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Abstract. We consider settings in which the distribution of a multivariate

random variable is partly ambiguous. We assume the ambiguity lies on the

level of dependence structure, and that the marginal distributions are known.

Furthermore, a current best guess for the distribution, called reference measure,

is available. We work with the set of distributions that are both close to the given

reference measure in a transportation distance (e.g. the Wasserstein distance),

and additionally have the correct marginal structure. The goal is to find upper

and lower bounds for integrals of interest with respect to distributions in this

set.

The described problem appears naturally in the context of risk aggregation.

When aggregating different risks, the marginal distributions of these risks are

known and the task is to quantify their joint effect on a given system. This is

typically done by applying a meaningful risk measure to the sum of the individual

risks. For this purpose, the stochastic interdependencies between the risks need

to be specified. In practice the models of this dependence structure are however

subject to relatively high model ambiguity.

The contribution of this paper is twofold: Firstly, we derive a dual representa-

tion of the considered problem and prove that strong duality holds. Secondly, we

propose a generally applicable and computationally feasible method, which relies

on neural networks, in order to numerically solve the derived dual problem. The

latter method is tested on a number of toy examples, before it is finally applied

to perform robust risk aggregation in a real world instance.
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1. Introduction

1.1. Motivation

Risk aggregation is the process of combining multiple types of risk within a firm. The aim

is to obtain meaningful measures for the overall risk the firm is exposed to. The stochastic

interdependencies between the different risk types are crucial in this respect. There is a

variety of different approaches to model these interdependencies. One generally observes

that these models for the dependence structure between the risk types are significantly less

accurate than the models for the individual types of risk.

We take the following approach to address this issue: We assume that the distributions

of the marginal risks are known and fixed. This assumption is justified in many cases

of practical interest. Moreover, risk aggregation is per definition not concerned with the

computation of the marginal risks’ distributions. Additionally, we take a probabilistic model

for the dependence structure linking the marginals risks as given. Note that there are at least

two different approaches in the literature to specify this reference dependence structure: The

construction of copulas and factor models. The particular form of this reference model is not

relevant for our approach as long as it allows us to generate random samples. Independently

of the employed method, the choice of a reference dependence structure is typically subject

to high uncertainty. Therefore, our contribution is to model the ambiguity with respect

to the specified reference model, while fixing the marginal distributions. We address the

following question in this paper:

How can we account for model ambiguity with respect to a specific dependence structure

when aggregating different risks?

We propose an intuitive approach to this problem: We compute the aggregated risk with

respect to the worst case dependence structure in a neighborhood around the specified refer-

ence dependence structure. For the construction of this neighborhood we use transportation

distances. These distance measures between probability distributions are flexible enough to

capture different kinds of model ambiguity. At the same time, they allow us to generally

derive numerical methods, which solve the corresponding problem of robust risk aggrega-

tion in reasonable time. To highlight some of the further merits of our approach, we are

able to determine the worst case dependence structure for a problem at hand. Hence, our

method for robust risk measurement is arguably a useful tool also for risk management as it

provides insights about which scenarios stress a given system the most. Moreover, it should

be emphasized that our approach is restricted neither to a particular risk measure nor a

particular aggregation function.1

In summary, the approach presented provides a flexible way to include model ambiguity in

situations where a reference dependence structure is given and the marginals are fixed. It is

generally applicable and computationally feasible. In the subsequent subsection we outline

our approach in some more details before discussing the related literature.

1.2. Overview

We aim to evaluate ∫
Rd
fdµ̄,

1Note also that our methods can be applied to solve completely unrelated problems, such as the portfolio

selection problem under dependence uncertainty introduced in Pflug and Pohl [34].
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for some f : Rd → R in the presence of ambiguity with respect to the probability measure

µ̄ ∈ P(Rd), where P(Rd) denotes the set of all Borel probability measures on Rd. In

particular, we assume that the marginals µ̄1, . . . , µ̄d of µ̄ are known and the ambiguity lies

solely on the level of the dependence structure. Moreover, we assume a reference dependence

structure, namely the one implied by the reference measure µ̄, is given and that the degree

of ambiguity with respect to the reference measure µ̄ can be modeled by the transportation

distance dc, which is defined in (2) below. Hence, we consider the following problem

φ(f) := max
µ∈Π(µ̄1,...,µ̄d)
dc(µ̄,µ)≤ρ

∫
Rd
f dµ, (1)

where the set Π(µ̄1, . . . , µ̄d) consists of all µ ∈ P(Rd) satisfying µi = µ̄i for all i = 1, . . . , d,

where µi ∈ P(R) and µ̄i ∈ P(R) denote the i-th marginal distributions of µ and µ̄. Moreover,

we fix a continuous function c : Rd × Rd → [0,∞) such that c(x, x) = 0 for all x ∈ X. The

cost of transportation between µ̄ and µ in P(Rd) with respect to the cost function c is

defined as

dc(µ̄, µ) := inf
π∈Π(µ̄,µ)

∫
Rd×Rd

c (x, y)π(dx, dy), (2)

where Π(µ̄, µ) denotes the set of all couplings of the marginals µ̄ and µ. For the cost function

c(x, y) = ||x− y||p with p ≥ 1, the mapping d
1/p
c corresponds to the Wasserstein distance of

order p.

The following duality result is the starting point for the numerical methods to solve

problem (1), which are developed below. Moreover, it allows us to derive analytical solutions

to problem (1) in some cases. Hence, the following theorem can be seen as the central result

in the present paper. Let Ub(Rd) denote the set of all upper semicontinuous and bounded

functions f : Rd → R, and Cb(R) the set of all continuous and bounded functions h : R→ R.

Theorem 1. For every f ∈ Ub(Rd) one has

φ(f) := max
µ∈Π(µ̄1,...,µ̄d)
dc(µ̄,µ)≤ρ

∫
Rd
f dµ (3)

= inf
λ≥0, hi∈Cb(R)

{
ρλ+

d∑
i=1

∫
R
hi dµ̄i +

∫
Rd

sup
y∈Rd

[
f(y)−

d∑
i=1

hi(yi)− λc(x, y)
]
µ̄(dx)

}
.

(4)

for each radius ρ ≥ 0 and a every reference measure µ̄ ∈ Π(µ̄1, . . . , µ̄d).

Remark 1. (i) In case ρ =∞, the above result collapses to the duality of multi-marginal

optimal transport. On the other hand, if ρ = 0, both the primal problem (3) and the

dual problem (4) reduce to
∫
fdµ̄. Finally, if one drops the constraint µ ∈ Π(µ̄1, . . . , µ̄d)

in the primal formulation (3), the functions h1 = h2 = · · · = 0.

(ii) In Section 2 the Theorem is generalized in the following aspects: Firstly, rather than

Rd, we can consider a space X = X1 × · · · ×Xd, where the sets Xi can be of arbitrary

dimensions. In practice this means the problem setting can include an information

structure where multivariate marginals are known and fixed. Secondly, the functions

f need not be bounded, as we can derive the above results for a more general class

of functions f . Lastly, the constraint dc(µ̄, µ) ≤ ρ is one particular form of a more

general way to penalize with respect to dc(µ̄, µ).
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(iii) Gao and Kleywegt [22] derive the above duality under different assumptions, which we

discuss in the subsequent Section 1.3. These authors point out that the dual problem

(4) can be reformulated as a linear program under the following assumptions: First, the

function f can be written as the maximum of affine functions. Second, the reference

distribution µ̄ is given by an empirical distribution on n points x1, . . . , xn in Rd. Third,

the set X, mentioned in (ii), only contains nd points, to be precise Xi = {x1
i , . . . , x

n
i }

and X = X1 × · · · × Xd. Fourth, the cost function c has to be of a particular form,

which is satisfied for instance by c(x, y) =
∑d
i=1 |xi − yi|. For further details, we refer

to Corollary 3 in Section 2.1.

The assumptions listed in Remark 1(iii) under which problem (4) can be solved by means

of linear programming are so restrictive that they exclude many cases of practical interest.

Even in cases that linear programming is applicable, the resulting size of the linear program

quickly becomes intractable in higher dimensions. Hence, this paper presents a method to

numerically solve problem (4) which uses neural networks.

Implementation

Starting with the dual formulation (4) of the problem φ(f), the goal is to solve the problem

numerically using neural networks by recasting it as a stochastic optimization problem.

The basic idea is penalization, which has a long history in optimal transport and related

problems, see for example [16] and references therein.

The first hurdle is the inf-sup structure, which is circumvented by dualizing the point-wise

supremum in the integral. Under mild assumptions, this leads to

φ(f) = inf
λ≥0,

hi∈Cb(R), g∈Cb(Rd):

g(x)≥f(y)−
∑d
i=1 hi(yi)−λc(x,y)

{
λρ+

d∑
i=1

∫
R
hi dµ̄i +

∫
Rd
g dµ̄

}
.

As the point-wise inequality constraint prevents a direct implementation with neural net-

works, the constraint is penalized. This is done by introducing a measure θ ∈ P(R2d), which

we refer to as the sampling measure. Assuming all occurring functions are continuous, if

θ ∈ P(R2d) gives positive mass to every non-empty open set in R2d, it holds

φ(f) = inf
λ≥0,

hi∈Cb(R), g∈Cb(Rd)

{
λρ+

d∑
i=1

∫
R
hi dµ̄i +

∫
Rd
g dµ̄

+

∫
R2d

∞max
{

0, f(y)−
d∑
i=1

hi(yi)− λc(x, y)− g(x)
}
θ(dx, dy)

}
.

The final step is to approximate the function x 7→ ∞max{0, x} by a sequence of convex,

nondecreasing and differentiable functions (βγ)γ>0. The resulting optimization problems

are

φθ,γ(f) := inf
λ≥0,

hi∈Cb(R), g∈Cb(Rd)

{
λρ+

d∑
i=1

∫
R
hi dµ̄i +

∫
Rd
g dµ̄ (5)

+

∫
R2d

βγ
(
f(y)−

d∑
i=1

hi(yi)− λc(x, y)− g(x)
)
θ(dx, dy)

}
.
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In Proposition 1 we analyze the problem φθ,γ(f). In particular, Proposition 1 (c) identifies

conditions for the convergence φθ,γ(f)→ φ(f) for γ →∞.

The problem φθ,γ(f) now fits into the stochastic optimization framework. In this paper,

we solve it numerically using neural networks, i.e. we replace the occurring sets of functions

Cb(R) and Cb(Rd) by sets of neural network functions.

The remainder of the paper is structured as follows. In the subsequent Section 1.3, we

provide a brief overview of the relevant literature. Our main results can be found in Section

2, which consists of two parts: First, we state and prove the generalized version of Theorem

1 above. We then derive some implications thereof. In the second part of Section 2, we focus

on the function φθ,γ(f) introduced in equation (5) above. In this respect, our contribution

is threefold: We dualize φθ,γ(f), derive a connection between primal and dual optimizers

and study the convergence of φθ,γ(f) to φ(f).

Section 3 is devoted to three toy examples, which are based on two uniformly distributed

random variables with ambiguous dependence structure. The aim of this exemplification

is to shed some light on the developed concepts and show how they can be used to solve

given problems. In the final Section 4, the acquired techniques are applied to a real world

example. We thereby demonstrate how to implement robust risk aggregation with neural

networks in practice.

1.3. Related literature

There are three different strings of literature, which are relevant in the present context:

Firstly, literature on risk aggregation; secondly, literature on model ambiguity and particu-

larly on ambiguity sets constructed using the Wasserstein distance; thirdly, recent applica-

tion of neural networks in finance and related optimization problems.

Risk aggregation

In Section 4, we motivate from an applied point of view why there is interest in risk bounds

for the sum of losses of which the marginal distributions are known. The theoretical interest

in this topic started with the following questions: How can one compute bounds for the

distribution function of a sum of two random variables when the marginal distributions are

fixed? This problem was solved in 1982 by Makarov [28] and Rüschendorf [40]. Starting with

the work of Embrechts and Puccetti [17] more than 20 years later, the higher dimensional

version of this problem was studied extensively due to its relevance for risk management. We

refer to Embrechts et al. [18] and Puccetti and Wang [37] for an overview of the developments

concerning risk aggregation under dependence uncertainty, as this problem was coined. Let

us mention that Puccetti and Rüschendorf [36] introduced the so-called rearrangement al-

gorithm, which is a fast procedure to numerically compute the bounds of interest. Applying

this algorithm to real-world examples demonstrates a conceptual drawback of the assump-

tion that no information concerning the dependence of the marginal risk is available: The

implied lower and upper bound for the aggregated risk are impractically far apart.

Hence, some authors recently tried to overcome this drawback and to come up with

more realistic bounds by including partial information about the dependence structure.

For instance, Puccetti and Rüschendorf [35] discuss how positive, negative or independence

information influence the above risk bounds; Bernard et al. [7] derive risk bounds with

constraints on the variance of the aggregated risk; Bernard et al. [8] consider partially
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specified factor models for the dependence structure. The interested reader is referred to

Rüschendorf [41] for a recent review of these and related approaches. Finally, we want to

point out the intriguing contribution by Lux and Papapantoleon [27]. These authors provide

a framework which allows them to derive VaR-bounds if (a) extreme value information is

available, (b) the copula linking the marginals is known on a subset of its domain and (c)

the latter copula lies in the neighborhood of a reference copula as measured by a statistical

distance.

Since our paper aims to contribute to this string of literature, let us point out that

the latter mentioned type of partial information about the dependence structure used in

[27] is similar in spirit to our approach. We emphasize that Lux and Papapantoleon use

statistical distances which are different to the transportation distance dc defined in the

previous subsection.

Model Ambiguity

There is an obvious connection of problem (1), which is studied in this paper, with the

following minimax stochastic optimization problem

min
x∈X

max
Q∈Q

EQ [f(x, ξ)] , (6)

where X ⊂ Rm, f : Rm × Ξ → R, ξ is a random vector whose distribution Q is supported

on Ξ ⊂ Rd and Q is a nonempty set of probability distributions, referred to as ambiguity

set. Problems of this form recently became known as distributionally robust stochastic op-

timization problems. As pointed out by Shapiro [43], there are two natural and somewhat

different approaches to constructing the ambiguity set Q. On the one hand, ambiguity sets

have been defined by moment constraints, see Deluge and Ye [15] and reference therein. An

alternative approach is to assume a reference probability distribution Q̄ is given and define

the ambiguity set by all distributions which are in the neighborhood of Q̄ as measured by

a statistical distance. To the best of our knowledge two distinct choices of this statistical

distance have been established in the literature: The φ-divergence and the Wasserstein dis-

tance. Concerning ambiguity sets constructed using the φ-divergence we refer to Bayraksan

and Love [4] and references therein. In the following, we focus on approaches which rely on

the Wasserstein distance to account for model ambiguity. Pflug and Wozabal [33] were the

first to study these particular ambiguity sets. Esfahani and Kuhn [29] showed that distri-

butionally robust stochastic optimization problems over Wasserstein balls centered around

a discrete reference distribution possess a tractable reformulation: under mild assumptions

these problems belong to the same complexity class as their non-robust counterparts. The

duality result driving this insight was also proven by Blanchet and Murthy [11], Gao and

Kleywegt [21] and Bartl et al. [3] based on different techniques and assumptions. These con-

tribution indicate that distributionally robust stochastic optimization using the Wasserstein

distance developed into an active field of research in recent years. For instance, Zhao and

Guan [46] and Hanasusanto and Kuhn [25] adapted similar ideas in the context of two-stage

stochastic programming and Chen et al. [14] and Yang [45] study distributionally robust

Markov decision processes using the Wasserstein distance. Obloj and Wiesel [31] analyze a

robust estimation method for superhedging prices relying on a Wasserstein ball around the

empirical measure.

Most relevant in the context of our paper are the following two references: Gao and

Kleywegt [23] put two Wasserstein-type-constraints on the probability distribution Q in
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(6): Q has to be close in Wasserstein distance to a reference distribution Q̄, while the

dependence structure implied by Q has to be close, again in Wasserstein distance, to a

specified reference dependence structure. In their follow-up paper, Gao and Kleywegt [22]

consider problem (1) in the context of stochastic optimization, i.e. in the framework (6).

As indicated in Remark 1, they derive Theorem 1 for upper semicontinuous functions f

satisfying the growth condition supx∈X
f(x)
c(x,y0) < ∞ for some y0 ∈ X. Furthermore, these

authors consider a rather particular cost function c(·, ·). Note that Corollary 3, i.e. the

linear programming reformulation of the derived dual problem (4), is also derived by Gao

and Kleywegt [22].

Neural networks in finance and optimization

Applications of neural networks have vastly increased in recent years. Most of the popularity

arose from successes of neural networks related to data representation tasks, e.g. related to

pattern recognition, image classification, or task-specific artificial intelligence. In contrast

to such a utilization, neural networks have also been applied strictly as a tool to solve

certain optimization problems. This is the way we use neural networks in this paper, and

they have found similar uses in various areas related to finance. Among others, they were

applied to solving high dimensional partial differential equations and stochastic differential

equations (see e.g. Beck et al. [5], Berner et al. [9] and Weinan et al. [44]) as well as backward

stochastic differential equation (see Henry-Labordere [26]), in optimal stopping (Becker et

al. [6]), optimal hedging with respect to a risk measure (Buehler et al. [12]), and superhedging

(Eckstein and Kupper [16]).

For more classical learning tasks where neural networks are applied, ideas from optimal

transport and distributional robustness are also used. While the settings are often quite

different in nature to the one in this paper, the optimization problems which are eventually

implemented are nevertheless similar. Most related to the current paper are settings in

which optimal transport type of constraints are solved via a penalization or regularization

method. Examples include generative models for images (see e.g. Gulrajani et al. [24] and

Roth et al. [39]), optimal transport and calculation of barycenters for images (see e.g. Seguy

et al. [42]), or distributional robustness methods applied to learning tasks (see e.g. Blanchet

et al. [10], Gao et al. [20]).

2. Results

2.1. Duality

Let X = X1 × X2 × · · · × Xd be a Polish space, and denote by P(X) the set of all Borel

probability measures on X. Throughout, we fix a reference probability measure µ̄ ∈ P(X).

For i = 1, ..., d, we denote by µi := µ ◦pr−1
i the i-th marginal of µ ∈ P(X), where pri : X →

Xi is the projection pri(x) := xi. Further, let κ : X → (0,∞) be a growth function of the

form κ(x1, ..., xd) =
∑d
i=1 κi(xi), where each κi : Xi → (0,∞) is continuous and satisfies∫

Xi
κi dµ̄i < ∞. Denote by Cκ(X) and Uκ(X) the spaces of all continuous, respectively

upper semicontinuous functions f : X → R such that f/κ is bounded.

In the following we fix a continuous function c : X ×X → [0,∞) such that c(x, x) = 0 for

all x ∈ X. The cost of transportation between µ̄ and µ in P(X) with respect to the cost
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function c is defined as

dc(µ̄, µ) := inf
π∈Π(µ̄,µ)

∫
X×X

c (x, y)π(dx, dy), (7)

where Π(µ̄1, . . . , µ̄d) denotes the set of all µ ∈ P(X) such that µi = µ̄i for all i = 1, . . . , d.

The elements in Π(µ̄1, . . . , µ̄d) are referred to as couplings of the marginals µ̄1, . . . , µ̄d. Al-

though the computation of the convex conjugate in the following result relies on Bartl et

al. [3], we do not need their growth condition on the cost function c. The main reason we

do not require this condition is that continuity from above of the functional (8) - which cor-

responds to tightness of the considered set of measures - is already obtained by the imposed

marginal constraints.

Theorem 2. For every convex and lower semicontinuous function ϕ : [0,∞]→ [0,∞] such

that ϕ(0) = 0 and ϕ(∞) =∞, and all f ∈ Uκ(X), it holds that

max
µ∈Π(µ̄1,...,µ̄d)

{∫
X

f dµ− ϕ(dc(µ̄, µ))
}

(8)

= inf
λ≥0, hi∈Cκi (Xi)

{
ϕ∗(λ) +

d∑
i=1

∫
Xi

hidµ̄i +

∫
X

sup
y∈X

[
f(y)−

d∑
i=1

hi(yi)− λc(x, y)
]
µ̄(dx)

}
,

where ϕ∗ denotes the convex conjugate of ϕ, i.e. ϕ∗(λ) = supx≥0{λx− ϕ(x)}.

Proof. 1) Define the optimal transport functional ψ1 : Cκ(X)→ R by

ψ1(f) := inf
{ d∑
i=1

∫
Xi

hi dµ̄i : hi ∈ Cκi(Xi) such that ⊕di=1 hi ≥ f
}
,

where ⊕di=1hi : X → R is defined as ⊕di=1hi(x) :=
∑d
i=1 hi(xi). We show that ψ1 is

continuous from above on Cκ(X), i.e. for every sequence (fn) in Cκ(X) such that fn ↓
f ∈ Cκ(X) one has ψ1(fn) ↓ ψ1(f). To that end, fix ε > 0 and hi ∈ Cκi(Xi) such that

⊕di=1hi ≥ f and ψ1(f) + ε/3 ≥
∑d
i=1

∫
Xi
hi dµ̄i. Since f1 ∈ Cκ(X), there exists a constant

M > 0 such that f1 ≤ M · (κ1 ⊕ · · · ⊕ κd). By assumption,
∫
Xi
κi dµ̄i < +∞ for all

i = 1, . . . , d. Hence, it follows from Urysohn’s lemma that there exist Ki ⊂ Xi compact

and gi ∈ Cκi(Xi) such that gi ≥ 0, gi = Mκi on Kc
i and

∫
Xi
gi dµ̄i < ε/3d. By Dini’s

lemma there exists n0 ∈ N such that fn0 ≤ ⊕di=1hi + ε/3 on the compact K1× · · ·×Kd. By

construction, one has fn0 ≤ ⊕di=1(hi + gi) + ε/3, so that

ψ1(fn0) ≤
d∑
i=1

∫
Xi

hi + gi dµ̄i +
ε

3
≤ ψ1(f) + ε.

This shows that ψ1 is continuous from above on Cκ(X). Moreover, its convex conjugate is

given by

ψ∗1,Cκ(µ) = sup
f∈Cκ(X)

(∫
X

f dµ− inf
hi∈Cκi (Xi)
⊕di=1hi≥f

d∑
i=1

∫
Xi

hi dµ̄i

)

= sup
hi∈Cκi (Xi)

sup
f∈Cκ(X)

⊕di=1hi≥f

(∫
X

f dµ−
d∑
i=1

∫
Xi

hi dµ̄i

)

= sup
hi∈Cκi (Xi)

d∑
i=1

(∫
X

hi dµ−
∫
Xi

hi dµ̄i

)
=

{
0 if µ ∈ Π(µ̄1, . . . , µ̄d)

+∞ else
(9)
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for all µ ∈ Pκ(X), where Pκ(X) denotes the set of all µ ∈ P(X) such that κ ∈ L1(µ). Notice

that Π(µ̄1, . . . , µ̄d) ⊂ Pκ(X).

2) Define ψ2 : Cκ(X)→ R ∪ {+∞} by

ψ2(f) := inf
λ≥0

(
ϕ∗(λ) +

∫
X

sup
y∈X

[
f(y)− λc(x, y)

]
µ̄(dx)

)
.

By definition ψ2 is convex and increasing. Further, since infλ≥0 ϕ
∗(λ) = ϕ∗(0) = 0 and

fλc(x) := supy∈X{f(y)− λc(x, y)} ≥ f(x) for all λ ≥ 0, it follows that

ψ2(f) ≥ inf
λ≥0

(
ϕ∗(λ) +

∫
X

f dµ̄
)
> −∞

for all f ∈ Cκ(X), where we use that f ∈ L1(µ̄). For the convex conjugates one has

ψ∗2,Cκ(µ) := sup
f∈Cκ(X)

(∫
X

f dµ− ψ2(f)
)

= sup
f∈Uκ(X)

(∫
X

f dµ− ψ2(f)
)

=: ψ∗2,Uκ(µ) = ϕ(dc(µ̄, µ)) (10)

for all µ ∈ Pκ(X). Indeed, for every µ ∈ Pκ(X) one has

ψ∗2,Uκ(µ) ≥ ψ∗2,Cκ(µ) ≥ ψ∗2,Cb(µ) = ϕ(dc(µ̄, µ)),

where the last equality is shown in [3, Proof of Thm. 2.4, Step 4], notably without using

the growth condition for c imposed in [3]. It remains to show that ψ∗2,Uκ(µ) ≤ ϕ(dc(µ̄, µ)).

Since ϕ(∞) = ∞, the case dc(µ̄, µ) = ∞ is obvious. Suppose dc(µ̄, µ) < +∞. Note that∫
X
fλc dµ̄ is well-defined since fλc ≥ f ∈ L1(µ̄), so that the negative part of the integral is

finite. Further, by eliminating redundant choices in supremum and infimum of the convex

conjugate, one obtains

ψ∗2,Uκ(µ) = sup
f∈Uκ(X)
ψ2(f)<∞

{∫
X

fdµ− inf
λ≥0, ϕ∗(λ)<∞,∫
X
fλcdµ̄<∞

(
ϕ∗(λ) +

∫
X

fλcdµ̄
)}
.

For every ε > 0, f ∈ Uκ(X) and λ ≥ 0 such that ψ2(f) < +∞, ϕ∗(λ) < +∞,
∫
X
fλcdµ̄ <

+∞, it follows that
∫
X
fdµ, ϕ∗(λ) and

∫
X
fλcdµ̄ are real numbers, so that∫

X

f dµ− ϕ∗(λ)−
∫
X

fλc dµ̄− ε

≤
∫
X

f dµ− λdc(µ̄, µ) + ϕ(dc(µ̄, µ))−
∫
X

fλcdµ̄− ε

≤
∫
X×X

f(y)π(dx, dy)−
∫
X×X

λc(x, y)π(dx, dy)−
∫
X×X

fλc(x)π(dx, dy) + ϕ(dc(µ̄, µ))

≤
∫
X×X

[
λc(x, y) + fλc(x)− λc(x, y)− fλc(x)

]
π(dx, dy) + ϕ(dc(µ̄, µ))

= ϕ(dc(µ̄, µ)),

where π ∈ Π(µ̄, µ) is such that λdc(µ̄, µ) + ε ≥
∫
X×X λc d π, and where we used that

ϕ∗(λ) ≥ λdc(µ̄, µ) − ϕ(dc(µ̄, µ)) and f(y) ≤ λc(x, y) + fλc(x). Taking the supremum over

all such f and λ implies ψ∗2,Uκ(µ) ≤ ϕ(dc(µ̄, µ)).
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3) For f ∈ Uκ(X) define the convolution

ψ(f) := inf
g∈Cκ(X)

{ψ1(g) + ψ2(f − g)}

= inf
λ≥0, hi∈Cb(Xi)

{
ϕ∗(λ) +

d∑
i=1

∫
Xi

hidµ̄i +

∫
X

sup
y∈X

[
f(y)−

d∑
i=1

hi(yi)− λc(x, y)
]
µ̄(dx)

}
.

For the associated convex conjugates it follows from (9) and (10) that

ψ∗Cκ(µ) = sup
f∈Cκ(X)

sup
g∈Cκ(X)

(∫
X

f dµ− ψ1(g)− ψ2(f − g)
)

= sup
g∈Cκ(X)

(∫
X

g dµ− ψ1(g)
)

+ sup
f∈Cκ(X)

(∫
X

f dµ− ψ2(f)
)

= ψ∗1,Cκ(µ) + ψ∗2,Cκ(µ)

= ψ∗1,Cκ(µ) + ψ∗2,Uκ(µ) = sup
g∈Cκ(X)

(∫
X

g dµ− ψ1(g)
)

+ sup
f∈Uκ(X)

(∫
X

f dµ− ψ2(f)
)

= sup
f∈Uκ(X)

sup
g∈Cκ(X)

(∫
X

f dµ− ψ1(g)− ψ2(f − g)
)

= ψ∗Uκ(µ) =

{
ϕ
(
dc(µ̄, µ)

)
if µ ∈ Π(µ̄1, . . . , µ̄d)

+∞ else

for all µ ∈ Pκ(X).

4) For every f ∈ Uκ(X) one has

ψ(f) ≥
∫
X

f dµ̄− ψ∗Uκ(µ̄) =

∫
X

f dµ̄ > −∞

since ψ∗Uκ(µ̄) = ϕ(dc(µ̄, µ̄)) = ϕ(0) = 0 and f ∈ L1(µ). This shows that ψ : Uκ(X) → R.

By definition, ψ is convex and increasing. Moreover, ψ is continuous from above on Cκ(X),

since for every sequence (fn) in Cκ(X) such that fn ↓ 0 one has

inf
n∈N

ψ(fn) = inf
n∈N

inf
g∈Cκ(X)

(
ψ1(g) + ψ2(fn − g)

)
= inf
g∈Cκ(X)

inf
n∈N

(
ψ1(fn − g) + ψ2(g)

)
= inf
g∈Cκ(X)

(
ψ1(−g) + ψ2(g)

)
= ψ(0),

where we use that ψ1 is continuous from above on Cκ(X) by the first step. Since also

ψ∗Cκ = ψ∗Uκ on Pκ(X) by the third step, it follows from [2, Theorem 2.2.] and [2, Proposition

2.3.] that ψ has the dual representation

ψ(f) = max
µ∈Pκ(X)

{∫
X

f dµ− ψ∗Cκ(µ)
}

= max
µ∈Π(µ̄1,...,µ̄d)

{∫
X

f dµ− ϕ(dc(µ̄, µ))
}

for all f ∈ Uκ(X).

Corollary 1. For every f ∈ Uκ(X) one has

max
µ∈Π(µ̄1,...,µ̄d)
dc(µ̄,µ)≤ρ

∫
X

f dµ

= inf
λ≥0, hi∈Cκi (Xi)

{
ρλ+

d∑
i=1

∫
Xi

hi dµ̄i +

∫
X

sup
y∈X

[
f(y)−

d∑
i=1

hi(yi)− λc(x, y)
]
µ̄(dx)

}
(11)
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for each radius ρ ≥ 0.

Proof. This follows directly from Theorem 2 for ϕ given by ϕ(x) = 0 if x ≤ ρ and ϕ(x) = +∞
if x > ρ. In that case the conjugate is given by ϕ∗(λ) = ρλ.

From a computational point of view the penalty function ϕ(x) = x is of particular interest

since the optimization in Theorem 2 over the Lagrange multiplier λ disappears.

Corollary 2. For every f ∈ Uκ(X) one has

max
µ∈Π(µ̄1,...,µ̄d)

{∫
X

f dµ− dc(µ̄, µ)
}

= inf
hi∈Cκi (Xi)

{ d∑
i=1

∫
Xi

hidµ̄i +

∫
X

sup
y∈X

[
f(y)−

d∑
i=1

hi(yi)− c(x, y)
]
µ̄(dx)

}
.

Proof. This follows from Theorem 2 for ϕ(y) = y. Indeed, as the convex conjugate is given

by ϕ∗(λ) = 0 for 0 ≤ λ ≤ 1 and ϕ∗(λ) = +∞ for λ > 1, the infimum in Theorem 2 is

attained at λ = 1.

Corollary 3 (Gao and Kleywegt [22]). Let f(x) = max1≤m≤M (am)>x + bm for x ∈ Rd,

am ∈ Rd, and bm ∈ R. Let µ̄ = 1
n

∑n
j=1 δxj for given points x1, . . . , xn in Rd.2 Let the same

points x1, . . . , xn define the sets Xi, i.e. Xi = {x1
i , . . . , x

n
i } and X = X1 × · · · ×Xd. Let the

cost function c be additively separable, i.e. c(x, y) =
∑d
i=1 ci(xi, yi). Then, the dual problem

(11) is equivalent to

min
λ, hi(j), g(j), ui(j,m)

{
λρ+

1

n

d∑
i=1

n∑
j=1

hi(j) +
1

n

n∑
j=1

g(j)
}

(12)

s.t.: g(j) ≥ bm +

d∑
i=1

ui(j,m) j = 1, . . . , n; m = 1, . . . ,M (13)

ui(j,m) ≥ ami xki − hi(k)− λci(xji , x
k
i ) i = 1, . . . , d; m = 1, . . . ,M ; j, k = 1, . . . , n (14)

λ ≥ 0. (15)

In particular, if ci(·, ·) is such that constraint (14) can be written as a linear constraint, then

the above problem can be solved by means of linear programming.

Proof. Due to the assumptions that Xi = {x1
i , . . . , x

n
i } and µ̄ = 1

n

∑n
j=1 δxj , the term∫

Xi
hi dµ̄i in (11) can be written as 1

n

∑n
j=1 hi(j), where hi(j) := hi(x

j
i ) ∈ R for j = 1, . . . , n.

Hence, putting all the assumptions in Corollary 3 together, the dual problem (11) can be

reformulated as

inf
λ≥0, hi(j)

{
λρ+

1

n

d∑
i=1

n∑
j=1

hi(j)

+
1

n

n∑
j=1

max
1≤k≤n

{
max

1≤m≤M

( d∑
i=1

ami x
k
i + bm

)
−

d∑
i=1

hi(k)− λ
d∑
i=1

ci(x
j
i , x

k
i )
}}

.

Introducing the auxiliary variables g(j) ∈ R and ui(j,m) ∈ R, where i, j = 1, . . . , n and

m = 1, . . . ,M , in order to remove the two max functions, yields the assertion.

2Note that δx(A) = 1 if x ∈ A, and δx(A) = 0 otherwise.
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2.2. Penalization

The aim of this section is to modify the functional (8), so that it allows for a numerical

solution by neural networks. To focus on the main ideas, we assume that κ is bounded,

i.e. we restrict to continuous bounded functions, as well as ϕ =∞11(ρ,∞) as in the overview

in Section 1.2. Hence, in line with Corollary 1 we consider the functional

φ(f) := max
µ∈Π(µ̄1,...,µ̄d)
dc(µ̄,µ)≤ρ

∫
X

f dµ (16)

= inf
λ≥0, hi∈Cκi (Xi)

{
ρλ+

d∑
i=1

∫
Xi

hi dµ̄i +

∫
X

sup
y∈X

[
f(y)−

d∑
i=1

hi(yi)− λc(x, y)
]
µ̄(dx)

}
for all f ∈ Cb(X) and a fixed radius ρ > 0. For simplicity, we assume that the function

fλc(x) = supy∈X{f(y)− λc(x, y)} is continuous for all λ ≥ 0 and f ∈ Cb(X).3 In that case,

the functional φ1 : Cb(X
2)→ R defined as

φ1(f) := inf
λ≥0, hi∈Cb(Xi), g∈Cb(X):

g(x)≥f(x,y)−
∑d
i=1 hi(yi)−λc(x,y)

{
λρ+

d∑
i=1

∫
Xi

hi dµ̄i +

∫
X

g dµ̄
}

(17)

satisfies φ(f̃) = φ1(f̃ ◦ pr2) for all f̃ ∈ Cb(X), i.e. φ1 is an extension of φ from Cb(X) to

Cb(X
2). The functional φ1 can be regularized by penalizing the inequality constraint. To

do so, we consider the functional

φθ,γ(f) := inf
λ≥0, hi∈Cb(Xi),

g∈Cb(X)

{
λρ+

d∑
i=1

∫
Xi

hi dµ̄i +

∫
X

g dµ̄

+

∫
X2

βγ
(
f(x, y)− g(x)−

d∑
i=1

hi(yi)− λc(x, y)
)
θ(dx, dy)

}
(18)

for a sampling measure θ ∈ P(X2), and a penalty function βγ(x) := 1
γβ(γx), γ > 0, where

β : R → [0,∞) is convex, nondecreasing, differentiable, and satisfies β(x)
x → ∞ for x → ∞.

Let β∗γ(y) := supx∈R{xy − βγ(x)} for y ∈ R+, and notice that β∗γ(y) = 1
γβ
∗(y).

Lemma 1. For every f ∈ Cb(X2) one has

φθ,γ(f) = inf
f̃∈Cb(X2)

{
φ1(f̃) + φ2(f − f̃)

}
, (19)

where φ2(f) :=
∫
X2 βγ(f) dθ. Moreover, the convex conjugate of φθ,γ is given by

φ∗θ,γ(π) =

{ ∫
X2 β

∗
γ

(
dπ
dθ

)
dθ if π1 = µ̄, π2 ∈ Π(µ̄1, ..., µ̄d)) and

∫
X2 c dπ ≤ ρ

∞ else

for all π ∈ P(X2) with the convention dπ
dθ = +∞ if π is not absolutely continuous with

respect to θ.

3By definition, fλc is lower semicontinuous. Moreover, if c(x, y) = c̄(x − y) for a continuous function

c̄ : X → [0,∞) with compact sublevel sets, then fλc is upper semicontinuous and therefore continuous.

This for instance holds for c̄(x) =
∑d
i=1 |xi| or c̄(x) =

∑d
i=1 |xi|2 corresponding to the first and second

order Wasserstein distance on Rd.
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Proof. Observe that for every f ∈ Cb(X2) one has

inf
f̃∈Cb(X2)

{
φ1(f̃) + φ2(f − f̃)

}
= inf
λ≥0, hi∈Cb(Xi), g∈Cb(X), f̃∈Cb(X2):

f̃(x,y)≤g(x)+
∑d
i=1 hi(yi)+λc(x,y)

{
λρ+

d∑
i=1

∫
Xi

hi dµ̄i +

∫
X

g dµ̄+

∫
X2

βγ(f − f̃) dθ
}

where the right hand side is equal to φθ,γ(f). This follows from the dominated convergence

theorem applied on the sequence f̃n(x, y) = min{n, g(x) +
∑d
i=1 hi(yi) + λc(x, y)}.

As for the calculation of the convex conjugate, we first show that φ∗θ,γ(π) =∞ whenever

π1 6= µ̄ or π2 6∈ Π(µ̄1, ..., µ̄d). Indeed, since

φθ,γ(f) ≤ inf
hi∈Cb(Xi), g∈Cb(X)

{ d∑
i=1

∫
Xi

hi dµ̄i +

∫
X

g dµ̄

+

∫
X2

βγ
(
f(x, y)− g(x)−

d∑
i=1

hi(yi)
)
θ(dx, dy)

}
≤ inf

hi∈Cb(Xi), g∈Cb(X):
g(x)+

∑
i hi(yi)≥f(x,y)

{ d∑
i=1

∫
Xi

hi dµ̄i +

∫
X

g dµ̄
}

+ βγ(0),

it follows that φθ,γ is bounded above by a multi-marginal transport problem. As the re-

spective convex conjugate is +∞, it follows that φ∗θ,γ(π) = ∞ for all π ∈ P(X2) such that

π1 6= µ̄ or π2 6∈ Π(µ̄1, ..., µ̄d). Conversely, if π1 = µ̄ and π2 ∈ Π(µ̄1, ..., µ̄d) one has

φ∗θ,γ(π) = sup
f∈Cb(X2)

{∫
X2

f dπ − φθ,γ(f)
}

= sup
λ≥0

sup
f̃∈Cb(X2)

{
− λρ+

∫
X2

f̃ dπ −
∫
X2

βγ(f̃ − λc) dθ
}

= sup
λ≥0

sup
f̄∈Cb(X2)

{
− λρ+ λ

∫
X2

c dπ +

∫
X2

f̄dπ −
∫
X2

βγ(f̄) dθ
}

= sup
λ≥0

λ
(∫

X2

c dπ − ρ
)

+

∫
X2

β∗γ
(
dπ
dθ

)
dθ.

=

{∫
X2 β

∗
γ

(
dπ
dθ

)
dθ if

∫
X2 c dπ ≤ ρ

+∞ else
.

Here, the second equality follows by substituting f̃(x, y) = f(x, y) −
∑d
i=1 hi(yi) − g(x)

and using the structure of the marginals of π. The third equality follows by setting f̄n =

f̃ + min{n, λc} and using the dominated convergence theorem. Finally, the fourth equality

follows by a standard selection argument, see e.g. the proof of [2, Lemma 3.5].

In the following proposition, we provide a duality result for φθ,γ(f), study the respective

relation of primal and dual optimizers, and outline convergence φθ,γ(f)→ φ(f) for γ →∞.

Proposition 1. Suppose there exists π ∈ P(X2) such that φ∗θ,γ(π) <∞. Then it holds:

(a) For every f ∈ Cb(X2) one has

φθ,γ(f) = max
π∈P(X2)

{∫
X2

fdπ − φ∗θ,γ(π)
}
. (20)
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(b) Let f ∈ Cb(X2). If ĝ ∈ Cb(X), ĥi ∈ Cb(Xi), i = 1, ..., d, and λ̂ ≥ 0 are optimizers of

(18), then the probability measure π̂ defined by

dπ̂

dθ
(x, y) := β′γ

(
f(x, y)− ĝ(x)−

d∑
i=1

ĥi(yi)− λ̂c(x, y)
)

is a maximizer of (20).

(c) Fix f ∈ Cb(X) and ε > 0. Suppose that µε ∈ P(X) is an ε-optimizer of (16), and

πε ∈ Π(µ̄, µε) satisfies α :=
∫
X2 β

∗(dπε
dθ

)
dθ <∞, and

∫
X2 c dπε ≤ ρ. Then one has

φθ,γ(f ◦ pr2)− β(0)

γ
≤ φ(f) ≤ φθ,γ(f ◦ pr2) + ε+

α

γ
.

Proof. (a) To show duality, we check condition (R1) from [2, Theorem 2.2], i.e. we have to

show that φθ,γ is real-valued and continuous from above. That φθ,γ is real-valued follows

from the assumption that there exists π ∈ P(X2) such that φ∗θ,γ(π) <∞, and Lemma 1.

To show continuity from above, let (fn) be a sequence in Cb(X
2) such that fn ↓ 0. In

view of (19), one has

inf
n∈N

φθ,γ(fn) = inf
f̃∈Cb(X2)

inf
n∈N

{
φ1(f̃) + φ2(fn − f̃)

}
= inf
f̃∈Cb(X2)

{
φ1(f̃) + φ2(−f̃)

}
= φθ,γ(0),

since infn∈N φ2(fn − f̃) = φ2(−f̃) by dominated convergence.

(b) That π̂ is a feasible solution in the sense that π̂1 = µ̄, π̂2 ∈ Π(µ̄1, . . . , µ̄d), and∫
X2 c dπ̂ = ρ whenever λ̂ > 0, follows from the first order conditions. For instance, since the

derivative of (18) in direction ĝ+tg vanishes at t = 0, it follows
∫
X
g dµ̄−

∫
X2 g◦pr1 dπ̂ = 0 for

all g ∈ Cb(X), which shows that π̂1 = µ̄. Similarly, π̂2 ∈ Π(µ̄1, ..., µ̄d) follows by considering

the derivative in direction ĥi + thi, and
∫
X2 λ̂c dπ̂ = λ̂ρ from the first order condition for λ.

Hence, as π̂ is feasible it follows from Lemma 1 that

φθ,γ(f) ≥
∫
X2

f dπ̂ − φ∗θ,γ(π̂)

=

∫
X2

fβ′γ
(
f − ĝ −

∑
i

ĥi − λ̂c
)
− β∗γ

(
β′γ
(
f − ĝ −

∑
i

ĥi − λ̂c
))
dθ

=

∫
X2

ĝ +
∑
i

ĥi + λ̂c dπ̂ +

∫
X2

βγ
(
f − ĝ −

∑
i

ĥi − λ̂c
)
dθ

= λ̂ρ+
∑
i

∫
Xi

ĥi dµ̄i +

∫
X

ĝ dµ̄+

∫
X2

βγ
(
f − ĝ −

∑
i

ĥi − λ̂c
)
dθ

= φθ,γ(f)

where we use that β∗γ
(
β′γ(x)

)
= β′γ(x)x − βγ(x) for all x ∈ R. This shows that π̂ is an

optimizer.

(c) By restricting the infimum in (18) to those λ ≥ 0, hi ∈ Cb(Xi), g ∈ Cb(X) such that

g(x) ≥ f(y)−
∑
i hi(yi)− λc(x, y), it follows that

φθ,γ(f ◦ pr2) ≤ inf
λ≥0, hi∈Cb(Xi), g∈Cb(X):

g(x)≥f(y)−
∑d
i=1 hi(yi)−λc(x,y)

{
λρ+

d∑
i=1

∫
Xi

hi dµ̄i +

∫
X

g dµ̄
}

+ βγ(0)

= φ(f) +
β(0)

γ
,
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where the last equality follows from (17). As for the second inequality, since µε ∈ P(X) is

an ε-optimizer of (16), and πε ∈ Π(µ̄, µε) one has

φ(f) ≤
∫
X

f dµε + ε =

∫
X2

f ◦ pr2 dπε − φ∗θ,γ(πε) + φ∗θ,γ(πε) + ε ≤ φθ,γ(f ◦ pr2) +
α

γ
+ ε.

The proof is complete.

3. Examples

The aim of this section is to illustrate how the above introduced concepts can be used to

numerically solve given problems with neural networks. To do so, we consider different

examples with increasing difficulty.

Throughout this section, we consider two different transportation distances, for which we

fix the following notation: dc refers to the Wasserstein distance of order 1, which obtained

when using the following cost function c in the definition (7):

c(x, y) = ||x− y||1 =
∑
i

|xi − yi|.

On the other hand d
1/2
c̃ denotes the second order Wasserstein distance with respect to the

Euclidean metric, i.e.

c̃(x, y) = ||x− y||22 =
∑
i

(xi − yi)2.

3.1. Expected maximum of two comonotone standard Uniforms

We start our exemplification with a toy example which is not connected to risk measurement.

Consider the following problem

φ(f1) := sup
(VU)∼µ∈Π(µ̄1,µ̄2),

dc(µ̄,µ)≤ρ

E [max(U, V )] = sup
µ∈Π(µ̄1,µ̄2),
dc(µ̄,µ)≤ρ

∫
[0,1]2

max(x1, x2)µ(dx), (21)

where µ̄1 = µ̄2 = U([0, 1]) are (univariate) standard uniformly distributed probability mea-

sures and µ̄ is the comonotone copula. In other words, µ̄ is a bivariate probability measure

with standard uniformly distributed marginals which are perfectly dependent. In the no-

tation of the previous section, we have that f1(x) = max(x1, x2) and X = X1 × X2 =

[0, 1]× [0, 1]. Interpreting problem (21), we aim to compute the expected value of the max-

imum of two standard Uniforms under ambiguity with respect to the reference dependence

structure, which is given by the comonotone coupling. Problem (21) possesses the following

analytic solution

φ(f1) =
1 + min(ρ, 0.5)

2
.

The derivation of this solution can be found in Appendix A.1 and is based on the duality

result in Corollary 1. Hence, problem (21) is well suited to benchmark the following two

numerically solution methods:

1. We discretize the reference copula µ̄ (and thereby the marginal distributions µ̄1 and

µ̄2) and solve the resulting data-driven dual problem by means of linear programming

(see Corollary 3). There are two distinct ways to discretize µ̄:
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a) We use Monte Carlo sampling. In the notation of Corollary 3, this means we sample

n points x1
1, . . . , x

n
1 in [0, 1] from the standard Uniform distribution. Then, we set

xj2 = xj1 for j = 1, . . . , n.

b) We set the points xj1 = xj2 = 2j−1
2n for j = 1, . . . , n. As the comonotonic copula lives

only on the main diagonal of the unit square, this deterministic discretization of µ̄

in some sense minimizes the discretization error. The simple geometrical argument

used to find this discretization can be applied only due to the special structure of

the reference distribution at hand.

Let us emphasize that method 1.a) can be applied to any reference distribution µ̄. On

the other hand, method 1.b) can only be used in this particular example as µ̄ is given

by the comonotonic copula.

2. We solve the penalized version of the dual of problem (21), see equation (18). Let us

comment on the choice of the penalization function βγ , the architecture of the employed

neural networks and the sampling measure θ ∈ P([0, 1]4). We set βγ(x) = γ
2 max(0, x)2

with γ = 1280. The general form βγ(x) = γ
2 max(0, x)2 has shown to be a solid choice

for all considered problems, and the parameter γ should usually be set high enough

to make the theoretical penalization error small (see Proposition 1 (c)), while not

being so high as to cause numerical stability issues. Regarding network structure:

To approximate the space Cb(Rd) we use a 4-layer feed-forward ReLu network with

hidden-dimension 64 · d. The hidden-dimension is chosen sufficiently high so that

either slightly decreasing or increasing it does not change the numerical outcomes.

Concerning the sampling measure θ, for this example we consider two choices:

a) θ = µ̄⊗U([0, 1]2), where µ̄ is the given reference distribution, and U([0, 1]2) denotes

the uniform distribution on the unit square [0, 1]2.

b) θ = 1
2 (µ̄ ⊗ U([0, 1]2)) + 1

2 (µ̄ ⊗ δx), where δx is understood as the stochastic kernel

R2 → P(R2), x 7→ δx. Hence, when sampling a point w ∈ [0, 1]4 from θ, we simply

set

(w1, w2, w3, w4) =

{
(u1, u1, v1, v2) with probability 1

2

(u1, u1, u1, u1) with probability 1
2

,

where u1, v1, v2 ∈ [0, 1] are samples drawn from a standard uniform distribution.

The choice of reference measure should be interpreted in view of Proposition 1 (c).

To allow for a small penalization error, we want to set the measure θ as similar as

possible to a potential optimal coupling π∗. Method 2.a) can be seen as the most

oblivious approach in this respect: We know π∗1 = µ̄ and π∗2 ∈ Π(µ̄1, ..., µ̄d) and now

choose θ to link these constraints in the simplest way (i.e. as a product measure) as

θ = µ̄ ⊗ (µ̄1 ⊗ ... ⊗ µ̄d). Method 2.b) however anticipates that an optimal coupling,

and hence θ, should put some mass on the “diagonal” µ̄ ⊗ δx. This diagonal is the

optimal coupling for ρ = 0 and hence it is reasonable to anticipate mass in this region

for other small values of ρ as well.

Figure 1 compares the two above mentioned methods to solve problem (21) for different

values of ρ. In the left panel of Figure 1, we observe that method 1.a) yields an unsatisfactory

result even though n = 250 is chosen as large as possible for the resulting LP to be solvable

by a commercial computer. This issue arises due to the poor quality of the discretization

resulting from Monte Carlo simulation. If one chooses the discretization as done in method
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Figure 1: In the left panel, the analytic solution φ(f1) of problem (21) is plotted as a function

of ρ and compared to corresponding numerical solutions obtained by method 1.a)

and method 2.a), which are described in Section 3.1. The right panel shows the

same for the improved methods 1.b) and 2.b).

1.b), we recover the analytic solution of problem (21) as can be seen in the right panel of

Figure 1. Moreover, Figure 1 indicates that method 2, i.e. the approach presented in this

paper, yields quite good and stable results. The left panel, however, shows that for small ρ

method 2.a) does not rediscover the true solution. The reason for this is that when drawing

random samples from the chosen sampling measure θ = µ̄ ⊗ U([0, 1]2), it is unlikely that

in the third and fourth coordinate we sample from the relevant region, namely the main

diagonal of the unit square. As discussed, method 2.b) is designed to overcome precisely

this weakness and the right panel of Figure 1 illustrates that it does.

We finalize this example by considering the second order Wasserstein distance d
1/2
c̃ , defined

above, rather than the first order Wasserstein distance dc. Thus, we compare problem (21)

to

φ̃(f1) := sup
µ∈Π(µ̄1,µ̄2),

dc̃(µ̄,µ)1/2≤ρ

∫
[0,1]2

max(x1, x2)µ(dx). (22)

There are two important difference between problem (21) and problem (22): Firstly, problem

(22) cannot be solved by means of linear programming. Secondly, the derivation of an

analytic solution for φ̃(f1) is not as straight forward as in the case of φ(f1). Nevertheless,

we can approximate φ̃(f1) using neural networks, which demonstrates the flexibility of this

approach. Figure 2 compares φ(f1) and φ̃(f1) for different ρ. It should be mentioned that

problem (22) is well suited for the solution via penalization and neural networks: other than

in problem (21) the choice of the sampling measure θ does not seem to impact the solution

as much.

3.2. Average Value at Risk of two independent standard Uniforms

We increase the level of complexity slightly compared to the previous example, as we now

turn to robust risk aggregation. We aim to compute AVaRα(U+V ), where U and V are inde-

pendent standard Uniforms under ambiguity with respect to the independence assumption.
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Figure 2: The analytic solution φ(f1) of problem (21), which uses the `1-metric to define the

transportation cost, is compared to the numerical solution φ̃(f1) of problem (22),

which uses the `2-metric to define the transportation cost.

Note that the Average Value at Risk is defined by

AVaRα(Y ) := min
τ∈R

{
τ +

1

1− α
E [max(Y − τ, 0)]

}
,

see Rockafellar and Uryasev [38]. Using the first order Wasserstein distance to construct

an ambiguity set around the reference dependence structure, we are led to the following

problem

Φ2 := sup
(VU)∼µ∈Π(µ̄1,µ̄2),

dc(µ̄,µ)≤ρ

AVaRα(U + V ) (23)

= sup
µ∈Π(µ̄1,µ̄2),
dc(µ̄,µ)≤ρ

inf
τ∈R

{
τ +

1

1− α

∫
[0,1]2

max(x1 + x2 − τ, 0)µ(dx)

}
(24)

= inf
τ∈R

φ(fτ2 ), (25)

where µ̄1 = µ̄2 = U([0, 1]) are (univariate) standard uniformly distributed probability mea-

sures and µ̄ is the independence copula. In other words, µ̄ = U([0, 1]2) is a bivariate prob-

ability measure with independent, standard uniformly distributed marginals. Moreover, we

have that fτ2 (x) = τ + 1
1−α max(x1 + x2 − τ, 0) and φ(·) is defined as in equation (1).

Notice that in the above formulation of the problem we can go from (24) to (25) since the

problem is convex in τ and concave in µ and Wasserstein balls are weakly compact. Thus,

we can apply Sion’s Minimax Theorem to interchange sup and inf in (24).

In Appendix A.2, we derive an analytical upper and lower bound for Φ2 in (23). These

bounds are tight enough for the present purpose, which is to evaluate the performance of

the two discussed numerical methods.

Figure 3 supports the latter claim: The analytic bounds for Φ2 are rather tight when

plotted as a function of ρ. The bounds are compared to the same two numerical methods

as discussed in the previous example. With respect to the solution based on Monte Carlo

simulation and linear programming, we now average over 100 simulations for each fixed ρ.
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Figure 3: The analytic upper and lower bounds of problem (23) are compared to two distinct

numerical solutions. The first numerical solution is obtained by Monte Carlo

simulation with n = 100 sample points as well as linear programming and averaged

over 100 simulations for each fixed ρ. The second numerical solution is obtained

by penalization and neural networks. The confidence level of the AVaR considered

in problem (23) is set to α = 0.7.

Thus, the results in Figure 3 do not fluctuate as much as those we have seen in the left panel

of Figure 1. Nevertheless, Figure 3 shows that the solution obtained via MC and LP does

not stay within the analytic bounds (other than the solution via penalization and neural

networks). Arguably this is due to the lack of symmetry when discretizing the reference

distribution µ using Monte Carlo. Regarding runtime, both numerical methods take around

the same time to calculate the values needed for Figure 3.

We now want to illustrate a further merit of the neural networks approach, namely that

we can sample from the numerical optimizer µ∗ of problem (23). By doing so, we obtain

information about the structure of the worst case distribution. The samples are obtained by

acceptance-rejection sampling from the density given by Proposition 1 (b), where we replace

true optimizers by numerical ones. Figure 4 plots samples of this worst case distribution

µ∗ for different values of ρ. To understand the intriguing nature of the results presented

in Figure 4, we have to describe problem (23) in some more detail. It should be clear that

the comonotone coupling of the Uniforms U and V is maximizing AVaRα(U +V ) among all

possible coupling of U and V . However, one can find many different maximizing couplings.

Notably, the optimizer shown for ρ = 0.2 corresponds to the one which has the lowest relative

entropy with respect to the independent coupling among the maximizers of AVaRα(U +V ).

On the other hand, the middle panel for ρ = 0.16 motivated us to derive a coupling which -

among maximizers of AVaRα(U+V ) - we conjecture to have the lowest Wasserstein distance

to the independent coupling. This is used to derive the lower bound for problem (23) in

Appendix A.2. Some features of the others couplings, e.g. for ρ = 0.08 and ρ = 0.12 came

as a surprise to us: For example, the curved lines as boundary for the support are unusual

in an `1-Wasserstein problem.
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Figure 4: Samples from the optimizer µ∗ of problem (23) as obtained by the neural networks

approach are shown in form of a heatplot for six different levels of ambiguity,

i.e. ρ = 0, 0.04, 0.08, 0.12, 0.16, 0.2.

3.3. Value at Risk of two independent standard Uniforms

The set-up remains the same as in the previous example, but we now consider the Value at

Risk (VaR) rather than the AVaR. As we shall see, this minor adjustment yields a substan-

tially harder problem.

Note that VaRα(Y ) := inf {τ ∈ R : P (Y ≤ τ) > α}, where α is typically close to one, e.g.,

α = 0.95. The VaRα(Y ) can be interpreted as the smallest capital allocation τ to the random

loss Y such that the probability that the loss Y does not exceed τ is a least α. Following

Bartl et al. [3], we can robustify the computation of the Value at Risk by determining the

capital τ with respect to the “worst case probability distribution” in a given ambiguity set.

As in the previous example, this ambiguity set is assumed to be a Wasserstein ball with

radius ρ. Hence, we are led to the following problem:

Φ3(ρ, α) := inf
{
τ ∈ R : inf

(VU)∼µ∈Π(µ̄1,µ̄2),

dc(µ̄,µ)≤ρ

P (U + V ≤ τ) > α
}

(26)

= inf
{
τ ∈ R : inf

µ∈Π(µ̄1,µ̄2),
dc(µ̄,µ)≤ρ

∫
[0,1]2

I{x1+x2≤τ}µ(dx) > α
}
,

where I{·} denotes the indicator function. Thus, Φ3(ρ, α) is the worst case VaR with ambi-

guity level ρ and confidence level α. In the following we shall also be interested in the best

case VaR Φ3(ρ, α), which is defined by substituting the second inf in (26) by a sup.
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Figure 5: The best case VaR Φ3(ρ, α), defined in equation (26), and the worst case VaR

Φ3(ρ, α), defined below equation (26), are plotted as a function of the confidence

level α. We consider three different levels of ambiguity: ρ = 0, 0.05,∞. Note

that Φ3(ρ = 0, α) = Φ3(ρ = 0, α) = VaRΠ
α (U + V ), where Π denotes refer-

ence distribution in this example, i.e. the independence copula linking the two

uniforms U and V . Moreover, Φ3(ρ = ∞, α) resp. Φ3(ρ = ∞, α) coincide with

infC∈C VaRC
α (U+V ) resp. supC∈C VaRC

α (U+V ), which we use as a short notation

for sup(VU)∼µ∈Π(µ̄1,µ̄2) VaRα(U + V ).

In general the problem, as formulated in (26), differs from the problem

sup
(VU)∼µ∈Π(µ̄1,µ̄2),

dc(µ̄,µ)≤ρ

VaRα(U + V ). (27)

In following we will focus on problem (26), rather than on problem (27), since it can be

numerically solved with neural networks based the results presented in this paper. Notice

however that in case ρ is chosen so large that the constraint dc(µ̄, µ) ≤ ρ is not imposing a

restriction on the measures µ ∈ Π(µ̄1, µ̄2), then the solutions of the two problems (26) and

(27) coincide.

In order to solve problem (26) with the tools introduced above we have to proceed as

follows: We solve the “inner problem”

φ(fτ3 ) := sup
µ∈Π(µ̄1,µ̄2),
dc(µ̄,µ)≤ρ

{∫
[0,1]2

α− I{x1+x2≤τ}µ(dx)

}
(28)

for different τ , until we find a τ? such that |φ(fτ
?

3 )| < ξ for some fixed accuracy ξ > 0. Then

the solution of problem (26) is approximately given by τ?.

It should be clear that Corollary 3 does not apply to problem (28). In contrast to the

previous two examples, we can therefore not solve this problem by means of linear program-

ming. This insight explains why our approach with neural networks is extremely useful in

practice: it does not require the function fτ3 to be of any restrictive form.

The outcome of this last toy example is displayed differently from the previous two ex-

amples. We fix three values for the radius ρ of the considered Wasserstein ball and plot the
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worst case VaR Φ3(ρ, α) and the best case VaR Φ3(ρ, α) as a function of α. For the first

value ρ = 0, Figure 5 shows that, as expected, Φ3(ρ = 0, α) = Φ3(ρ = 0, α) = VaRΠ
α (U +V ),

where U and V are independent standard uniforms - hence the letter Π in the superscript

of VaR. For ρ = 0.05, Figure 5 illustrates how a small level of ambiguity with respect to

the reference dependence structure affects the best (resp. worst) case VaR Φ3(ρ = 0.05, α)

(resp. Φ3(ρ = 0, α)). Finally, we observe that for large enough ρ, problem (26) and (27)

actually coincide as we recover the known VaR-bounds, see e.g. Frank et al. [19].

To conclude this section, let us highlight the main insights, which we obtained from the

three toy examples. First, we studied an approach, which relies on Corollary 3 and thereby

on linear programming. A major drawback of this approach is that the resulting LP can only

be solved efficiently when the discrete reference distribution µ̄ lives on relatively few points,

i.e. n ≤ 250. In case the reference distribution µ̄ is constructed based on a limited number of

observations, this might not be a limitation. If the reference distribution µ̄ is continuous, one

has to approximate µ̄ by a discrete distribution supported on a small number of points. We

have seen that when relying on Monte Carlo simulations to perform this discretization, one

has to average the solutions of many independent simulations. Still, the resulting average

solution is shown to be relatively far away from the true solution in some cases.

As an alternative to linear programming, we present a second method based on penaliza-

tion and neural networks. The above examples indicate that this second method generally

performs better in terms of computational effort as well as solution quality. It should be em-

phasized that the solution method using neural networks has a theoretical drawback. Since

the optimization problem is not convex, there is no guarantee for global convergence. Never-

theless, we have shown that this approach can give correct and insightful results. Compared

to the linear programming approach, it has two additional merits: First, we can determine

the structure of the worst case distribution. Second, we can solve a much larger class of

problems than with the first method.

4. DNB case study: Aggregation of six given risks

Aas and Puccetti [1] provide a very illustrative case study of the risk aggregation at the DNB,

Norway’s largest bank. We want to make use of this example to showcase the applicability

of the novel framework presented in this paper.

The DNB is exposed to six different types of risks: credit, market, asset, operational,

business and insurance risk. Let the random variables L1, . . . , L6 represent the marginal

risk exposures for these six risks. Per definition, risk aggregation is not concerned with the

computation of the distribution of the marginal risks. Hence, we take the corresponding

marginal distribution functions F1, . . . , F6 as given. In this particular case, F1, F2 and F3

are empirical cdfs originating from given samples, while L4, L5 and L6 are assumed to be

log-normally distributed with given parameters, see Table 1.

For the purpose of risk management, the DNB needs to determine the capital to be

reserved. According to the Basel Committee on Banking Supervision [32], this capital re-

quirement should be computed by the Average Value at Risk (AVaR) of the sum of these six

22



Description Type Parameters/Other details

F1 cdf of credit risk L1 empirical cdf
given by 2.5 Million samples;

standard deviation σ̄1 = 644.602

F2 cdf of market risk L2 empirical cdf
given by 2.5 Million samples;

standard deviation σ̄2 = 5562.362

F3 cdf of asset risk L3 empirical cdf
given by 2.5 Million samples;

standard deviation σ̄3 = 1112.402

F4 cdf of operational risk L4 lognormal cdf
µ = 6.4741049 and ς = 0.7213475;

standard deviation σ̄4 = 694.613

F5 cdf of business risk L5 lognormal cdf
µ = 6.445997 and ς = 0.574740;

standard deviation σ̄5 = 465.064

F6 cdf of insurance risk L6 lognormal cdf
µ = 6.0534537 and ς = 0.2489763;

standard deviation σ̄6 = 111.011

C0
reference copula

student-t copula
with 6 degrees of freedom

linking L1, . . . , L6 and correlation matrix Σ0

Table 1: Overview of the information concerning the reference distribution in the DNB case

study. The correlation matrix Σ0 is given in Appendix A.3.

losses.4 The AVaR of the sum of these six losses at a specific confidence level α is defined as

AVaRα

(
L+

6

)
= min

τ∈R

{
τ +

1

1− α
E [max(L+

6 − τ, 0 )]

}
, (29)

where L+
6 :=

∑6
i=1 Li. To evaluate expression (29), the joint distribution of L1, . . . , L6

is needed. As the marginal distributions of L1, . . . , L6 are known, the DNB relies on the

concept of copulas to model the dependence structure between these risks. From the above

description, it is clear that joint observations of the L1, . . . , L6 are not available. Hence,

standard techniques to determine the copula, e.g., by fitting a copula family and the cor-

responding parameters to a multivariate data set, do not apply. A panel of experts at the

DNB therefore chooses a specific reference copula C0, in this case a student-t copula with

six degrees of freedom and a particular correlation matrix. Such an approach is common in

practice and referred to as expert opinion.

From an academic point of view, this method for risk aggregation is not very satisfying due

to the fact that the experts’ choice of a reference dependence structure between the different

risk types might be very inaccurate. Hence, we say that there is model ambiguity with

respect to the dependence structure. It should be emphasized that a misspecification of this

reference copula chosen by expert opinion can have a significant impact on the aggregated

risk and therefore on the required capital. Table 2 supports this statement by comparing

the AVaR implied by the reference copula C0 to the AVaR implied by other dependence

structures: Without any information regarding the dependence structure between the six

risk, the lower (resp. upper) bound for the AVaR with confidence level α = 0.95 is 24165.52

(resp. 36410.12) million Norwegian kroner. Similar bounds are studied in Aas and Puccetti

[1]. As we pointed out in the literature review in Section 1.3, these bounds have been

4Aas and Puccetti [1] focus on the Value at Risk (VaR) rather than the AVaR. Since the Basel Committee

on Banking Supervision recently shifted the quantitative risk metrics system from VaR to Expected

Shortfall (see Chang et al. [13]), which is equivalent to the AVaR, we consider the AVaR in our study.
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infC∈C AVaRC
α (L+

6 ) AVaRΠ
α (L+

6 ) AVaRC0
α (L+

6 ) supC∈C AVaRC
α (L+

6 )

24165.52 26980.64 30498.94 36410.12

Table 2: Note that we set α = 0.95. We use the rearrangement algorithm (see Aas and

Puccetti [1]) to approximate infC∈C AVaRC
α (L+

6 ), while supC∈C AVaRC
α (L+

6 ) =∑6
i=1 AVaRα(Li). The two remaining entries are computed by averaging over 50

simulation runs where 10 millions sample points are drawn in each run. Note that

Π denotes the independence copula. Thus, AVaRΠ
α (L+

6 ) corresponds to the AVaR

of the sum of the six losses given that they are independent.

criticized in the literature since they are too far apart for practical purposes. We therefore

apply the results derived in this paper to compute bounds for the AVaR which depend on

the level ρ of distrust concerning the reference copula C0. Alternatively, the parameter ρ

can be understood as the level of ambiguity with respect to the reference distribution µ̄.

We define the probability measure µ̄ of the reference distribution by the following joint

cumulative distribution function

F̄ (x) = C0(F1(x1), F2(x2), . . . , F6(x6),

for all x ∈ R6. Hence, the cdfs of the marginals µ̄i are given by Fi(·) for i = 1, 2, . . . , 6. The

problem of interest can be formulated as follows:

ΦC0
4 (α, ρ) := inf

L+
6 ∼µ∈Π(µ̄1,...,µ̄6),

dc(µ̄,µ)≤ρ

AVaRα

(
L+

6

)
, (30)

Φ
C0

4 (α, ρ) := sup
L+

6 ∼µ∈Π(µ̄1,...,µ̄6),
dc(µ̄,µ)≤ρ

AVaRα

(
L+

6

)
. (31)

The cost function c defining the transportation distance dc in problem (30) and (31) is set

to

c(x, y) =

d∑
i=6

|xi − yi|
σ̄i

, (32)

where σ̄i denotes the standard deviation of µ̄i and is given in Table 1. The rational behind

this definition of c is that we want to model the ambiguity such that it concerns solely the

dependence structure of the reference distribution. Definition (32) is a simple way to achieve

this.5

Figure 6 shows the numerical solutions of problems (30) and (31), which are computed

relying on penalization and neural networks, as a function of ρ and for α = 0.95. As a

comparison, the same problem is also solved with respect to the independence coupling Π

rather than the reference copula C0 described in Table 1. The shaded regions outline the

possible levels of risk for a given level of ambiguity ρ and the two reference structures.

5It should be mentioned that Gao and Klevegt [22] promote the definition c(x, y) =
∑6
i=1 |Fi(xi)−Fi(yi)|,

which implies that the transportation distance dc is defined directly on the level of copulas. Even if this

approach is arguably more intuitive, we stick to definition (32) mainly for the sake of computational

efficiency.
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Figure 6: We consider two distinct reference dependence structures, the student-t copula

C0 defined in Table 1 and the independence copula Π. The corresponding robust

solutions ΦC0
4 (α, ρ) and Φ

C0

4 (α, ρ), defined in (30), and (31) resp. ΦΠ
4 (α, ρ) and

Φ
Π

4 (α, ρ), defined analogously, are plotted as a function of the level of ambiguity ρ.

We compare these results, which were computed relying on the concept presented

in this paper, to the known values of AVaRα(L+
6 ) given in Table 1. Note that we

fix α = 0.95.

On one hand, the evolution of the risk levels in ρ, combined with the given optimizers of

problems (30) and (31) can be used as an informative tool to better understand the risk

the DNB is exposed to. On the other hand, if a certain level of ambiguity is justified in

practice, the bank can assign their capital based on the corresponding worst-case value. If

for example ρ = 0.1 is decided on, the bank would have to assign 32490 capital compared

to 30499 as dictated by the reference structure C0.

Analytically, one striking feature of the numerical solution with respect to C0 is worth

pointing out: The absolute upper bound is attained already for ρ ≈ 0.8, while the distance

from the reference measure to the comonotone joint distribution can be calculated to be

around 1.7. This underlines the fact that even though the comonotone distribution is a

maximizer of the worst case AVaR, there are several more, and they may be significantly

more plausible structurally than the comonotone one.

In conclusion, this paper introduces a flexible framework to aggregate different risks while

accounting for ambiguity with respect to the chosen dependence structure between these

risks. Moreover, the proposed numerical method allows us to perform this task without mak-

ing restrictive assumptions about either the particular form of the aggregation functional,

or the considered distributions, or the specific way to account for the model ambiguity.
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A. Appendix

A.1. Proof for Section 3.1

We want to derive the analytic solution of problem (21). To do so, the concept of copulas

turns out to be rather useful. We refer to Nelsen [30] for an introduction to this topic. Let

C denote the set of all copulas and let the comonotonic copula be denoted by M(u1, u2) =

min(u1, u2), for all u1, u2 ∈ [0, 1]. Using this notation, we can rewrite problem (21) and

show the following:

φ1(f) = sup
C∈C,

dc(M,C)≤ρ

∫
[0,1]2

max(u1, u2)dC(u1, u2) =
1 + min(ρ, 0.5)

2
.

Proof. We have that dc(M,C) ≤ 0.5, for all C ∈ C and dc(M,W ) = 0.5, where W (u1, u2) =

max(u1 + u2 − 1, 0) for all u1, u2 ∈ [0, 1]. Hence, for ρ > 0.5 we have that

φ1(f) = sup
C∈C

∫
[0,1]2

max(u1, u2)dC(u1, u2) =

∫
[0,1]2

max(u1, u2)dW (u1, u2) =
3

4
.

It follows that we can assume ρ ≤ 0.5 for the remainder of the proof.

Let us define the copula Rα as follows:

Rα(u1, u2) =

{
W (u1, u2) if 1−α

2 ≤ u1, u2 ≤ 1+α
2

M(u1, u2) else
,

for α ∈ [0, 1]. It follows that dc(M,Rα) = α2/2 and thus dc(M,R√2ρ) ≤ ρ. Hence,

φ1(f) ≥
∫

[0,1]2
max(u1, u2)dR√2ρ(u1, u2) =

1 + ρ

2
.

By Corollary 1, we have that

φ1(f) = inf
λ≥0,hi∈C([0,1])

{
λρ+

2∑
i=1

∫ 1

0

hi(ui)dui (33)

+

∫
[0,1]2

sup
v∈[0,1]2

[
max(v1, v2)−

2∑
i=1

hi(vi)− λ
2∑
i=1

|ui − vi|

]
dM(u)

}
.

Plugging in the value λ = 0.5 and setting h1(u) = h2(u) = u/2, yields φ1(f) ≤ ρ
2 + 1

2 +0.

A.2. Proof for Section 3.2

We now derive the analytic bounds for Φ2, i.e. the solution of problem (23), which are

plotted in Figure 3.

Let us start by proving the following upper bound

Φ2 ≤ min

(
1 + α, 2− 2

3

√
2− 2α+

ρ

2(1− α)

)
, (34)

where Φ2 is defined in (23).
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Proof. Due to Corollary 1,

Φ2 = inf
τ,λ≥0,hi∈C([0,1])

{
λρ+

2∑
i=1

∫ 1

0

hi(ui)dui (35)

+

∫
[0,1]2

sup
v∈[0,1]2

[
τ +

1

1− α
max(v1 + v2 − τ, 0)−

2∑
i=1

hi(vi)− λ
2∑
i=1

|ui − vi|

]
d(u1, u2)

}
.

The following choice of optimizers in equation (35) yields the upper bound for Φ2 given in

(34):

λ =
1

2(1− α)
, τ = τ? := 2−

√
2− 2α and hi(v) =

1

1− α

(
v − ατ?

2

)
for i = 1, 2.

We now derive the following lower bound

Φ2 ≥ min

(
1 + α, 2− 2

3

√
2− 2α+

2(−3 + 2
√

2− 2α+ 3α)ρ

3(2− α)(1− α)α

)
, (36)

where Φ2 is defined in (23).

Proof. It is straight forward to see that Φ2 is concave in the radius ρ of the considered

Wasserstein ball around µ̄. This is due to the fact that we defined the ground metric c(·, ·)
of the transportation distance dc by the `1-metric, i.e. c(x, y) = ||x−y||1. Hence, to establish

the lower bound (36), we only need to show that for ρ? = α(1 − α)(1 − α/2) it holds that

Φ2 ≥ 1 + α.

Therefore, we define the probability measure µα by the following bivariate copula

Cα(u1, u2) =


u1u2 if u ∈ [0, α/2]2 ∪ [α/2, α]2

2−α
α u1u2 if u ∈ ([0, α/2]× [α/2, α]) ∪ ([α/2, α]× [0, α/2])
1

1−αu1u2 if u ∈ [α, 1]2

min(u1, u2) else

.

Tedious calculations show that dc(µ̄, µα) ≤ α(1−α)(1−α/2) = ρ?, where µ̄ is the bivariate

probability measure with independent, standard uniformly distributed marginals defined in

problem (23). Moreover, for
(
V
U

)
∼ µα it holds that AVaRα(U + V ) = 1 + α.

A.3. Correlation Matrix

The purpose of this subsection is to give the correlation matrix Σ0. Recall that Σ0 defines

the student-t copula C0 with six degrees of freedom used as a reference dependence structure

in the case study by Aas and Puccetti [1], which we consider in Section 4. As this matrix

is not given in the paper by Aas and Puccetti [1], we simply choose the following arbitrary

correlation matrix

Σ0 =



1 0.36 0.35 0.44 0.45 0.30

0.36 1 0.37 0.36 0.41 0.43

0.35 0.37 1 0.44 0.32 0.42

0.44 0.36 0.44 1 0.41 0.29

0.45 0.41 0.32 0.41 1 0.28

0.30 0.43 0.42 0.29 0.28 1


.
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[8] C. Bernard, L. Rüschendorf, S. Vanduffel, and R. Wang. Risk bounds for factor models.

Finance and Stochastics, 21(3):631–659, 2017.

[9] J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error: Empirical risk

minimization over deep artificial neural networks overcomes the curse of dimensionality

in the numerical approximation of black-scholes partial differential equations. arXiv

preprint arXiv:1809.03062, 2018.

[10] J. Blanchet, Y. Kang, and K. Murthy. Robust Wasserstein profile inference and appli-

cations to machine learning. arXiv preprint arXiv:1610.05627, 2016.

[11] J. Blanchet and K. R. Murthy. Quantifying distributional model risk via optimal trans-

port. arXiv preprint arXiv:1604.01446, 2016.

[12] H. Buehler, L. Gonon, J. Teichmann, and B. Wood. Deep hedging. Available at SSRN:

3120710, 2018.
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