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ABSTRACT

The classical Brouwer fixed point theorem states that
in a real vector space every continuous function from
a compact set on itself has a fixed point. For an ar-
bitrary probability space, let L0 = L0(Ω,A, P ) be
the set of random variables. We consider (L0)d as an
L0-module and show that local, sequentially contin-
uous functions on closed and bounded subsets have
a fixed point which is measurable by construction.
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1 Introduction

The Brouwer fixed point theorem states that a continuous function from a compact and convex
set in Rd to itself has a fixed point. This result and its extensions play a central role in Anal-
ysis, Optimization and Economic Theory among others. To show the result one approach is to
consider functions on simplexes first and use Sperner’s Lemma.

Recently, Cheridito, Kupper, and Vogelpoth [3], inspired by the theory developed by Fil-
ipović, Kupper, and Vogelpoth [7] and Guo [9], studied (L0)d as an L0-module, discussing
concepts like linear independence, σ-stability, locality and L0-convexity. Based on this, we de-
fine affine independence and conditional simplexes in (L0)d. Showing first a result similar to
Sperner’s Lemma, we obtain a fixed point for local, sequentially continuous functions on con-
ditional simplexes. From the measurable structure of the problem, it turns out that we have to
work with local, measurable labeling functions. To cope with this difficulty and to maintain
some uniform properties, we subdivide the conditional simplex barycentrically. We then prove
the existence of a measurable completely labeled conditional simplex, contained in the original
one, which turns out to be a suitable σ-combination of elements of the barycentric subdivision
along a partition of Ω. Thus, we can construct a sequence of conditional simplexes converging
to a point. By applying always the same rule of labeling using the locality of the function, we
show that this point is a fixed point. Due to the measurability of the labeling function the fixed
point is measurable by construction. Hence, even though we follow the approach of Rd (cf. [2])
we do not need any measurable selection argument.

In Probabilistic Analysis theory the problem of finding random fixed points of random op-
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erators is an important issue. Given C, a compact convex set of a Banach space, a continuous
random operator is a function R : Ω× C → C satisfying

(i) R(., x) : Ω→ C is a random variable for any fixed x ∈ C,

(ii) R(ω, .) : C → C is a continuous function for any fixed ω ∈ Ω. 1

For R there exists a random fixed point which is a random variable ξ : Ω→ C such that ξ(ω) =
R(ω, ξ(ω)) for any ω (cf. [1], [10], [6]). In contrast to this ω-wise consideration, our approach
is completely within the theory of L0. All objects and properties are therefore defined in that
language and proofs are done with L0-methods. Moreover, the connection between continuous
random operators on Rd and sequentially continuous functions on (L0)d is not entirely clear.

The present paper is organized as follows. In the first chapter we present the basic concepts
concerning (L0)d as an L0-module. We define conditional simplexes and examine their basic
properties. In the second chapter we define measurable labeling functions and show the Brouwer
fixed point theorem for conditional simplexes via a construction in the spirit of Sperner’s lemma.
In the third chapter, we show a fixed point result for L0-convex, bounded and sequentially closed
sets in (L0)d. With this result at hand, we present the topological implications known from the
real-valued case. On the one hand, the impossibility of contracting a ball to a sphere in (L0)d

and on the other hand, an intermediate value theorem in L0.

2 Conditional Simplex

For a probability space (Ω,A, P ), let L0 = L0(Ω,A, P ) be the space of all A-measurable
random variables, where P -almost surely equal random variables are identified. In particular,
for X,Y ∈ L0, the relations X ≥ Y and X > Y have to be understood P -almost surely. The
set L0 with the almost everywhere order is a lattice ordered ring, and every nonempty subset
C ⊆ L0 has a least upper bound ess sup C and a greatest lower bound ess inf C (cf.[8]). For
m ∈ R, we denote the constant random variable m · 1Ω by m. Further, we define the sets
L0

+ = {X ∈ L0 : X ≥ 0}, L0
++ = {X ∈ L0 : X > 0} and A+ = {A ∈ A : P (A) > 0}. The

set of random variables which can only take values in a set M ⊆ R is denoted by M(A). For
example, {1, . . . , r}(A) is the set of A-measurable functions with values in {1, . . . , r} ⊆ N,
[0, 1](A) = {Z ∈ L0 : 0 ≤ Z ≤ 1} and (0, 1)(A) = {Z ∈ L0 : 0 < Z < 1}.

The convex hull of X1, . . . , XN ∈ (L0)d, N ∈ N, is defined as

conv(X1, . . . , XN ) = {
N∑
i=1

λiXi : λi ∈ L0
+,

N∑
i=1

λi = 1}.

An element Y ∈ conv(X1, . . . , XN ) such that λi > 0 for all i ∈ I ⊆ {1, . . . , N} is called a
strict convex combination of (Xi : i ∈ I).

The σ-stable hull of a set C ⊆ (L0)d is defined as

σ(C) = {
∑
i∈N

1AiXi : Xi ∈ C, (Ai)i∈N is a partition},

1There exist versions in which C depends on ω with the property ω 7→ C(ω) is measurable.
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where a partition is a countable family (Ai)i∈N ⊆ A such that P (Ai ∩ Aj) = 0 for i 6= j and
P (
⋃
i∈NAi) = 1. We call a nonempty set C σ-stable if it is equal to σ(C). For a σ-stable set

C ⊆ (L0)d a function f : C → (L0)d is called local if f(
∑

i∈N 1AiXi) =
∑

i∈N 1Aif(Xi) for
every partition (Ai)i∈N and Xi ∈ C, i ∈ N. For X ,Y ⊆ (L0)d, we call a function f : X → Y
sequentially continuous if for every sequence (Xn)n∈N in X converging to X ∈ X P -almost-
surely it holds that f(Xn) converges to f(X) P -almost surely. Further, the L0-scalar product
and L0-norm on (L0)d are defined as

〈X,Y 〉 =
d∑
i=1

XiYi and ‖X‖ = 〈X,X〉
1
2 .

We call C ⊆ (L0)d bounded if ess supX∈C ‖X‖ ∈ L0 and sequentially closed if it contains
all P -almost sure limits of sequences in C. Further, the diameter of C ⊆ (L0)d is defined as
diam(C) = ess supX,Y ∈C ‖X − Y ‖.

Definition 2.1. Elements X1, . . . , XN of (L0)d, N ∈ N, are said to be affinely independent, if
either N = 1 or N > 1 and {Xi −XN}N−1

i=1 are linearly independent, that is

N−1∑
i=1

λi(Xi −XN ) = 0 implies λ1 = · · · = λN−1 = 0, (2.1)

where λ1, . . . , λN−1 ∈ L0.

The definition of affine independence is equivalent to

N∑
i=1

λiXi = 0 and
N∑
i=1

λi = 0 implies λ1 = · · · = λN = 0. (2.2)

Indeed, first, we show that (2.1) implies (2.2). Let
∑N

i=1 λiXi = 0 and
∑N

i=1 λi = 0. Then,∑N−1
i=1 λi(Xi −XN ) = λNXN +

∑N−1
i=1 λiXi = 0. By assumption (2.1), λ1 = · · · = λN−1 =

0, thus also λN = 0. To see that (2.2) implies (2.1), let
∑N−1

i=1 λi(Xi − XN ) = 0. With
λN = −

∑N−1
i=1 λi, it holds

∑N
i=1 λiXi = λNXN +

∑N−1
i=1 λiXi =

∑N−1
i=1 λi(Xi −XN ) = 0.

By assumption (2.2), λ1 = · · · = λN = 0.

Remark 2.2. We observe that if (Xi)
N
i=1 ⊆ (L0)d are affinely independent then (λXi)

N
i=1, for

λ ∈ L0
++, and (Xi + Y )Ni=1, for Y ∈ (L0)d, are affinely independent. Moreover, if a family

X1, . . . , XN is affinely independent then also 1BX1, . . . , 1BXN are affinely independent on
B ∈ A+, which means from

∑N
i=1 1BλiXi = 0 and

∑N
i=1 1Bλi = 0 always follows 1Bλi = 0

for all i = 1, . . . , N . �

Definition 2.3. A conditional simplex in (L0)d is a set of the form

S = conv(X1, . . . , XN )

such that X1, . . . , XN ∈ (L0)d are affinely independent. We call N ∈ N the dimension of S.
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Remark 2.4. In a conditional simplex S = conv(X1, . . . , XN ), the coefficients of convex com-
binations are unique in the sense that

N∑
i=1

λiXi =

N∑
i=1

µiXi and
N∑
i=1

λi =

N∑
i=1

µi = 1 implies λi = µi for all i = 1, . . . , N.

(2.3)

Indeed, assume the given convex combinations. Then
∑N

i=1(λi − µi)Xi = 0 with
∑N

i=1(λi −
µi) = 0, and hence, by (2.2), λi − µi = 0 for all i since X1, . . . , XN are affinely independent.�

Since a conditional simplex is a convex hull it is in particular σ-stable. In contrast to a simplex
in Rd the representation of S as a convex hull of affinely independent elements is unique but up
to σ-stability.

Proposition 2.5. Let (Xi)
N
i=1 and (Yi)

N
i=1 be families in (L0)d such that σ(X1, . . . , XN ) =

σ(Y1, . . . , YN ). Then conv(X1, . . . , XN ) = conv(Y1, . . . , YN ). Moreover, (Xi)
N
i=1 are affinely

independent if and only if (Yi)
N
i=1 are affinely independent.

If S is a conditional simplex such that S = conv(X1, . . . , XN ) = conv(Y1, . . . , YN ), then it
holds σ(X1, . . . , XN ) = σ(Y1, . . . , YN ).

Proof. Suppose σ(X1, . . . , XN ) = σ(Y1, . . . , YN ). For i = 1, . . . , N , it holds

Xi ∈ σ(X1, . . . , XN ) = σ(Y1, . . . , YN ) ⊆ conv(Y1, . . . , YN ).

Therefore, conv(X1, . . . , XN ) ⊆ conv(Y1, . . . , YN ) and the reverse inclusion holds analo-
gously.

Now, let (Xi)
N
i=1 be affinely independent and σ(X1, . . . , XN ) = σ(Y1, . . . , YN ). We want to

show that (Yi)
N
i=1 are affinely independent. To that end, we define the affine hull

aff(X1, . . . , XN ) = {
N∑
i=1

λiXi : λi ∈ L0,
N∑
i=1

λi = 1}.

First, let Z1, . . . , ZM ∈ (L0)d, M ∈ N, such that σ(X1, . . . , XN ) = σ(Z1, . . . , ZM ).
We show that if 1A aff(X1, . . . , XN ) ⊆ 1A aff(Z1, . . . , ZM ) for A ∈ A+ and X1, . . . , XN

are affinely independent then M ≥ N . Since Xi ∈ σ(X1, . . . , XN ) = σ(Z1, . . . , ZM ) ⊆
aff(Z1, . . . , ZM ), we have aff(X1, . . . , XN ) ⊆ aff(Z1, . . . , ZM ). Further, it holds that X1 =∑M

i=1 1B1
i
Zi for a partition (B1

i )Mi=1 and hence there exists at least one B1
k1

such that A1
k1

:=

B1
k1
∩A ∈ A+, and 1A1

k1

X1 = 1A1
k1

Zk1 . Therefore,

1A1
k1

aff(X1, . . . , XN ) ⊆ 1A1
k1

aff(Z1, . . . , ZM ) = 1A1
k1

aff({X1, Z1, . . . , ZM} \ {Zk1}).

For X2 =
∑M

i=1 1A2
i
Zi we find a set A2

k, such that A2
k2

= A2
k ∩A1

k1
∈ A+, 1A2

k2

X2 = 1A2
k2

Zk2
and k1 6= k2. Assume to the contrary k2 = k1, then there exists a set B ∈ A+, such that
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1BX1 = 1BX2 which is a contradiction to the affine independence of (Xi)
N
i=1. Hence, we can

again substitute Zk2 by X2 on A2
k2

. Inductively, we find k1, . . . , kN such that

1AkN aff(X1, . . . , XN ) ⊆ 1AkN aff({X1, . . . , XN , Z1, . . . , ZM} \ {Zk1 , . . . ZkN })

which shows M ≥ N . Now suppose Y1, . . . , YN are not affinely independent. This means,
there exist (λi)

N
i=1 such that

∑N
i=1 λiYi =

∑N
i=1 λi = 0 but not all coefficients λi are zero,

without loss of generality, λ1 > 0 on A ∈ A+. Thus, 1AY1 = −1A
∑N

i=2
λi
λ1
Yi and it holds

1A aff(Y1, . . . , YN ) = 1A aff(Y2, . . . , YN ). To see this, consider 1AZ = 1A
∑N

i=1 µiYi ∈
1A aff(Y1, . . . , YN ) which means 1A

∑N
i=1 µi = 1A. Thus, inserting for Y1,

1AZ = 1A

[
N∑
i=2

µiYi − µ1

N∑
i=2

λi
λ1
Yi

]
= 1A

[
N∑
i=2

(
µi − µ1

λi
λ1

)
Yi

]
.

Moreover,

1A

[
N∑
i=2

(
µi − µ1

λi
λ1

)]
= 1A

[
N∑
i=2

µi

]
+ 1A

[
−µ1

λ1

N∑
i=2

λi

]
= 1A(1− µ1) + 1A

µ1

λ1
λ1 = 1A.

Hence, 1AZ ∈ 1A aff(Y2, . . . , YN ). It follows 1A aff(X1, . . . , XN ) = 1A aff(Y1, . . . , YN ) =
1A aff(Y2, . . . , YN ). This is a contradiction to the former part of the proof (becauseN−1 6≥ N ).

Next, we characterize extremal points in S = conv(X1, . . . , XN ). To this end, we show X ∈
σ(X1, . . . , XN ) if and only if there do not exist Y and Z in S \{X} and λ ∈ (0, 1)(A) such that
λY +(1−λ)Z = X . ConsiderX ∈ σ(X1, . . . , XN ) which isX =

∑N
k=1 1AkXk for a partition

(Ak)k∈N. Now assume to the contrary that we find Y =
∑N

k=1 λkXk and Z =
∑N

k=1 µkXk in
S\{X} such thatX = λY +(1−λ)Z. This means thatX =

∑N
k=1(λλk+(1−λ)µk)Xk. Due to

uniqueness of the coefficients (cf. (2.3)) in a conditional simplex we have λλk+(1−λ)µk = 1Ak
for all k = 1 . . . , N . By means of 0 < λ < 1, it holds that λλk + (1 − λ)µk = 1Ak if and
only λk = µk = 1Ak . Since the last equality holds for all k it follows that Y = Z = X .
Therefore, we cannot find Y and Z in S \ {X} such that X is a strict convex combination
of them. On the other hand, consider X ∈ S such that X /∈ σ(X1, . . . , XN ). This means,
X =

∑N
k=1 νkXk, such that there exist νk1 and νk2 and B ∈ A+ with 0 < νk1 < 1 on B and

0 < νk2 < 1 on B. Define ε := ess inf{νk1 , νk2 , 1− νk1 , 1− νk2}. Then define µk = λk = νk
if k1 6= k 6= k2 and λk1 = νk1 − ε, λk2 = νk2 + ε, µk1 = νk1 + ε and µk2 = νk2 − ε. Thus,
Y =

∑N
k=1 λkXk and Z =

∑N
k=1 µkXk fulfill 0.5Y + 0.5Z = X but both are not equal to X

by construction. Hence,X can be written as a strict convex combination of elements in S \{X}.
To conclude, consider X ∈ σ(X1, . . . , XN ) ⊆ S = conv(X1, . . . , XN ) = conv(Y1, . . . , YN ).
Since X ∈ σ(X1, . . . , XN ) it is not a strict convex combinations of elements in S \ {X}, in
particular, of elements in conv(Y1, . . . , YN ) \ {X}. Therefore, X is also in σ(Y1, . . . , YN ).
Hence, σ(X1, . . . , XN ) ⊆ σ(Y1, . . . , YN ). With the same argumentation the other inclusion
follows. �

As an example consider [0, 1](A). For an arbitrary A ∈ A, it holds that 1A and 1Ac are
affinely independent and conv(1A, 1Ac) = {λ1A + (1−λ)1Ac : 0 ≤ λ ≤ 1} = [0, 1](A). Thus,
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the conditional simplex [0, 1](A) can be written as a convex combination of different affinely
independent elements of L0. This is due to the fact that σ(0, 1) = {1B : B ∈ A} = σ(1A, 1Ac)
for any A ∈ A.

Remark 2.6. In (L0)d, let ei be the random variable which is 1 in the i-th component and 0 in
any other. Then the family 0, e1, . . . , ed is affinely independent and (L0)d = aff(0, e1, . . . , ed).
Hence, the maximal number of affinely independent elements in (L0)d is d+ 1. �

The characterization of X ∈ σ(X1, . . . , XN ) leads to the following definition.

Definition 2.7. Let S = conv(X1, . . . , XN ) be a conditional simplex. We define the set of
extremal points ext(S) = σ(X1, . . . , XN ). For an index set I and a collection S = (Si)i∈I of
conditional simplexes we denote ext(S ) = σ(ext(Si) : i ∈ I).

Remark 2.8. Let Sj = conv(Xj
1 , . . . , X

j
N ), j ∈ N, be conditional simplexes of the same di-

mension N and (Aj)j∈N a partition. Then
∑

j∈N 1AjSj is again a conditional simplex. To that
end, we define Yk =

∑
j∈N 1AjX

j
k and recognize

∑
j∈N 1AjSj = conv(Y1, . . . , YN ). Indeed,

N∑
k=1

λkYk =
N∑
k=1

λk
∑
j∈N

1AjX
j
k =

∑
j∈N

1Aj

N∑
k=1

λkX
j
k ∈

∑
j∈N

1AjSj , (2.4)

shows conv(Y1, . . . , YN ) ⊆
∑

j∈N 1AjSj . Considering
∑N

k=1 λ
j
kX

j
k in Sj and defining λk =∑

j∈N 1Ajλ
j
k yields the other inclusion. To show that Y1, . . . , YN are affinely independent con-

sider
∑N

k=1 λkYk = 0 =
∑N

k=1 λk. Then by (2.4), it holds 1Aj
∑N

k=1 λkX
j
k = 0 and since Sj is

a conditional simplex, 1Ajλk = 0 for all j ∈ N and k = 1, . . . , N . From the fact that (Aj)j∈N
is a partition, it follows that λk = 0 for all k = 1, . . . , N . �

We will prove the Brouwer fixed point theorem in our setting using an analogue version of
Sperner’s Lemma. As in the unconditional case we have to subdivide a conditional simplex in
smaller ones. For our argumentation we cannot use arbitrary subdivisions and need very special
properties of the conditional simplexes in which we subdivide. This leads to the following
definition.

Definition 2.9. Let S = conv(X1, . . . , XN ) be a conditional simplex and SN the group of
permutations of {1, . . . , N}. Then for π ∈ SN we define

Cπ = conv

(
Xπ(1),

Xπ(1) +Xπ(2)

2
, . . . ,

Xπ(1) + · · ·+Xπ(k)

k
, . . . ,

Xπ(1) + · · ·+Xπ(N)

N

)
.

We call (Cπ)π∈SN
the barycentric subdivision of S , and denote Y π

k = 1
k

∑k
i=1Xπ(i).

Lemma 2.10. The barycentric subdivision is a collection of finitely many conditional simplexes
satisfying the following properties

(i) σ(
⋃
π∈SN

Cπ) = S.
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(ii) Cπ has dimension N , π ∈ SN.

(iii) Cπ ∩ Cπ is a conditional simplex of dimension r ∈ N and r < N for π, π ∈ SN, π 6= π.

(iv) For s = 1, . . . , N − 1, let Bs := conv(X1, . . . , Xs). All conditional simplexes Cπ ∩ Bs,
π ∈ SN, of dimension s subdivide Bs barycentrically.

Proof. We show the affine independence of Y π
1 , . . . , Y

π
N in Cπ. It holds

λπ(1)Xπ(1) + λπ(2)

Xπ(1) +Xπ(2)

2
+ · · ·+ λπ(N)

∑N
k=1Xπ(k)

N
=

N∑
i=1

µiXi,

with µi =
∑N

k=π−1(i)
λπ(k)
k . Since

∑N
i=1 µi =

∑N
i=1 λi, the affine independence of Y π

1 , . . . , Y
π
N

is obtained by the affine independence of X1, . . . , XN . Therefore all Cπ are conditional sim-
plexes.

The intersection of two conditional simplexes Cπ and Cπ can be expressed in the following
manner. Let J = {j : {π(1), . . . , π(j)} = {π(1), . . . , π(j)}} be the set of indexes up to which
both π and π have the same set of images. Then,

Cπ ∩ Cπ = conv

(∑j
k=1Xπ(k)

j
: j ∈ J

)
. (2.5)

To show ⊇, let j ∈ J . It holds that
∑j
k=1Xπ(k)

j is in both Cπ and Cπ since {π(1), . . . , π(j)} =
{π(1), . . . , π(j)}. Since the intersection of convex sets is convex, we get this implication.

For the reverse inclusion, let X ∈ Cπ ∩ Cπ. From X ∈ Cπ ∩ Cπ̄, it follows that X =∑N
i=1 λi(

∑i
k=1

Xπ(k)
i ) =

∑N
i=1 µi(

∑i
k=1

Xπ(k)
i ). Consider j 6∈ J . By definition of J , there

exist p, q ≤ j with π−1(π(p)), π−1(π(q)) 6∈ {1, . . . , j}. By (2.3), the coefficients of Xπ(p) are
equal:

∑N
i=p

λi
i =

∑N
i=π−1(π(p))

µi
i . The same holds for Xπ(q):

∑N
i=q

µi
i =

∑N
i=π−1(π(q))

λi
i .

Put together

N∑
i=j+1

µi
i
≤

N∑
i=q

µi
i

=
N∑

i=π−1(π(q))

λi
i
≤

N∑
i=j+1

λi
i
≤

N∑
i=p

λi
i

=
N∑

i=π−1(π(p))

µi
i
≤

N∑
i=j+1

µi
i

which is only possible if µj = λj = 0 since p, q ≤ j.
Furthermore, if Cπ ∩ Cπ is of dimension N by (2.5) follows that π = π. This shows (iii).
As for Condition (i), it clearly holds σ(∪π∈SN

Cπ) ⊆ S. On the other hand, let X =∑N
i=1 λiXi ∈ S . Then, cf. [4], we find a partition (An)n∈N such that on every An the indexes

are completely ordered which is λin1 ≥ λin2 ≥ · · · ≥ λinN on An. This means, that X ∈ 1AnCπn
with πn(j) = inj . Indeed, we can rewrite X on An as

X = (λin1 − λin2 )Xin1
+ · · ·+ (N − 1)(λinN−1

− λinN )

∑N−1
k=1 Xink

N − 1
+NλinN

∑N
k=1Xink

N
,

which shows that X ∈ Cπn on An.
Further, for Bs = conv(X1, . . . , Xs) the elements Cπ′ ∩ Bs of dimension s are exactly the

ones with {π(i) : i = 1, . . . , s} = {1, . . . , s}. Therefore, (Cπ′ ∩ Bs)π′ is exactly the barycentric
subdivision of Bs, which has been shown to fulfill the properties (i)-(iii). �
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Remark 2.11. If we subdivide the conditional simplex S = conv(X1, . . . , XN ) barycentrically,
we can consider an arbitrary Cπ = conv(Y π

1 , . . . , Y
π
N ), π ∈ SN. Then

diam(Cπ) ≤ ess sup
i=1,...,N

‖Y π
i − Y π

N‖ ≤
1

N
ess sup
i=1,...,N

∥∥∥∥∥
N∑
k=1

(Xn
i −Xn

k )

∥∥∥∥∥ ≤ N − 1

N
diam(S).

If we now subdivide Cπ barycentrically and continue in that way, we obtain a chain of con-
ditional simplexes Sn, with S0 = S. For the diameter of Sn, it holds that diam(Sn) ≤(
N−1
N

)n
diam(S). Since diam(S) < ∞ and

(
N−1
N

)n → 0, for n → ∞, it follows that
diam(Sn)→ 0, n→∞. �

3 Brouwer Fixed Point Theorem for Conditional Simplexes

Definition 3.1. Let S = conv(X1, . . . , XN ) be a conditional simplex, barycentrically subdi-
vided in S = (Cπ)π∈SN

. A local function φ : ext(S ) → {1, . . . , N}(A) is called a labeling
function of S. For fixed X1, . . . , XN ∈ ext(S) with S = conv(X1, . . . , XN ), the labeling
function is called proper, if for any Y ∈ ext(S ) it holds that

P ({φ(Y ) = i} ⊆ {λi > 0}) = 1,

for i = 1, . . . , N , where Y =
∑N

i=1 λiXi. A conditional simplex C = conv(Y1, . . . , YN ) ⊆ S ,
with Yj ∈ ext(S ), j = 1, . . . , N , is said to be completely labeled by φ if this is a proper
labeling function of S and

P

 N⋃
j=1

{φ(Yj) = i}

 = 1,

for all i ∈ {1, . . . , N}.

Lemma 3.2. Let S = conv(X1, . . . , XN ) be a conditional simplex and f : S → S a local
function. Let φ : ext(S )→ {0, . . . , N}(A) be a local function such that

(i) P ({φ(X) = i} ⊆ {λi > 0} ∩ {λi ≥ µi}) = 1, for all i = 1, . . . , N ,

(ii) P
(⋃N

i=1

(
{λi > 0} ∩ {λi ≥ µi}

)
⊆
⋃N
i=1{φ(X) = i}

)
= 1,

where X =
∑N

i=1 λiXi and f(X) =
∑N

i=1 µiXi. Then, φ is a proper labeling function.
Moreover, the set of functions fulfilling these properties is non-empty.

Proof. First we show that φ is a labeling function. Since φ is local we just have to prove that φ
actually maps to {1, . . . , N}. Due to (ii), we have to show that P (

⋃N
i=1 {λi ≥ µi : λi > 0}) = 1.

Assume to the contrary, µi > λi on A ∈ A+, for all λi with λi > 0 on A. Then it holds that
1 =

∑N
i=1 λi1{λi>0} <

∑N
i=1 µi1{µi>0} = 1 on A which yields a contradiction. Thus, φ is

a labeling function. Moreover, due to (i) it holds that P ({φ(X) = i} ⊆ {λi > 0}) = 1 which
shows that φ is proper.
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To prove the existence, for X ∈ ext(S ) with X =
∑N

i=1 λiXi, f(X) =
∑N

i=1 µi let Bi :=
{λi > 0} ∩ {λi ≥ µi}, i = 1, . . . , N . Then we define the function φ at X as {φ(X) =
i} = Bi \ (

⋃i−1
k=1Bk), i = 1, . . . , N . It has been shown that φ maps to {1, . . . , N}(A) and is

proper. It remains to show that φ is local. To this end, consider X =
∑

j∈N 1AjX
j where Xj =∑N

i=1 λ
j
iXi and f(Xj) =

∑N
i=1 µ

j
iXi. Due to uniqueness of the coefficients in a conditional

simplex it holds that λi =
∑

j∈N 1Ajλ
j
i and due to locality of f it follows that µi =

∑
j∈N 1Ajµ

j
i .

Therefore it holds that Bi =
⋃
j∈N

(
{λji > 0} ∩ {λji ≥ µ

j
i} ∩Aj

)
=
⋃
j∈N(Bj

i ∩ Aj). Hence,

φ(X) = i on Bi \ (
⋃i−1
k=1Bk) = [

⋃
j∈N(Bj

i ∩ Aj)] \ [
⋃i−1
k=1(

⋃
j∈NB

j
k ∩ Aj)] =

⋃
j∈N[(Bj

i \⋃i−1
k=1B

j
k)∩Aj ]. On the other hand, we see that

∑
j∈N 1Ajφ(Xj) is i on anyAj ∩{φ(Xj) = i},

hence it is i on
⋃
j∈N(Bj

i \
⋃i−1
k=1B

j
k) ∩ Aj . Thus,

∑
j∈N 1Ajφ(Xj) = φ(

∑
j∈N 1AjX

j) which
shows that φ is local. �

The reason to demand locality of a labeling function is exactly because we want to label by
the rule explained in Lemma 3.2 and hence keep local information with it. For example consider
a conditional simplex S = conv(X1, X2, X3, X4) and Ω = {ω1, ω2}. Let Y ∈ ext(S ) be
given by Y = 1

3

∑3
i=1Xi. Now consider a function f on S such that

f(Y )(ω1) =
1

4
X1(ω1) +

3

4
X3(ω1); f(Y )(ω2) =

2

5
X1(ω2) +

2

5
X2(ω2) +

1

5
X4(ω2).

If we label Y by the rule explained in Lemma 3.2, φ takes the values φ(ω1) ∈ {1, 2} and
φ(ω2) = 3. Therefore, we can really express on which set λi ≥ µi and on which not. Using a
deterministic labeling of Y , we would loose this information. For example bearing the label 3
would not mean anything on ω1 for Y . Moreover, it would be impossible to label properly by a
deterministic labeling function following the rule of the last lemma since there is no i such that
λi ≥ µi.

Theorem 3.3. Let S = conv(X1, . . . , XN ) be a conditional simplex in (L0)d. Let f : S → S
be a local, sequentially continuous function. Then there exists Y ∈ S such that f(Y ) = Y .

Proof. We consider the barycentric subdivision (Cπ)π∈SN
of S and a proper labeling function

φ on ext(S ). First, we show that we can find a completely labeled conditional simplex in S.
By induction on the dimension of S = conv(X1, . . . , XN ), we show that there exists a partition
(Ak)k=1,...,K such that on any Ak there is an odd number of completely labeled Cπ. The case
N = 1 is clear, since a point can be labeled with the constant index 1, only.

Suppose the case N − 1 is proven. Since the number of Y π
i of the barycentric subdivision

is finite and φ can only take finitely many values, it holds for all V ∈ (Y π
i )i=1,...,N,π∈SN

there
exists a partition (AVk )k=1,...,K , K <∞, where φ(V ) is constant on any AVk . Therefore, we find
a partition (Ak)k=1,...,K , such that φ(V ) on Ak is constant for all V and Ak. Fix Ak now.

In the following, we denote by Cπb these conditional simplexes for which Cπb ∩ BN−1 are
N − 1-dimensional (cf. Lemma 2.10 (iv)), therefore πb(N) = N . Further we denote by Cπc
these conditional simplexes which are not of the type Cπb , that is πc(N) 6= N . If we use Cπ we
mean a conditional simplex of arbitrary type. We define

• C ⊆ (Cπ)π∈SN
to be the set of Cπ which are completely labeled on Ak.
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• A ⊆ (Cπ)π∈SN
to be the set of the almost completely labeled Cπ, that is

{φ(Y π
k ), k = 1, . . . , N} = {1, . . . , N − 1} on Ak.

• Eπ to be the set of the intersections (Cπ ∩ Cπl)πl∈SN
which are N − 1-dimensional and

completely labeled on Ak.2

• Bπ to be the set of the intersections Cπ ∩ BN−1 which are completely labeled on Ak.

It holds that Eπ ∩Bπ = ∅ and hence |Eπ ∪Bπ| = |Eπ| + |Bπ|. Since Cπc ∩ BN−1 is at most
N − 2-dimensional, it holds that Bπc = ∅ and hence |Bπc | = 0. Moreover, we know that
Cπ ∩ Cπl is N − 1-dimensional on Ak if and only this holds on whole Ω (cf. Lemma 2.10 (ii))
and Cπb ∩ BN−1 6= ∅ on Ak if and only if this also holds on whole Ω (cf. Lemma 2.10 (iv)). So
it does not play any role if we look at these sets which are intersections on Ak or on Ω since they
are exactly the same sets.

If Cπc ∈ C then |Eπc | = 1 and if Cπb ∈ C then |Eπb ∪Bπb | = 1. If Cπc ∈ A then |Eπc | = 2
and if Cπb ∈ A then |Eπb ∪Bπb | = 2. Therefore it holds

∑
π∈SN

|Eπ ∪Bπ| = |C |+ 2 |A |.
If we pick an Eπ ∈ Eπ we know there always exists another πl such that Eπ ∈ Eπl (Lemma

2.10(ii)). Therefore
∑

π∈SN
|Eπ| is even. Moreover (Cπb ∩ BN−1)πb subdivides BN−1 barycen-

trically3 and hence we can apply the hypothesis (on ext(Cπb ∩ BN−1)). This means that the
number of completely labeled conditional simplexes is odd on a partition of Ω but since φ is
constant on Ak it also has to be odd there. This means that

∑
πb |Bπb | has to be odd. Hence,

we also have that
∑

π |Eπ ∪Bπ| is the sum of an even and an odd number and thus odd. So we
conclude |C |+ 2 |A | is odd and hence also |C |. Thus, we find for any Ak a completely labeled
Cπk .

We define S1 =
∑K

k=1 1AkCπk which by Remark 2.8 is indeed a conditional simplex. Due
to σ-stability of S it holds S1 ⊆ S. By Remark 2.11 S1 has a diameter which is less then
N−1
N diam(S) and since φ is local S1 is completely labeled on whole Ω.
This holds for any proper labeling function hence also for a φ of the type as in Lemma 3.2.
Now, we extract a chain (Sn)n∈N of completely labeled conditional simplexes contained in
S , fulfilling the diameter property diam(Sn) → 0 as in Remark 2.11. By [3, Theorem 4.8])
it holds that

⋂
n∈N Sn 6= ∅. The intersection consists of one element Y =

∑N
l=1 αlXl by the

diameter property. Let f(Y ) =
∑N

l=1 βlXl. Thus, all sequences of elements in ext(Sn) also
converge P -almost surely to Y , which then preserves the properties of the index function. That
is, for each i = 1, . . . , N , there exist V n

k ∈ ext(Cnπ ) of Sn, k = 1, . . . , N, π ∈ SN, with
P ({φ(V n

k ) = i} ⊆ {λn,ki ≥ µn,ki }) = 1 (cf. Lemma 3.2), where V n
k =

∑N
i=1 λ

n,k
i Xi and

f(V n
k ) =

∑N
i=1 µ

n,k
i Xi. Then P (

⋂
n∈N{λ

n,k
i ≥ µn,ki } ⊆ {αi ≥ βi}) = 1 for all k = 1, . . . , N

by locality of f , V n → Y P -almost surely, and by sequential continuity, f(V n) → f(Y ) P -
almost surely. But, P (

⋃N
k=1

⋂
n∈N{λ

n,k
i ≥ µn,ki }) = P (

⋂
n∈N

⋃N
k=1{λ

n,k
i ≥ µn,ki }) = 1 by the

complete labeling of Sn. Hence, αi ≥ βi for all i = 1, . . . , N . This is possible only if αi = βi
for all i = 1, . . . , N which is the condition of a fixed point. �

2 That is bearing exactly the label 1, . . . , N − 1 on Ak.
3 The boundary of S is a σ-stable set so if it is partitioned by the labeling function intoAk we know thatBN−1(S) =∑K

k=1 1AkBN−1(1AkS) and by Lemma 2.10 (iv) we can apply the induction hypothesis also on Ak.
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Corollary 3.4. Let (Sn)n∈N be conditional simplexes, (An)n∈N be a partition of Ω and S :=∑
n∈N 1AnSn. Then a local, sequentially continuous function f : S → S has a fixed point.

Proof. Since f is local, we have f(S) =
∑

n∈N 1Anf(Sn) and f restricted on Sn is still
sequentially continuous. Therefore we find Yn ∈ Sn with 1Anf(Yn) = 1AnYn. Defining
Y =

∑
n∈N 1AnYn we have

f(Y ) = f

(∑
n∈N

1AnYn

)
=
∑
n∈N

1Anf(Yn) =
∑
n∈N

1AnYn = Y. �

Remark 3.5. The Sn which appear can be of different dimension. If Sn = conv(Y n
1 , . . . , Y

n
Nn

)
is of dimension Nn, the object S as the conditional dimension

∑
n∈N 1AnNn. This conditional

dimension is hence in N(A), in particular a measurable object, (c.f. [5]). �

4 Applications

4.1 Fixed point theorem for sequentially closed and bounded sets in (L0)
d

Proposition 4.1. Let K be an L0-convex, sequentially closed and bounded subset of (L0)d and
f : K → K a sequentially continuous function. Then f has a fixed point.

Proof. Since K is bounded, there exists a conditional simplex S such that K ⊆ S . Now define
the function h : S → K by

h(X) =

{
X, if X ∈ K,
arg min{‖X − Y ‖ : Y ∈ K}, else.

This means, that h is the identity on K and a projection towards K for the elements in S \ K.
Due to [3, Corollary 5.5] this minmium exists and is unique. Therefore h is well-defined.

We can characterize h by

Y = h(X)⇔ 〈X − Y,Z − Y 〉 ≤ 0, for all Z ∈ K. (4.1)

Indeed, let 〈X − Y,Z − Y 〉 ≤ 0 for all Z ∈ K. Then

‖X − Z‖2 = ‖(X − Y ) + (Y − Z)‖
= ‖X − Y ‖2 + 2〈X − Y, Y − Z〉+ ‖Y − Z‖2 ≥ ‖X − Y ‖2 ,

which shows the minimizing property of h. On the other hand, let Y = h(X). Since K is
convex, λZ + (1− λ)Y ∈ K for any λ ∈ (0, 1](A) and Z ∈ K. By standard calculation,

‖X − (λZ + (1− λ)Y )‖2 ≥ ‖X − Y ‖2
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yields 0 ≥ −2λ〈X,−Y 〉+ (2λ− λ2)〈Y, Y 〉+ 2λ〈X,Z〉 − λ2 ‖Z‖2 − 2λ(1− λ)〈Z, Y 〉. Any
term can be divided by λ > 0. We do so and let λ ↓ 0 afterwards. We obtain

0 ≥ −2〈X,−Y 〉+ 2〈Y, Y 〉+ 2〈X,Z〉 − 2〈Z, Y 〉 = 2〈X − Y, Z − Y 〉,

which is the claim.
Furthermore, for any X,Y ∈ S holds

‖h(X)− h(Y )‖ ≤ ‖X − Y ‖ .

Indeed,

X − Y = (h(X)− h(Y )) +X − h(X) + h(Y )− Y =: (h(X)− h(Y )) + c

which means

‖X − Y ‖2 = ‖h(X)− h(Y )‖2 + ‖c‖2 + 2〈c, h(X)− h(Y )〉. (4.2)

Since

〈c, h(X)− h(Y )〉 = −〈X − h(X), h(Y )− h(X)〉 − 〈Y − h(Y ), h(X)− h(Y )〉,

by (4.1), it follows that 〈c, h(X)− h(Y )〉 ≥ 0 and (4.2) yields ‖X − Y ‖2 ≥ ‖h(X)− h(Y )‖2.
Hence, h is sequentially continuous, since if ‖Xn −X‖ → 0 then also ‖h(Xn)− h(X)‖ → 0.

The function f ◦h is a sequentially continuous function mapping from S to S, more precisely
to K. Hence, there exists a fixed point f ◦ h(Z) = Z. But since f ◦ h maps to K, this Z has to
be in K. Therefore we know h(Z) = Z and hence f(Z) = Z which ends the proof. �

Remark 4.2. In [5] a concept of conditional compactness is introduced and it is shown that there
is an equivalence between conditional compactness and conditional closed- and boundedness
in (L0)d. In this concept we can formulate the conditional Brouwer fixed point theorem as
follows. A sequentially continuous function f : K → K such that K is a conditionally compact
and L0-convex subset of (L0)d has a fixed point. �

4.2 Applications in Analysis on (L0)
d

Working in Rd the Brouwer fixed point theorem can be used to prove several topological prop-
erties and is even equivalent to some of them. In the theory of (L0)d we will shown that the
conditional Brouwer fixed point theorem has several implications as well.

Define the unit ball in (L0)d by B(d) = {X ∈ (L0)d : ‖X‖ ≤ 1}. Then by the former
theorem any local, sequentially continuous function f : B(d) → B(d) has a fixed point. The
unit sphere S(d− 1) is defined as S(d− 1) = {X ∈ (L0)d : ‖X‖ = 1}.

Definition 4.3. Let X and Y be subsets of (L0)d. An L0-homotopy of two local, sequen-
tially continuous functions f, g : X → Y is a jointly local, sequentially continuous function
H : X × [0, 1](A)→ Y such that H(X, 0) = f(X) and H(X, 1) = g(X). Jointly local means
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H(
∑

j∈N 1AjXj ,
∑

j∈N 1Aj tj) =
∑

j∈N 1AjH(Xj , tj) for any partition (Aj)j∈N, (Xj)j∈N in
X and (tj)j∈N in [0, 1](A). Sequential continuity of H is therefore H(Xn, tn) → H(X, t)
whenever Xn → X and tn → t both P -almost surely for Xn, X ∈ X and tn, t ∈ [0, 1](A).

Lemma 4.4. The identity function of the sphere is not L0-homotop to a constant function.

The proof is a consequence of the following lemma.

Lemma 4.5. There does not exist a local, sequentially continuous function f : B(d)→ S(d−1)
which is the identity on S(d− 1).

Proof. Suppose there is this local, sequentially continuous function f . Define g : S(d − 1) →
S(d− 1) by g(X) = −X . Then the composition g ◦ f : B(d)→ B(d), which actually maps to
S(d− 1), is local and sequentially continuous. Therefore, this has a fixed point Y which has to
be in S(d − 1), since this is the image of g ◦ f . But we know f(Y ) = Y and g(Y ) = −Y and
hence g ◦ f(Y ) = −Y . Therefore, Y cannot be a fixed point (since 0 /∈ S(d − 1)) which is a
contradiction. �

Directly follows that the identity on the sphere is not L0-homotop to a constant function. In
the case d = 1 we get the following result which is the L0-version of an L0-intermediate value
theorem.

Lemma 4.6. Let X,X ∈ L0 with X ≤ X . Let
[
X,X

]
=
{
Z ∈ L0 : X ≤ Z ≤ X

}
and

f :
[
X,X

]
→ L0 be a local, sequentially continuous function. Define A = {f(X) ≤ f

(
X
)
}.

Then for every Y ∈
[
1Af(X) + 1Acf

(
X
)
, 1Af

(
X
)

+ 1Acf(X)
]

there exists Y ∈
[
X,X

]
with f

(
Y
)

= Y .

Proof. Since f is local, it is sufficient to prove the case for f(X) ≤ f
(
X
)

which is A =
Ω. For the general case we would consider A and Ac separately, obtain 1Af

(
Y 1

)
= 1AY ,

1Acf
(
Y 2

)
= 1AcY and by locality we have f

(
1AY 1 + 1AcY 2

)
= Y . So suppose Y ∈[

f (X) , f
(
X
)]

in the rest of the proof.
Let first f(X) < Y < f

(
X
)
. Define the function g :

[
X,X

]
→
[
X,X

]
by

g(V ) := p(V − f(V ) + Y ) with p(Z) = 1{Z≤X}X + 1{X≤Z≤X}Z + 1{X≤Z}X.

Therefore g is local and continuous and hence has a fixed point Y . If Y = X , it must hold
X − f(X) + Y ≤ X which means Y ≤ f(X) which is a contradiction. If Y = X , it follows
f
(
X
)
≤ Y , which is also a contradiction. Hence, Y = Y−f

(
Y
)
+Y which means f

(
Y
)

= Y .
If Y = f(X) on B and Y = f

(
X
)

on C, it holds that f(X) < Y < f
(
X
)

on (B ∪
C)c =: D. Then we find Y such that f

(
Y
)

= Y on D. In total f
(
1BX + 1C\BX + 1DY

)
=

1Bf(X)+1C\Bf
(
X
)
+1Df

(
Y
)

= Y . This shows the claim for general Y ∈
[
f(X), f(X)

]
.�
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