and (D2) we have:[
l(φ) − l

]′
=
φ′

φ
− l′ =

∑
λ∈Supp l(φ)\S

∑
φ̃∈supp λ

∑
τ(φ̃)∈Supp φ′/φ

(dλc̃φ̃).λτ(φ̃).
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Since any of the terms (dλc̃φ̃).λτ(φ̃) admits an asymptotic integral monomial (Claim
4.12), we set:

A.I.
([

l(φ) − l
]′) :=

∑
λ∈Supp l(φ)\S

∑
φ̃∈supp λ

∑
τ(φ̃)∈Supp φ′/φ

a.i.
[
(dλc̃φ̃).λτ(φ̃)

]
and A.I.(0) := 0.

and
f (l) := l + A.I.

([
l(φ) − l

]′)
Note that l(φ) is a fixed point for f . We adapt to our context [PCR93, Theorem 1]
for the ultrametric u(a, b) := LM(a − b)), provided the fact that (K, u) is spherically
complete:

Lemma 4.14 ([PCR93], Theorem 1) Since K is spherically complete, any contract-
ing map f : K→ K has exactly one fixed point.

Our map f is contracting. Indeed, given l1, l2 ∈ K, l1 , l2, we compute:

f (l1) − f (l2) = l1 − A.I.
(
φ′

φ
− l′1

)
− l2 + A.I.

(
φ′

φ
− l′2

)
= (l1 − l2) − A.I. [(l1 − l2)′] .

Therefore: u[ f (l1) − f (l2)] = LM [(l1 − l2) − A.I. [(l1 − l2)′]] < LM(l1 − l2) = u(l1, l2).
Consequently, l(φ) is the unique fixed point of f .

To obtain the desired properties for l(φ), we proceed by induction along the iterated
asymptotic integration. We begin with l = 0. Thus, we compute the asymptotic integral

of any monomial cτ(φ)τ(φ) of
φ′

φ
. By Proposition 4.8 and Hypothesis 1, its asymptotic

integral exists and is of the form:

dλλ :=
cτ(φ)

β0c0,ψ

τ(φ)

θ(ψ)

where ψ := ψτ(φ) , β0 := LE
(
α

θ(ψ)

)
and c0,ψ := LC

(
ψ′

ψ

)
. Moreover, by Hypothesis 2,

λ � 1 as desired.
We consider now f n(0) for some n ∈ N which we denote by the series l =

∑
dλλ,

supposing that properties a) to d) hold for it. Then any term in
[
l(φ) − l

]′ is of the form

(dλc̃φ̃).λτ(φ̃) =

(∏n
i=1 cτ(φi )

)
c̃φ̃(

β0c0,ψ

)n

 n∏
i=1

τ(φi)

θ(ψ)

 τ(φ̃)

where φ̃ ∈ supp λ, so φ̃ 4 ψ, and c̃φ̃τ(φ̃) is a monomial of Supp
φ̃′

φ̃
with τ(φ̃) ≺ θ(ψ). By

Proposition 4.8, Claim 4.12 and the induction hypothesis, its asymptotic integral is:

dλ̃λ̃ :=
dλc̃φ̃
β0c0,ψ

λ

θ(ψ) =

(∏n+1
i=1 cτ(φi )

)
(
β0c0,ψ

)n+1

n+1∏
i=1

τ(φi)

θ(ψ)

where φn+1 := φ̃, τ(φn+1) := τ(φ̃) and cτ(φn+1) := c̃φ̃. Note that LF
(
dλ̃λ̃

)
= ψ and LF

(
dλ̃λ̃

)
=

β0 > 0, which implies that dλ̃λ̃ � 1 as desired. �
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5 Pre-logarithms and derivations induced by decreas-
ing automorphisms.

5.1 Decreasing automorphisms and monomial series morphisms.
Definition 5.1 Let (Φ,4) be a chain. A decreasing endomorphism σ of Φ is an order
preserving map σ : Φ→ Φ, such that for all φ ∈ Φ, σ(φ) ≺ φ. If this map is surjective,
we call it a decreasing automorphism.

Remark 5.2 Note that, if Φ has a decreasing endomorphism, then it has necessarily
no least element. It would be interesting to characterize linear orderings which admit a
decreasing endomorphism.

Definition 5.3 A pre-logarithm onK is monomial if its restriction to the fundamental
monomials has its image in the monomials:

l : Φ→ R∗.Γ.

In [KM10, Proposition 5.2], we study derivations on K that are also called mono-
mial (i.e. such that their restrictions to the fundamental monomials have their image in
the monomials), and we prove that:

Proposition 5.4 A monomial derivation d extends to a Hardy type series derivation on
K if and only if the condition (H3’) holds.

Here we prove that:

Proposition 5.5 Let d be a monomial Hardy type series derivation on K. Assume
that the set Θ =

{
θ(φ), φ ∈ Φ

}
has no least element. Then there exists a unique pre-

logarithmic section l on K which is a series morphism, for which the induced pre-
logarithm is compatible with the derivation. Moreover, this pre-logarithm verifies
(GA).

Proof. We just need to check the hypothesis of Theorem 4.10. Indeed, for any φ,
θ(φ) , θ̂, which implies that assumption 1. of Theorem 4.10 holds. We compute now:

a.i.(θ(φ)) =
θ(φ)

LE
(
θ(φ)

θ(ψ)

)
LT

(
ψ′

ψ

) =
1

LE
(
θ(φ)

θ(ψ)

)
LC(θ(ψ))

θ(φ)

θ(ψ)

with LF
(
θ(φ)

θ(ψ)

)
= ψ (as in Lemma 4.7 with α = θ(φ)). Since d is a Hardy type

derivation, by (H3’) we have: LF
(
θ(φ)

θ(ψ)

)
≺ max{φ, ψ} for any φ , ψ. Consequently,

φ = max{φ, ψ} � ψ, which implies also that θ(φ) � θ(ψ). Assumption 2 of Theorem 4.10
holds, as desired. �
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Example 5.6 We define the basic prelogarithmic section on K by :

l(
∏
φ∈Φ

φγφ ) =
∑
φ∈Φ

γφφ

Here (SL) is readily verified. The basic prelogarithmic section l does not satisfy (GA)
(e. g. l(φ) = φ ). To remedy to this problem, we fix a decreasing endomorphism

σ : Φ→ Φ.

We define the prelogarithmic section lσ induced by σ as follows:

lσ(
∏
φ∈Φ

φγφ ) =
∑
φ∈Φ

γφσ(φ) .

The induced prelogarithm (given in Definition 2.7) is denoted by lσ. We leave it to
the reader to verify that lσ satisfies (GA) (see [Kuh00, Ch. 3] for more details).

As an elementary but important illustration, take the following chain of infinitely in-
creasing real germs at infinity (applying the usual comparison relations of germs) :

Φ := {expn(x) ; n ∈ Z}

where expn denotes for positive n, the n’th iteration of the real exponential function,
for negative n, the |n|’s iteration of the logarithmic function, and for n = 0 the identical
map. The restriction of the (germ of the) natural logarithmic function log to Φ is such
an embedding σ. We leave it to the reader to verify that its lifting as a pre-logarithm on
K, extends the logarithmic function on the rational functions field R(expn(x), n ∈ Z).

5.2 Defining a compatible monomial derivation from a series mor-
phism.

We study now the converse situation of Proposition 5.5. We consider the chain (Φ,4)
endowed with a decreasing automorphism σ, and the induced pre-logarithm lσ. We
want to know when we can define a log-compatible Hardy type series derivation onK,
and describe it.

Definition 5.7 Given an ordered chain (Φ,4), an element φ ∈ Φ and an decreasing
endomorphism σ : Φ 7→ Φ, we call:
• the Z-orbit of φ: O(φ) = {σk(φ) | k ∈ Z};
• the convex orbit of φ: C(φ) = {ψ ∈ Φ | ∃k ∈ N, σk(φ) 4 ψ 4 σ−k(φ)}.
• For any α =

∏
φ∈supp α

φαφ ∈ Γ, any ψ ∈ Φ and any binary relation R ∈ {≺,4,�,<},

we denote S ψ = {φ ∈ supp α | φRψ}, and define the corresponding truncation of α as
TrRψ(α) :=

∏
φ∈S ψ

φγφ .

Notation 5.8 Given a family F ⊂ Φ of representatives of the convex orbits of Φ, given
φ ∈ F , we denote SF ,φ := {ψ ∈ Φ | φ 4 ψ ≺ σ−1(φ)}, and SF :=

⋃
φ∈F

SF ,φ.
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Proposition 5.9 Let σ be a decreasing automorphism on Φ, and lσ the induced pre-
logarithm. There exists a log-compatible monomial Hardy type series derivation onK
if and only if there exists a map Φ→ Γ, φ 7→ θ(φ), such that:

(M) for any φ ≺ ψ ∈ Φ, Tr<Cψ

(
θ(ψ)

θ(φ)

)
= Tr<Cψ

 ∞∏
j=1

σ j(ψ)
σ j(φ)

, with in particular,

for any k ∈ N, θ(σk(φ)) =
θ(φ)∏k

j=1 σ
j(φ)

.

Moreover, given a family F of representatives of the various convex orbits of Φ, such
a derivation d is unique up to the definition of the corresponding map SF → R∗ · Γ,
ψ 7→ tψθ(ψ) (for arbitrary tψ ∈ R∗). In particular, when Φ admits only one convex orbit,
say Cφ, then d is unique up to the definition of θ(φ) ∈ Γ, and tψ ∈ R∗ for ψ ∈ Φ with

φ 4 ψ ≺ σ−1(φ). More precisely, we have θ(ψ) = θ(φ)
∞∏

k=1

σk(ψ)
σk(φ)

.

Proof. By Proposition 5.4, the existence of a monomial Hardy type series derivation
on K reduces to the existence of a map d : Φ → R∗Γ such that (H3’) holds. By
Proposition 3.8, such a series derivation is log-compatible if and only if (HL4) holds,

which means, in the monomial case, that for any φ ∈ Φ, (σ(φ))′ =
φ′

φ
= tφ.θ(φ). But,

(σ(φ))′ = tσ(φ).θ
(σ(φ))σ(φ) by definition. Therefore, we obtain tσ(φ).θ

(σ(φ)) = tφ.
θ(φ)

σ(φ)
,

and by induction, for any k ∈ N∗ , tσk(φ).θ
(σk(φ)) = tφ.

θ(φ)∏k
j=1 σ

j(φ)
, and tσ−k(φ).θ

(σ−k(φ)) =

tφ.θ(φ)
k−1∏
j=0

σ− j(φ) . Now, consider ψ ∈ Φ such that φ 4 ψ ≺ σ−1(φ), so σk(φ) 4 σk(ψ) ≺

σk−1(φ) for any k ∈ N. We deduce that
θ(φ)∏k

j=1 σ
j(φ)
4

θ(ψ)∏k
j=1 σ

j(ψ)
≺

θ(φ)∏k−1
j=1 σ

j(φ)
, and

equivalently 1 4
θ(ψ)

θ(φ)

k∏
j=1

σ j(φ)
σ j(ψ)

≺ σk(φ). By letting k tends to +∞, we deduce that

1 4
θ(ψ)

θ(φ)

+∞∏
j=1

σ j(φ)
σ j(ψ)

≺ χ for all χ ∈ Cφ. For ψ ∈ Φ such that σ−k(φ) 4 ψ ≺ σ−k−1(φ),

we set ψ̃ := σk(ψ). Then,
θ(ψ)

θ(φ) =
θ(ψ)

θ(ψ̃)

θ(ψ̃)

θ(φ) =

k∏
j=1

σ j(ψ)
θ(ψ̃)

θ(φ) . We are reduced to the

preceding case. Finally, assume that Cφ ≺ Cψ, i.e. for any k, l ∈ N, σ−k(φ) ≺ σl(ψ).

By (H3’), we have LF
θ(σl(ψ))

θ(φ)

 = LF

 θ(ψ)

θ(φ) ∏l
j=1 σ

j(ψ)

 ≺ σl(ψ), which implies that

LF
 θ(ψ)

θ(φ) ∏∞
j=1 σ

j(ψ)

 ≺ Cψ. To conclude, it suffices to note that, in the present case,
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Tr<Cψ

 ∞∏
j=1

σ j(ψ)
σ j(φ)

 =

∞∏
j=1

σ j(ψ).

Conversely, suppose now that there is a map Φ→ Γ, φ 7→ θ(φ), such that Condition (M)
holds. We set tφ := 1 for any φ ∈ Φ. It remains to verify that (H3’) and (HL4) hold for
such a map d : Φ → Γ, φ 7→ φ′ = θ(φ)φ. Condition (HL4) holds since, for any φ ∈ Φ,

σ(φ)′ = θ(σ(φ))σ(φ) =
θ(φ)

σ(φ)
σ(φ) =

φ′

φ
. For (H3’), we consider φ ≺ ψ ∈ Φ, and deduce

from (M) that: LF
(
θ(ψ)

θ(φ)

)
= σ(ψ) ≺ ψ, and LE

(
θ(ψ)

θ(φ)

)
= 1 > 0.

Concerning the second part of the statement of the proposition, we observe from the

preceding proof that, whenever we fix
φ′

φ
:= tφ.θ(φ), this determines the values of

ψ′

ψ
for

any ψ ∈ O(φ). Then note thatSF ,φ is a family of representatives of the Z-orbits included
in C(φ). Therefore, (SF ,φ)φ∈F is a partition of Φ, and SF is a family of representatives
of the Z-orbits of Φ. �

5.3 Examples.
1. Our purpose is to illustrate Proposition 5.9, in particular when the chain Φ =

{φi | i ∈ Z} is isomorphic to Z. Let n ∈ N∗ be given. We consider the correspond-
ing automorphism σ of Φ defined by φi 7→ φi−n. For instance, we set θ(φ0) := 1.
In order to build a log-compatible monomial Hardy type series derivation on K, we

have to set θ(σ−k(φ0)) := θ(φkn) =

k−1∏
l=0

φln, and θ(σk(φ0)) = θ(φ−kn) :=
1∏k

l=1 φ−ln
, for any

k ∈ N. Furthermore, for any j ∈ {1, . . . , n − 1}, we have to set θ(φ j) :=
+∞∏
l=1

φ j−ln

φ−ln
.

Then, for any k ∈ N, θ(σ−k(φ j)) = θ(φ j+kn) :=
+∞∏
l=1

φ j−ln

φ−ln

k−1∏
l=0

φ j+ln =

∏+∞
l=−k+1 φ j−ln∏+∞

l=1 φ−ln
, and

θ(σk(φ j)) = θ(φ j−kn) :=
+∞∏

l=k+1

φ j−ln

φ−ln

1∏k
l=1 φ−ln

=

∏+∞
l=k+1 φ j−ln∏+∞

l=1 φ−ln
.

As an illustration with germs of real functions at +∞, consider for any i ∈ Z, φ2i :=
log−i+1(x) (with log0(x) := x), and φ2i+1 := log−i+1 ◦g(x), where g is a (ultimately
positive and differentiable) half compositional iterate of exp (i.e. g ◦ g(x) = exp(x):
see [Bos86, Section 6]). The automorphism of the chain Φ is the usual real logarithmic
function. We have: σ(φi) = φi+2. By applying the usual derivation with respect to

x, for any k ∈ N∗, we compute:
φ′2k

φ2k
= exp(x) exp2(x) · · · expk−1(x) =

k−1∏
l=0

φ2l, and

φ′
−2k

φ−2k
=

1
logk(x) · · · log(x)x

=

k∏
l=1

φ−l. Concerning the fundamental monomial with

odd indexes, following Proposition 5.9, we have to set:
φ′2k+1

φ2k+1
:=

∏+∞
l=−k+1 φ1−2l∏+∞

l=1 φ−2l
=
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∏+∞
l=−k+1 logl+1 ◦g(x)∏+∞

l=1 logl+1 , and
φ′
−2k+1

φ−2k+1
:=

∏+∞
l=k+1 φ1−2l∏+∞

l=1 φ−2l
=

∏+∞
l=k+1 logl+1 ◦g(x)∏+∞

l=1 logl+1 . In particular,

g′(x)
g(x)

=
φ′
−1

φ−1
:=

∏+∞
l=2 φ1−2l∏+∞
l=1 φ−2l

=

+∞∏
l=1

logl+1 ◦g(x)
logl(x)

.

It would be interesting to investigate the possible analytic meaning of such a formal
definition for the derivative of g.

2. The purpose now is to provide a general example illustrating Proposition 5.9, with
a uniform definition for the θ(φ)’s. Let (Φ,4) be a chain endowed with a decreasing

automorphism σ : Φ → Φ. Set θ(φ) :=
+∞∏
k=1

σk(φ) and tφ = 1 for any φ ∈ Φ. These

momomials verify (M), since for any φ ≺ ψ ∈ Φ, we have
θ(ψ)

θ(φ) =

+∞∏
k=1

σk(ψ)
σk(φ)

.

In the case of germs of real functions described at the end of Example 5.6 (Φ ≈ Z), the
present one can be seen as a limit case. Indeed, instead of differentiating with respect
to the variable x, one may differentiate with respect to φi, with i → −∞. This can
be viewed as a differentiation with respect to a variable ρ dominated by all the φ’s in
Φ: ρ ≺ Φ. In other words, differentiation with respect to a translogarithm (i.e. the
compositional inverse of a transexponential: see [Bos86]).

6 Derivation on EL-series field
We consider K endowed with a pre-logarithm l. The exponential-logarithmic series
(EL-series for short) field (KEL, log) corresponding to the pre-logarithmic series field
(K, l), is built as an infinite towering extension of K, namely its exponential closure
(see below, [Kuh00] and [KT] for details). Given a log-compatible series derivation d
onK, the purpose of this section is to show how to extend d to a log-compatible series
derivation (also denoted d) on KEL. If we assume moreover that d is of Hardy type,
then so will be its extension.

6.1 The exponential closure of a pre-logarithmic series field.
Recall that the pre-logarithmic section l : Γ → K�1 is an embedding of ordered
groups. We denote by Γ̂ = K�1 \ l(Γ) the set complement of l(Γ) inK�1, and by Γ̃ = eΓ̂

a multiplicative copy of it (the choice of e as abstract variable will result obvious from
the definition of the new pre-logarithm l] below). We endow the later with an ordering
4: ∀ ea, eb ∈ Γ̃, ea ≺ eb ⇔ a < b. Then we define a new group Γ] = Γ ∪ Γ̃ with
the following multiplicative rule: if α], β] ∈ Γ] both belong to Γ, multiply them there;
similarly if they both belong to Γ̃. If α] = α ∈ Γ and β] = ea ∈ Γ̃ (i.e. a ∈ Γ̂), then set
α].β] := el(α)+a. Therefore Γ] is a group extension of Γ.
We extend also l to the following isomorphism:

l] : (Γ], .) → (K�1,+)
α] 7→ l](α])
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by defining l]
|Γ

:= l, and for any α] = ea ∈ Γ̃, l](α]) := l](ea) = a. Subsequently, we
endow Γ] with the ordering 4 defined as the transfer of the ordering ≤ on K�1. Hence
it extends the ordering 4 on Γ.
We set K] := R((Γ])), and the corresponding (K])≺1, (K])41, (K])�1 as before. Note
that K�1 ⊂ (K])�1, so l] : Γ] → (K])�1 is a pre-logarithmic section. We extend it to a
pre-logarithm l] onK] as in Definition 2.7.

Repeating this process, we obtain inductively the nth extension of (K, l), denoted by
(K]n, l]n), n ∈ N. The corresponding EL-series field is defined as follows:

Definition 6.1 Set KEL =
⋃
n∈N

K]n and log =
⋃
n∈N

l]n. We call (KEL, log) the EL-series

field over the pre-logarithmic field (K, l).

Note that log : ((KEL)>0, ·) → (KEL,+) is then an order preserving isomorphism. We
denote by exp = log−1 its inverse map.

6.2 Extending derivations to the exponential closure.
Consider a strongly linear (i.e. which verifies (D2)) and log-compatible derivation d on
K. We show how to extend d to the corresponding EL-series field KEL. Note that this
has been considered for fields of transseries in [Sch01, Ch. 4.1.4]. However, our pre-
logarithmic field (K, l) does not necessarily satisfy Axiom (T4) of [Sch01, Definition
2.2.1].

Theorem 6.2 The strongly linear and log-compatible derivation d on K extends to a
strongly linear and log-compatible derivation on KEL, and this extension is uniquely
determined. Moreover, if d is of Hardy type, then so is its extension to KEL.

To prove the theorem, we proceed by induction along the towering extension pro-
cess. Hence (K, l) represents from now until the end of this section, for simplicity of
the notations, (K]n, l]n) for some n ∈ N. We supposeK endowed with a strongly linear
and log-compatible derivation d, and require that its extension to K] (also denoted by
d) is also strongly linear and log-compatible:

Lemma 6.3 For any a] =
∑

α]∈Supp a]

aα]α
] ∈ K], if we set

d(a]) = (a])′ =
∑

α]∈Supp a]

aα]α
](l](α]))′,

then d is well-defined. Moreover, d is the unique strongly linear and log-compatible
derivation onK] that extends d.

Furthermore, if d is a Hardy type derivation on K, then so it is on K].

Proof. Consider a] =
∑

α]∈Supp a]

a]
α]
α] ∈ K]. For any α] ∈ Supp a], we denote α] = α if

α] ∈ Γ, and α] = ea for some a ∈ Γ̂ if α] ∈ Γ̃. Then, by definition, we have:
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(a])′ =
∑

α∈(Supp a])∩Γ

a]αα′ +
∑

ea∈(Supp a])∩Γ̃

a]ea a′ea.

If we denote a =
∑

α∈Supp a

aαα ∈ K�1, and a′ =
∑

β∈Supp a′
bββ ∈ K, then:

(a])′ =
∑

α∈(Supp a])∩Γ

a]αα′ +
∑

ea∈(Supp a])∩Γ̃

∑
β∈Supp a′

a]ea bβea+l(β).

First, we verify that (a])′ is well-defined. We set S := (Supp a]) ∩ Γ, and S̃ :=
(Supp a]) ∩ Γ̃. Observe that S and S̃ are anti-well-ordered subsets of Γ and Γ̃ respec-
tively. Hence, if we set Ŝ := l](S̃ ), then Ŝ is anti-well-ordered in (K�1,≤). The first
sum is the derivative of

∑
α∈S

a]αα, which is an element of K. By the induction hypoth-

esis, it is well-defined. For the second sum, we have to show that the family (a′ea)a∈Ŝ
is summable (see Definition 3.2). As noted above, the elements of the support of this
family are of the form ea+l(β), where a ∈ Ŝ and β ∈ Supp a′. Hence, to proceed by
contradiction, we suppose that there is an increasing sequence c0 ≤ c1 ≤ c2 ≤ · · · of
elements of K with cn := an + l(β(n)), an ∈ Ŝ , β(n) ∈ Supp a′n for any n. Consider the
corresponding sequence (an)n∈N. Since Ŝ is anti-well-ordered in K�1, it cannot have
an increasing subsequence. Moreover, if it had a stationary subsequence, we would
have a corresponding increasing subsequence of l(β(n))’s. Since l is order preserving,
we would have an increasing subsequence of βn’s, all of them belonging to the sup-
port of a same a′n0

, contradicting the induction hypothesis. Therefore, by Lemma 2.1,
there is a strictly decreasing subsequence ai0 > ai1 > ai2 > · · · . Since the correspond-
ing sequence ci0 < ci1 < · · · is increasing, we must have l(β(i0)) < l(β(i1)) < · · · , and
equivalently β(i0) ≺ β(i1) ≺ · · · . Subsequently, we observe that:

∀k < l ∈ N, 0 < aik − ail < l(β(il)) − l(β(ik)) = l
(
β(il)

β(ik)

)
(2)

with β(ik) ∈ Supp a′ik and β(il) ∈ Supp a′il . By the induction hypothesis, we denote

β(in) = α(in)γ(in), where α(in) ∈ Supp ain and γ(in) ∈ Supp
(α(in))′

α(in) = Supp l(α(in))′ for any

n ∈ N. We observe that α(in) ∈ Γ�1 since ain ∈ K
�1, and l

(
β(il)

β(ik)

)
= l

(
α(il)

α(ik)

)
+ l

(
γ(il)

γ(ik)

)
for

any k, l. Consider the sequence (α(in))n∈N. If it had a strictly decreasing subsequence,
we could define the series ã =

∑
n∈N

α(in). But the corresponding increasing subsequence

of (β(in))n∈N would be included in Supp ã′, contradiction. Neither can (α(in))n∈N have any
stationary subsequence. Indeed, the corresponding increasing subsequence of (β(in))n∈N

would be included in Supp (α(in0 ))′ for a fixed n0. Hence, by Lemma 2.1, (α(in))n∈N has
a strictly increasing subsequence, say (α( jn))n∈N. Observe now that:

∀k < l ∈ N, 1 ≺
γ( jk)

γ( jl)
4
α( jl)

α( jk) (3)
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It implies that 0 < l
(
γ( jk)

γ( jl)

)
≤ l

(
α( jl)

α( jk)

)
< l(α( jl)) (since α( jk) ∈ Γ�1). But, since l ver-

ifies (GA), we also have l(α( jl)) ≺ α( jl). Therefore, l
(
α( jl)

α( jk)

)
≺ α( jl), which implies

that l
(
γ( jk)

γ( jl)

)
≺ α( jl). We obtain that l

(
β(il)

β(ik)

)
≺ α( jl). But, we deduce from (2) that

aik − ail ≺ α
( jl). It implies that the term with monomial α( jl) in ail has been cancelled

by a term in aik . Therefore, α( jl) ∈ Supp aik , so β( jl) ∈ Supp a′ik . By a straightfor-
ward induction, we obtain that the strictly increasing sequence (β( jn))n∈N is included in
Supp a′i0 , contradiction. The extension of d toK] is well-defined.
The proofs that such an extension is a log-compatible derivation follow straightly from
the definitions and are left to the reader.
Moreover, we observe that the extension of d to K] is uniquely determined by its defi-
nition, since we suppose that it is strongly linear and log-compatible:

d(a]) = (a])′ =
∑

α]∈Supp a]

a]
α]
α](l](α]))′.

Suppose now additionally that d is a Hardy type derivation on K. To prove that d
verifies l’Hospital’s rule (HD2) on K], it suffices to prove it for its monomials. Hence,
we consider α], β] ∈ Γ]\{1} with α] ≺ β]. It means that l](α]) < l](β]) in K�1, which
is equivalent, by the induction hypothesis, to: l](α])′ < l](β])′. Therefore: (α])′ =

α]l](α])′ ≺ β]l](β])′ = (β])′.
To determine the subfield of constants of K], suppose now that there exists a] =∑
α]∈Supp a]

a]
α]
α] ∈ K] \ R such that (a])′ = 0. We denote as before:

(a])′ =
∑

α]∈Supp a]

a]
α]
α](l](α]))′

=
∑
α∈S

a]αα′ +
∑
ea∈S̃

a]ea a′ea

=
∑
α∈S

a]αα′ +
∑
a∈Ŝ

∑
β∈Supp a′

a]ea bβea+l(β),

where S := (Supp a])∩Γ, S̃ := (Supp a])∩Γ̃, and Ŝ := l](S̃ ). Set α]0 := max(Supp a\{1}).
There are two possibilities. Either α]0 = α0 ∈ Γ. By the induction hypothesis, it implies
that there is β0 ∈ Supp α′0. So the corresponding term in (a])′ must have been cancelled
by the leading term of the second sum. Or α]0 = ea0 for some a0 ∈ Γ̂. Then there
exists α̂0 := LM(a0) � 1 and β̂0 := LM(α̂′0) , 0 (by the induction hypothesis). So
ea0+l(β̂0) is the leading monomial of the second sum. The corresponding term in (a])′

must have been cancelled by the leading term of the first sum, say β0. Therefore, in the

two cases, there must be an equality ea0+l(β̂0) = β0, which is equivalent to:
ea0+l(β̂0)

β0
= 1.
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But
ea0+l(β̂0)

β0
= ea0+l(β̂0)−l(β0). So we should have a0 + l(β̂0) − l(β0) = a0 + l

(
β̂0

β0

)
= 0,

which is absurd since a0 ∈ Γ̂ = K�1 \ l(Γ).
It remains to prove (HD3) on K]. We consider a], b] ∈ K] with |a]| � |b]| � 1. Note

that, by replacing a] and b] by −a], ±
1
a]

, and −b], ±
1
b]

respectively, we still have

|a]| � |b]| � 1, and the leading monomials of
(a])′

a]
and

(b])′

b]
are preserved. So we can

suppose without loss of generality that a] � b] � 1. Consequently, l](a]) > l](b]) > 0

inK. This implies that
(a])′

a]
= l](a])′ < l](b])′ =

(b])′

b]
. Moreover, a] �� b] � 1 if and

only if l](a]) � l](b]) in K, which means that
(a])′

a]
= l](a])′ � l](b])′ =

(b])′

b]
.

This concludes the proof of Lemma 6.3, and so the one of Theorem 6.2. �

7 Asymptotic integration and integration on EL-series
Let (K, l, d) be a pre-logarithmic series field endowed with a strongly linear and log-
compatible Hardy type derivation d. Recall that θ̂ := g.l.b. 4

{
θ(φ), φ ∈ Φ

}
, when-

ever it exists in Γ. In particular, in the case where d is a series derivation, θ̂ =

g.l.b. 4

{
LM

(
a′

a

)
; a ∈ K∗, a - 1

}
(see Proposition 4.5).

Theorem 7.1 Let (KEL, log, d) be the induced differential EL-series field as in Theo-
rem 6.2. A series a ∈ KEL admits an asymptotic integral if and only if a - θ̂.

Proof. Recall that the induced derivation d onKEL is itself strongly linear, log-compatible
and of Hardy type (Theorem 6.2). We proceed by induction along the towering exten-
sion construction of KEL. The initial step is given by Theorem 4.4. Consider (K, l, d)
as in the statement of the theorem. We want to show that its extension (K], l]) veri-

fies g.l.b. 4

{
LM

(
(a])′

a]

)
; a] ∈ K]\{0}, a] - 1

}
= θ̂ (indeed, we will then obtain the

desired result by applying Theorem 4.4 to K] = R((Γ]))). Let 1 - a] ∈ K]\{0}. We

denote α] := LM(a]). By (HD2), LM
(

(a])′

a]

)
= LM

(
(α])′

α]

)
. There are two possibili-

ties. Either α] = α ∈ Γ, which implies that LM
(

(α])′

α]

)
< θ̂. Or α] = ea ∈ Γ̃ for some

a ∈ Γ̂ = K�1\l(Γ). We denote α := LM(a). Then LM
(

(α])′

α]

)
= LM(a′) = LM(α′) =

αLM
(

(α)′

α

)
. Since LM

(
(α)′

α

)
< θ̂, and α � 1, then LM

(
(α])′

α]

)
� θ. Therefore, by in-

duction we obtain that θ̂ = g.l.b. 4

{
LM

(
(â)′

â

)
; â ∈ K]n\{0}, â - 1

}
for any n ∈ N,

so θ̂ = g.l.b. 4

{
LM

(
(â)′

â

)
; â ∈ KEL\{0}, â - 1

}
as desired. �
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Denote ΓEL := LM(KEL) =
⋃

n∈N Γ]n.

Corollary 7.2 The EL-series field KEL is closed under integration if and only if θ̂ <
ΓEL.

Proof. By [Kuh, Theorem 55 and 56], it suffices to prove that θ̂ < ΓEL implies that
any element of KEL has an asymptotic integral, which was proved in the preceding
theorem. �
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