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Abstract

This paper provides some useful results for convex risk measures.
In fact, we consider convex functions on a locally convex vector space
E which are monotone with respect to the preference relation implied
by some convex cone and invariant with respect to some numeraire
(“cash”). As a main result, for any function f , we find the greatest
closed convex monotone and cash-invariant function majorized by f .
We then apply our results to some well-known risk measures and prob-
lems arising in connection with insurance regulation.

Key words: constrained risk measures, convex duality, infimal con-
volution, insurance regulation, monotone and cash-invariant functions
and hulls.

1 Introduction

It has become a standard in modern risk management to assess the riskiness
of a portfolio by means of convex risk measures (see for instance [2, 15, 16, 17]
and the references therein). Formally, a convex risk measure is a convex
function ρ : Lp → (−∞,∞] which is

• monotone: ρ(X) ≤ ρ(Y ) for X ≥ Y , and
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• cash-invariant : ρ(X + c) = ρ(X)− c for all c ∈ R.

Here, and in what follows, we write Lp = Lp(Ω,F , P) with corresponding
norm ‖ · ‖p for some reference probability space (Ω,F , P) and p ∈ [1,∞]. By
convention, X ≥ Y means X ≥ Y a.s.

Now suppose an insurance company uses ρ to assess the riskiness of its
portfolio, where the risk measure ρ is specified by the regulator. The objec-
tive of the company is then to minimize ρ(X) by admissible modifications
of its risk profile X. The regulator may enforce the insurance company to
assume positions X ∈ M only, where M ⊂ Lp is some closed convex and
cash-invariant (M + c = M for c ∈ R) set. The optimization task of the
company’s risk management is thus to minimize ρM (X), where ρM := ρ
on M and ρM := ∞ outside of M . This modified risk measure ρM is still
convex and cash-invariant, but it lacks monotonicity in general.

This paper provides an extended analysis of monotone and cash-invariant
functions, which will be useful for tackling the afore mentioned constrained
optimization problem. Often, M is some affine space {X0+

∑
j≥0 xjZj | xj ∈

R} with spanning elements X0, Zj ∈ Lp, such that changing the coordinates
may be appropriate. That is, considering the convex function f(x) := ρ(X0+∑

j≥0 xjZj) on RN. But then monotonicity and cash-invariance have to be
translated accordingly for f .

Throughout the vast financial and insurance literature there is a variety
of risk measures – or premium principles – in use, see e.g. [8, 9, 16, 18, 22].
However, many of these traditional risk measures f fail either to be mono-
tone or cash-invariant. In our paper we provide the monotone and cash-
invariant hulls which are the greatest convex functions with these properties
majorized by f . We then argue below that, from a regulatory point of view,
the insurance company is allowed to replace the original risk measure by its
monotone hull, which usually yields lower capital requirements.

In [12], optimal diversification between business units under constraints
is studied. The business units are only allowed to take positions in closed
convex and cash-invariant sets. Mathematically, the problem is treated by
considering a constrained version of the infimal convolution of the risk mea-
sures of the business units. We show here that this constrained convolution
is a monotone hull of the classical infimal convolution.

As for the mathematical analysis, it turns out that the underlying struc-
tures become most clear when we replace Lp by some locally convex vector
space E. Indeed, the theory of convex functions has been well established
on such spaces and often one wants to extend the risk model framework
beyond Lp anyway.
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In the context of optimal risk exchange, Pareto optimality and optimal
allocation problems, the infimal convolution has been developed and ex-
plored in [3, 4, 7, 8, 9, 12, 19, 20, 21]. Fair prices for optimal risk exchange
based on economic equilibrium theory have been studied in [5, 6, 9, 11, 12].
Most of this articles originally deal with an unconstrained setup and can
be extended to admit constraints. We expect that our results can then be
applied.

The remainder of the paper is as follows. In Section 2 we provide the
ingredients and formal setup for the study. Section 3 introduces and dis-
cusses the extended monotonicity (“P-monotonicity”) and cash-invariance
(“Π-invariance”) properties for convex functions on E. In particular, we
find the most conservative P-monotone (and Π-invariant) closed convex risk
measure on E. A subsection deals with the case where E is a normed vector
space, and we derive a well-known continuity and representation results for
convex risk measures on L∞. We finish this section with a first example of
a constrained risk measure, mentioned above. In Section 4 we define the P-
monotone (and Π-invariant) hull of a convex function f , and we show that its
closure is the greatest closed convex P-monotone (and Π-invariant) function
majorized by f . This is then applied to the infimal convolution of convex
functions. Section 5 contains a selection of important examples. We find
the monotone and cash-invariant hulls of some traditional risk measures. In
Section 6 we finally provide an economic interpretation of our results with
regard to insurance regulation, which ties up with the discussion started in
this introduction. It turns out that any risk measure can be replaced by its
P-monotone hull to determine the regulatory capital charge. In Section A
we recall some basic definitions and results from convex analysis. For the
sake of readability, we postponed most of the proofs to the appendix.

2 Ingredients

In accordance with the introduction, we fix the following ingredients:

• A Hausdorff locally convex topological vector space E with topological
dual E∗.

Facts: The weak topologies σ(E,E∗) and σ(E∗, E) on E and E∗,
respectively, are both Hausdorff and locally convex (see e.g. Section
5.14 in [1]).

Example 1: E = Lp, p ∈ [1,∞], with norm topology. For p < ∞,
we have (Lp)∗ = Lp/(p−1), but notice that the inclusion L1 ⊂ (L∞)∗ is
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strict in general.

Example 2: E = L∞ with topology σ(L∞, L1). Now the dual pairing
is (L∞, σ(L∞, L1))∗ = (L1, σ(L1, L∞).

• A σ(E,E∗)-closed convex cone P ⊂ E inducing a preference relation
on E:

X ≥P Y :⇔ X − Y ∈ P.

Facts: The Bipolar Theorem (e.g. Theorem 5.91 in [1]) states that

X ≥P Y ⇔ 〈µ,X − Y 〉 ≤ 0 ∀µ ∈ P◦, (1)

where
P◦ := {µ ∈ E∗ | 〈µ,Z〉 ≤ 0 ∀Z ∈ P}

is the σ(E∗, E)-closed convex polar cone of P (see Lemma 5.90 in [1]).
Hence µ /∈ P◦ if and only if there exists X ≥P 0 with 〈µ,X〉 > 0.

It follows by inspection that the relation ≥P is reflexive (X ≥P X)
and transitive (X ≥P Y and Y ≥P Z imply X ≥P Y ). But notice
that ≥P is antisymmetric (X ≥P Y and Y ≥P X imply X = Y ) if
and only if P◦ separates points in E.

Example 1: E = Lp, for p ∈ [1,∞], and X ≥P Y if X ≥ Y . Then
P = Lp

+ and P◦ = (Lp)∗− := {µ ∈ (Lp)∗ | 〈µ,X〉 ≤ 0 ∀X ≥ 0}.
Example 2: E = L∞ with topology σ(L∞, L1). Then P = L∞+ , as
above, and P◦ = L1

−.

• A numeraire Π ∈ E \ {0}.
Example: E = Lp and Π = 1.

For the convenience of the reader, we have collected some basic defini-
tions and facts from convex analysis that will be used throughout the text
in Section A below. The standard reference is Rockafellar [25] and Ekeland
and Témam [10].

3 P-Monotone and Π-Invariant Functions

The following concepts extend the monotonicity and cash-invariance prop-
erty of convex risk measures.

Definition 3.1. A function f : E → [−∞,+∞] is called
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(i) P-monotone if f(X) ≤ f(Y ) for all X ≥P Y ;

(ii) Π-invariant if f(X + cΠ) = f(X)− c for all c ∈ R and X ∈ E.

If E = Lp with the usual order P = Lp
+ and Π = 1, then we say monotone

and cash-invariant, respectively. This convention is in line with the notion
of a convex risk measure defined in Section 1 above.

For brevity and further use we define the closed convex set

D := {µ ∈ E∗ | 〈µ,Π〉 = −1}. (2)

P-monotonicity and Π-invariance can be characterized in terms of the
effective domain of the conjugate function (see also [17]). The proof is
postponed to Section B.

Lemma 3.2. A function f : E → [−∞,+∞] with f 6≡ +∞ is

(i) P-monotone only if dom(f∗) ⊂ P◦ and ∂f(X) ⊂ P◦ ∀X ∈ dom(−f);

(ii) Π-invariant only if dom(f∗) ⊂ D and ∂f(X) ⊂ D ∀X ∈ dom(−f).

Conversely, a closed convex function f : E → (−∞,+∞] is

(iii) P-monotone if dom(f∗) ⊂ P◦;

(iv) Π-invariant if dom(f∗) ⊂ D.

As a consequence, we can find the most conservative closed convex P-
monotone and/or Π-invariant functions. The proof is given in Section C.

Lemma 3.3. The following equalities hold

δ(· | P) = δ∗(· | P◦) and δ∗(· | P) = δ(· | P◦); (3)

δ∗(X | D) =

{
−λ, if X = λΠ,
+∞, else.

(4)

Moreover,

(i) δ(· | P) is the greatest closed convex P-monotone, and

(ii) δ∗(· | D) is the greatest closed convex Π-invariant, and

(iii) δ∗(· | P◦ ∩ D) is the greatest closed convex P-monotone Π-invariant

function on E that is zero at X = 0, respectively.

Example 3.4. For E = Lp with the usual order P = Lp
+ and Π = 1, the

greatest monotone cash-invariant function is

δ∗(X | P◦ ∩ D) = −ess inf X.
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3.1 The Case of a Normed Vector Space

In this section we assume that E is a normed vector space. Then we can
give sufficient conditions under which every P-monotone and Π-invariant
function is continuous.

Lemma 3.5. Assume that

Z ≥P −κ‖Z‖EΠ ∀Z ∈ E. (5)

for some finite constant κ > 0 (in particular, Π ≥P 0).
Then every P-monotone and Π-invariant function f : E → [−∞,+∞]

satisfies: either f ≡ −∞, f ≡ +∞ or f is R-valued and Lipschitz continu-
ous:

|f(X)− f(Y )| ≤ κ‖X − Y ‖E ∀X, Y ∈ E. (6)

Proof. From (5) we have that

f(X)− κ‖X − Y ‖E = f(Y + (X − Y ) + κ‖X − Y ‖EΠ) ≤ f(Y )

for all X, Y ∈ E. Hence either f ≡ −∞, f ≡ +∞ or f is R-valued, and (6)
follows.

We can improve the statement of Lemma 3.5 and give sufficient condi-
tions in dual terms for (5) to hold. The proof is postponed to Section D

Lemma 3.6. Assume that

‖µ‖E∗ := sup
‖X‖E=1

〈µ,X〉 ≤ −κ〈µ,Π〉 ∀µ ∈ P◦ (7)

for some κ > 0. Then P◦ ∩ D is σ(E∗, E)-compact and (5) holds.
Moreover, every proper convex P-monotone and Π-invariant function f

satisfies
f(X) = max

µ∈P◦∩D
(〈µ,X〉 − f∗(µ)) ∀X ∈ E. (8)

As a corollary we derive the well-known continuity and representation
property of convex risk measures on L∞:

Corollary 3.7. A convex risk measure ρ : L∞ → (−∞,∞] is R-valued and
1-Lipschitz continuous. Moreover

ρ(X) = max{〈µ,X〉 − ρ∗(µ) | µ ∈ (L∞)∗−, 〈µ, 1〉 = −1} ∀X ∈ L∞.

Proof. This follows from Lemma 3.6 since 〈µ, 1〉 = −1 and |〈µ,X〉| ≤ ‖X‖∞,
for all µ ∈ P◦ ∩ D and X ∈ L∞.
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3.2 Illustration

For a convex risk measure ρ : L∞ → (−∞,∞] and some linearly independent
random variables X0 and Z0 ≡ 1, Z1, . . . , Zn ∈ L∞, we consider the finite
dimensional restriction

f(x) := ρ

X0 +
n∑

j=0

xjZj

 , x = (x0, . . . , xn) ∈ Rn+1,

of ρ to the affine space M = {X0 +
∑n

j=0 xjZj | xj ∈ R}. Then f : E :=
Rn+1 → R is continuous convex and

(i) P-monotone, for the closed convex cone

P :=

x = (x0, . . . , xn) ∈ Rn+1 |
n∑

j=0

xjZj ≥ 0

 , and

(ii) Π-invariant, for Π := (1, 0, . . . , 0).

Such functions f are studied in [12] in connection with an optimal capital
and risk transfer problem for insurance groups.

4 P-Monotone and Π-Invariant Hulls

This section contains our main results. In what follows, we let f : E →
(−∞,+∞] be some proper function.

Definition 4.1. The P-monotone hull of f is defined as

fP(X) := inf
X≥PY

f(Y ) = f�δ(· | P)(X). (9)

If f is convex then fP is convex, but not closed in general, and part (iii) of
Lemma 3.2 does not apply. Nevertheless, the terminology for fP is justified,
as our first main result shows. The proof is postponed to Section E.

Theorem 4.2. fP is P-monotone with fP ≤ f , and fP = f if and only if
f is P-monotone. Moreover,

f∗P = f∗ + δ(· | P◦).

In particular,
f∗P = f∗ on P◦,

and cl(fP) = f∗∗P is the greatest closed convex P-monotone function ma-
jorized by f .
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The monotone hull of utility functions has been derived and studied
independently in [23] and [24]. We interpret their result for mean-variance
preferences in our context in Section 5.3 below.

We can say more if the infimum in (9) is attained, in terms of the sub-
gradients of fP . The proof is postponed to Section F.

Theorem 4.3. Let X ≥P Y and µ ∈ ∂fP(X). Then the following are
equivalent:

(i) fP(X) = f(Y )

(ii) 〈µ,X〉 = 〈µ, Y 〉 and f(Y ) = 〈µ, Y 〉 − f∗(µ)

(iii) 〈µ,X〉 = 〈µ, Y 〉 and µ ∈ ∂f(Y )

(iv) µ ∈ ∂δ(X − Y | P) ∩ ∂f(Y ).

As a first useful application of Theorem 4.2 we define the P-convolution
of two proper functions f, g as

f�Pg(X) := f�g�δ(· | P)(X) = inf
X≥PX1+X2

(f(X1) + g(X2)).

Corollary 4.4. cl (f�Pg) = (f∗ + g∗ + δ(· | P◦))∗ is the greatest closed
convex P-monotone function majorized by f�g.

Proof. This follows from Theorem 4.2 and (29).

We now extend Definition 4.1.

Definition 4.5. The P-monotone Π-invariant hull of f is defined as

fP,Π := f�Pδ∗(· | D) = f�δ∗(· | D)�δ(· | P) (10)

From (4) we immediately derive the equality

fP,Π(X) = inf{f(Y )− λ | X ≥P Y + λΠ}. (11)

If f is convex then fP,Π is convex, but in general not closed, and part (iv) of
Lemma 3.2 does not apply. Nevertheless, the terminology in Definition 4.5
is justified even if f is not closed. The proof is given in Section G.

Theorem 4.6. fP,Π is P-monotone Π-invariant with fP,Π ≤ f , and fP,Π =
f if and only if f is P-monotone Π-invariant. Moreover,

f∗P,Π = f∗ + δ(· | P◦ ∩ D).
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In particular,
f∗P,Π = f∗ on P◦ ∩ D,

and cl(fP,Π) = f∗∗P,Π is the greatest closed convex P-monotone Π-invariant
function majorized by f .

Remark 4.7. For P = {0} notice that P◦ = E∗ and X ≥{0} Y is equivalent
to X = Y , so that f{0} = f and �{0} = �. We thus can define the Π-
invariant hull of f as

fΠ := f{0},Π = f�δ∗(· | D) = inf
a∈R

(f(· − aΠ)− a).

The statements of Theorem 4.6 carry over to fΠ with P◦ replaced by E∗.

Combining Theorems 4.2 and 4.6 and Remark 4.7, we obtain

Corollary 4.8. If f is P-monotone then fΠ = fP,Π is P-monotone. If f is
Π-invariant then fP = fP,Π is Π-invariant.

We finally give an alternative representation for the P-monotone Π-
invariant hull of f . Notice that equation (12) below is not trivial, as the
infimal convolution of two closed convex functions need not be closed in
general, see Example 4.11 below and Section 9 in [25] for more on this. We
have the following Theorem, the proof of which is given in Section H.

Theorem 4.9. Suppose P◦ ∩ D 6= ∅. Then

δ∗(· | D)�δ∗(· | P◦) = δ∗(· | P◦ ∩ D). (12)

Hence
fP,Π = f�δ∗(· | P◦ ∩ D). (13)

Example 4.10. In the setup of Example 3.4, equation (13) reads as

fP,Π(X) = inf
Y ∈Lp

(f(X − Y )− ess inf Y ).

The assumption in Theorem 4.9 cannot be omitted, as the following
example shows.

Example 4.11. Let P be the linear span of Π. Then P◦ = {µ ∈ E∗ |
〈µ,Π〉 = 0}, and therefore P◦ ∩D = ∅. It follows that δ∗(· | P◦ ∩D) ≡ −∞.
On the other hand, simple calculations show that

δ∗(· | D)�δ∗(· | P◦)(X) =

{
−∞, X ∈ P,

+∞, otherwise.

Hence (12), and thus (13), does not hold.
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5 Examples

Theorem 4.6 provides the recipe for constructing the greatest closed convex
P-monotone Π-invariant function majorized by f , for any proper function
f : E → (−∞,+∞]. In this section we illustrate the usefulness and practi-
cability of the above results. In all examples below we have E = Lp with the
usual order P = Lp

+, for some p ∈ [1,∞], and Π = 1. Recall the convention
in Definition 3.1 for this case, and notice that D = {Z ∈ Lq | E[Z] = −1} if
E∗ = Lq.

We consider various well-known risk measures which are widely used in
practice (see e.g. [9], Chapter 5 in [18] or Section 5.4 in [22]), but fail to be
either monotone or cash-invariant.

5.1 Lp-Deviation Risk Measures

Let p ∈ [1,∞) and E = Lp, and set q = p/(p − 1) (= +∞ if p = 1). Fix
α > 0 and define the Lp-deviation risk measure as

f(X) = E[−X] + α‖X − E[X]‖p.

The Lp-deviation risk measure is continuous convex and cash-invariant, but
fails to be monotone in general.

Proposition 5.1. For Q = {α(E[g]− g)− 1 | g ∈ Lq, ‖g‖q ≤ 1} the map-
ping

ρ(X) = sup
Z∈Q∩Lq

−

E[ZX]

is the greatest closed convex monotone cash-invariant function majorized by
the Lp-deviation risk measure f .

Proof. We modify the calculations of Example 7 in [8]. For every Z =
α(E[g]− g)− 1 ∈ Q, we deduce by Hölder’s inequality,

E[ZX] = E[−X] + E[Z(X − E[X])]
= E[−X] + E[(Z + 1− αE[g])(X − E[X])] (14)
≤ E[−X] + α‖g‖q‖X − E[X]‖p ≤ f(X).

The element g = −sign(X−E[X]) |X−E[X]|p−1

‖X−E[X]‖p−1
p

is in Lq and satisfies ‖g‖q ≤ 1.

Plugging g in (14), we obtain E[ZX] = E[−X]+α‖X−E[X]‖p. This shows
that f(X) = maxZ∈Q E[ZX], and the claim now follows from Theorem 4.6.
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Notice that Q∩Lq
− = {α(E[g]−g)−1 | g ∈ Lq, ‖g‖q ≤ 1, E[g]−g ≤ 1/α}.

For p = 2 it is thus particularly simple to find elements X where the L2-
deviation risk measure coincides with its monotone hull.

Corollary 5.2. Let p = 2. Then ρ(X) = f(X) for every X ∈ L2 with

X ≤ E[X] +
‖X − E[X]‖2

α
. (15)

Proof. From the proof of Proposition 5.1 we know that f(X) = E[ZX] for
Z = α X−E[X]

‖X−E[X]‖2 − 1. Since Z ∈ Q ∩ Lq
− whenever (15) holds, the claim

follows.

5.2 Lp-Semi-Deviation Risk Measures

Consider the setup of Section 5.1. Closely related to the Lp-deviation risk
measure is the Lp-semi-deviation risk measure

f(X) = E[−X] + α‖(X − E[X])−‖p,

see [13] and Example 7 in [8]. It can be shown with similar arguments as in
Proposition 5.1 (see Example 7 in [8]) that

f(X) = sup
Z∈R

E[ZX] (16)

for R = {α(E[g]−g)−1 | g ∈ Lq, g ≥ 0, ‖g‖q ≤ 1}. Moreover the supremum
in (16) is attained at Z = α(E[g]− g)− 1 for

g =
(X − E[X])p−1

−

‖(X − E[X])−‖p−1
p

(= 1{X<E[X]} if p = 1). (17)

Hence f is a continuous convex and cash-invariant function, but fails to be
monotone for α > 1 in general. We can now extend these results as follows.

Proposition 5.3. The greatest closed convex monotone cash-invariant func-
tion majorized by the Lp-semi-deviation risk measure f is

ρ(X) = sup
Z∈R∩Lq

−

E[ZX].

We have ρ(X) = f(X) for all X ∈ Lp with{
E[(X − E[X])p−1

− ] ≤ ‖(X−E[X])−‖p−1
p

α , if p > 1
P[X < E[X]] ≤ 1

α , if p = 1.
(18)

Moreover, the Lp-semi-deviation risk measure f is monotone (that is,
f = ρ) if α ≤ 1.
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We remark that the last statement of this proposition has already been
proved in [13] and [8].

Proof. The first statement follows from the preceding remarks and Theo-
rem 4.6. As for the second statement we note that

R∩Lq
− = {α(E[g]− g)− 1 | g ∈ Lq, g ≥ 0, ‖g‖q ≤ 1, E[g]− g ≤ 1/α}. (19)

Hence Z = α(E[g]− g)− 1 with g given in (17) lies in R∩Lq
− if (18) holds.

Finally, it follows from E[g]−g ≤ E[g] ≤ ‖g‖q ≤ 1 and (19) that R ⊂ Lq
−

if α ≤ 1, which proves the last statement.

5.3 Mean-Lp Risk Measure

Consider the setup of Section 5.1. We obtain a variation of the Lp-(semi)-
deviation risk measure as follows. Let

f(X) = E[−X] +
α

p
E [|X|p]

(this can be further generalized by replacing α
p E [|·|p] by any convex function

g : Lp → R). We define the mean-Lp risk measure f1 as cash-invariant hull
of f (see Remark 4.7)

f1(X) = inf
λ∈R

(
E[−X] +

α

p
E[|X − λ|p]

)
. (20)

The infimum in (20) is attained for λ̂ ∈ R satisfying

E
[
sign(X − λ̂)

∣∣∣X − λ̂
∣∣∣p−1

]
= 0.

In the case p = 2, we obtain λ̂ = E[X], and

−f1(X) = E[X]− α

2
E

[
|X − E[X]|2

]
reduces to the classical mean-variance utility function on L2. Its monotone
hull, −fL2

+,1, has been derived and studied in [23]. In what follows, we derive
their result as an application of Theorem 4.6.

Since

f∗(Z) = sup
X∈Lp

{E[(Z + 1)X]− g(X)} = g∗(Z + 1), (21)
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for g = α
p E [|·|p], the calculation of the monotone cash-invariant hull of f

reduces to the specification of g∗. Using similar arguments as for (24) below,
we deduce for Z ∈ Lq that

g∗(Z) = sup
X∈Lp

E
[
ZX − α

p
|X|p

]
= E

[
|Z|

(
|Z|
α

) 1
p−1

− α

p

(
|Z|
α

) p
p−1

]
=

1

α
1

p−1 q
E[|Z|q], (22)

where we have used the optimizer X̂ = sign(Z)
(
|Z|
α

) 1
p−1 . Combining The-

orem 4.6, (21) and (22) implies that

ρ(X) = sup

{
E[ZX]− 1

α
1

p−1 q
E[|Z + 1|q] | Z ∈ Lq

−, E[Z] = −1

}

is the greatest closed convex monotone cash-invariant function majorized
by f . For the case p = 2, we obtain the utility function

−ρ(X) = inf
{

E[ZX] +
1
2α

(E[Z2]− 1) | Z ∈ L2
+, E[Z] = 1

}
which induces the monotone mean-variance preference order over L2. For
more details and applications of the monotone mean-variance preference
order we refer to [23].

5.4 Lp-Semi-Moment Risk Measure

Consider the setup of Section 5.1. The Lp-semi-moment risk measure f :
E → R is defined as

f(X) =
1
α

E[Xp
−],

which is continuous, convex and monotone, but not cash-invariant. In view
of Corollary 4.8, the monotone cash-invariant hull of f is

f1(X) = inf
λ∈R

(
1
α

E[(X − λ)p
−]− λ

)
=

1
α

E[(X − λ̂)p
−]− λ̂, (23)

where the optimizer λ̂ satisfies E[(X − λ̂)p−1
− ] = α

p for p > 1. For p = 1,

it can be shown that λ̂ satisfies P[X < λ̂] ≤ α ≤ P[X ≤ λ̂]. That is, λ̂ is
an α-quantile of X. In this case, the right hand side of (23) is well known
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as expected shortfall or conditional value-at-risk or tail value-at-risk of X
(see e.g. [16]). We remark that the minimization representation (23) of the
expected shortfall has already been proved in [26].

Hence the expected shortfall is the greatest closed convex monotone cash-
invariant function majorized by the L1-semi-moment risk measure.

5.5 Exponential Risk Measure

Here we let E = (L∞, σ(L∞, L1)). The exponential risk measure f : E → R
is defined as

f(X) = E[exp(−X)]− 1.

It can be checked that f is continuous convex and monotone , but obviously
fails to be cash-invariant. For the monotone cash-invariant hull we calculate,
according to Corollary 4.8,

f1(X) = inf
λ∈R

(E[exp(−X + λ)]− 1− λ) = inf
λ∈R

(exp(λ)E[exp(−X)]− 1− λ).

Plugging in the optimizer λ̂ = − log E[exp(−X)]), we obtain

f1(X) = log E[exp(−X)],

which is closed convex and known as entropic risk measure (see e.g. [16]).
Hence the entropic risk measure is the greatest closed convex monotone

cash-invariant function majorized by the exponential risk measure.

Remark 5.4. It should be obvious how to generalize the examples in Sec-
tions 5.4 and 5.5 by setting f(X) = E[g(X)] for some (smooth) convex
function g : R → R with g(0) = 0.

5.6 Logarithmic Risk Measure

We consider the setup of Section 5.5, and define the logarithmic risk measure
as

f(X) =
{

E[− log(X)]− 1 if X > 0
+∞ else.

This function is monotone but fails to be cash-invariant.
For Z ∈ L1 such that Z < 0, it follows that

f∗(Z) = sup
X>0, X∈L∞

E[XZ + log(X)] + 1 = E[log(−1/Z)]. (24)
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Indeed, for every ω ∈ Ω, x 7→ xZ(ω) + log(x) is maximal at x = − 1
Z(ω) > 0.

Hence,
sup

X>0, X∈L∞
E[XZ + log(X)] + 1 ≤ E [log (−1/Z)] .

Notice that by Jensen’s inequality (log(−1/Z))− ∈ L1, hence the expectation
on the right-hand side is well defined (may be +∞). On the other hand,
monotone convergence yields

f∗(Z) ≥ lim
n→∞

E[(−1/Z ∧ n)Z + log(−1/Z ∧ n)] + 1 = E[log(−1/Z)],

which shows (24). This also implies that f∗(Z) = +∞ if Z ∈ L1
− with

P[Z = 0] > 0.
Together with Theorem 4.6 we now deduce that

f∗∗L1
+,1(X) = sup{E[XZ]− E[log(−1/Z)] | Z ∈ L1, Z < 0, E[Z] = −1}

is the greatest closed convex monotone cash-invariant function majorized by
the logarithmic risk measure.

5.7 Logarithmic Certainty Equivalent Risk Measure

We consider the setup of Section 5.5 and define the logarithmic certainty
equivalent risk measure as

f(X) =
{
− exp E[log(X)] if X > 0, log(X) ∈ L1

+∞ else.

Notice that −f(X) is the certainty equivalent of the logarithmic utility func-
tion. That is,

E[log(X)] = log(−f(X)), (25)

whenever the left hand side is defined and finite.
It follows from (25) that f is monotone. However, f is neither cash-

invariant nor convex in general.
By convex duality for exp : R → R, we obtain the representation

exp(x) = sup
y≥0

(xy − y log(y) + y).

For Z ∈ L1 with Z < 0, we thus calculate

f∗(Z) = sup
X>0, X∈L∞

(E[XZ] + sup
y≥0

(yE[log(X)]− y log(y) + y))

= sup
y≥0

sup
X>0, X∈L∞

E[XZ + y log(X)− y log(y) + y]

= sup
y≥0

yE[log(−1/Z)],
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where the last equality follows by adapting the argumentation for (24). Fur-
thermore, if Z ∈ L1

− such that P[Z = 0] > 0, then f∗(Z) = +∞. Hence, for
Z ∈ L1

− ∩ D = {Y ∈ L1
− | E[Y ] = −1}, it follows that f∗(Z) = 0 if Z ≡ −1

and f∗(Z) = +∞ else.
Consequently, the negative expectation, −E[·], is the greatest closed con-

vex monotone cash-invariant function majorized by the logarithmic certainty
equivalent risk measure.

6 Economic Interpretation

We resume the view point of the risk management of an insurance company
as discussed in the introduction.

We interpret the relation ≥P in the sense that X ≥P Y makes the
position X objectively preferable to Y . In particular, a position X ≥P 0 is
understood not to bear any downside risk.

Hence a ≥P -compatible risk measure f on E has to be proper convex
and P-monotone. (We do not insist that f has to be cash- or Π-invariant.)
It can always be normalized so that f(0) = 0.

Lemma 3.3 then states that the most conservative closed P-monotone
risk measure vanishing at X = 0 is the indicator function δ(· | P).

Thus, an institution equipped with the risk measure δ(· | P) cannot
assume any downside risk at all (unless charged an infinite amount of capital
which is impossible). Such an institution could be, for instance, the non-risk
taking holding company of an insurance group.

Now suppose that the regulator specifies a proper convex function f
which is to be used by the insurance company to assess the riskiness of its
portfolio X ∈ E. The greater f(X), the more capital is required to carry
the risk X.

Due to legal constraints, the function f may fail to be P-monotone. In-
deed, in reality there are legal constraints on the mobility of capital between
business units of the insurance company. Risk transfers have to be defined
via contingent capital notes, such as retrocession or surplus participation be-
tween the business units. Formally, we let the initial risk profile of business
unit i be Xi, which sum up to the total portfolio, X =

∑
i Xi, and suppose

there are legally enforceable contingent capital notes Zj . In a first step, the
risk management will thus find the optimal risk structure (λij) which leads
to the company’s capital charge

infP
i λij=0 ∀j

∑
i

fi

(
Xi +

∑
j

λijZj

)
=: f(X), (26)
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where fi denotes the regulator-specified risk measure for business unit i.
The so obtained convex function f on E is not P-monotone in general, as
it is demonstrated in Example 4.1 in [11].

However, we may assume that the company is allowed to share any
“positive” portion Z ≥P 0 of its portfolio with the holding company as
long as the capital charge for the company is readjusted to f(X − Z). The
total amount of capital charged to the insurance company and the holding
company is thus the sum

f(X − Z) + δ(Z | P) = f(X − Z).

Accepting the preceding arguments there is nothing that forbids the
management to optimize the risk profile by sharing “positive” portions Z ≥P
0 of the portfolio with the holding company (or the shareholders), so that
the resulting capital charge becomes (in the limit)

inf
Z≥P0

f(X − Z).

But this value is just fP(X), the P-monotone hull of f evaluated at the
initial risk profile X.

This argumentation shows that a regulator-specified risk measure f can
always be replaced by (the closure of) its P-monotone hull fP . The regulator
will still accept the resulting capital charge.

Another way to see how this works for (26) is to rewrite f as infimal
convolution

f = fM1
1 � · · ·�fMm

m

where fMi
i := fi + δ(· | Mi) for Mi := {Xi +

∑
j λjZj | λj ∈ R}, assuming

m business units. The P-monotone hull of f is then just the P-convolution
fP = fM1

1 �P · · ·�PfMm
m , as shown in Corollary 4.4.

A Some Facts from Convex Analysis

For the convenience of the reader we collect here some standard definitions
and results in convex analysis. For more background we refer to Rockafellar
[25] and Ekeland and Témam [10].

A function f : E → [−∞,+∞] is convex if

f(λX + (1− λ)Y ) ≤ λf(X) + (1− λ)f(Y ) ∀X, Y ∈ E, ∀λ ∈ [0, 1],
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whenever the right-hand side is defined. We write dom(f) = {f < ∞} for
the effective domain, and

∂f(X) = {µ ∈ E∗ | f(Y ) ≥ f(X) + 〈µ, Y −X〉 ∀Y ∈ E}

for the convex set of subgradients of f . We call f proper if f > −∞ and
dom(f) 6= ∅.

The closure of f is denoted by cl (f) and defined as cl (f) ≡ −∞, if
f(X) = −∞ for some X, and as greatest convex lower semicontinuous func-
tion majorized by f , else. A convex function f is called closed if f = cl (f).
In [10], the closure of f is called the Γ-regularization of f .

A convex set A ⊂ E is closed if and only if it is σ(E,E∗)-closed. As a
consequence, a convex function f is lower semicontinuous if and only if f is
lower semicontinuous with respect to σ(E,E∗).

The conjugate function of a function f : E → [−∞,+∞],

f∗(µ) = sup
X∈E

(〈µ,X〉 − f(X)),

is a closed convex function on E∗. Moreover, (cl (f))∗ = f∗, and the follow-
ing convex duality relation holds (Proposition 4.1 in Chapter I of [10])

f∗∗ = cl (f). (27)

As for the subgradients, we have (Proposition 5.1 in Chapter I of [10])

µ ∈ ∂f(X) ⇔ f(X) + f∗(µ) = 〈µ,X〉. (28)

The infimal convolution of two proper functions f1, f2 : E → (−∞,∞]
is defined as

f1�f2(X) := inf
X1+X2=X

(f1(X1) + f2(X2)).

From this definition we have

(f1�f2)∗ = f∗1 + f∗2 (29)

(the first part of Theorem 16.4 in [25] carries over to E). Furthermore, if
f1, f2 are convex then f1�f2 is convex (Theorem 5.4 in [25] carries over to
E).

The indicator function of a set C ⊂ E is defined as

δ(X | C) :=

{
0, X ∈ C
+∞, X /∈ C.
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Then δ(· | C) is convex lower semicontinuous if and only if C is convex closed.
The conjugate is the support function of C,

δ∗(µ | C) = sup
X∈C

〈µ,X〉.

Notice that E and E∗ can be interchanged in the definition of δ and δ∗.

B Proof of Lemma 3.2

Let f : E → [−∞,+∞] be a function with f 6≡ +∞. If f ≡ −∞ then
dom(f∗) = ∅, and there is nothing to prove. Hence we may assume that
there exists X0 ∈ E with f(X0) ∈ R. Notice that

∂f(X) = ∅ ∀X ∈ {f = +∞}. (30)

Suppose f is P-monotone. Let µ ∈ E∗ \ P◦. Then there exists X ≥P 0
with 〈µ,X〉 > 0. Hence f(X0 + kX) ≤ f(X0) and we conclude

f∗(µ) ≥ 〈µ,X0 + kX〉 − f(X0 + kX) ≥ k〈µ,X〉+ 〈µ,X0〉 − f(X0) ∀k ≥ 1.

Hence f∗(µ) = +∞ and therefore dom(f∗) ⊂ P◦. Now let X ∈ dom(−f) ∩
dom(f) (see (30)) and µ ∈ ∂f(X). Then f(X) ∈ R and thus

〈µ,Z〉 ≤ f(X + Z)− f(X) ≤ 0 ∀Z ≥P 0.

Therefore µ ∈ P◦, and assertion (i) follows.
Suppose f is Π-invariant. Let µ ∈ E∗. Then

f∗(µ) ≥ 〈µ,X0+cΠ〉−f(X0+cΠ) = c(〈µ,Π〉+1)+〈µ,X0〉−f(X0) ∀c ∈ R.

We conclude that f∗(µ) < ∞ only if 〈µ,Π〉 = −1, whence dom(f∗) ⊂ D.
Now let X ∈ dom(−f)∩dom(f) (see (30)) and µ ∈ ∂f(X). Then f(X) ∈ R
and thus

−c = f(X + cΠ)− f(X) ≥ c〈µ,Π〉 ∀c ∈ R.

Hence µ ∈ D, and assertion (ii) follows.
Now let f : E → (−∞,+∞] be closed convex. Suppose first that

dom(f∗) ⊂ P◦. Then

f(X) = f∗∗(X) = sup
µ∈P◦

(〈µ,X〉 − f∗(µ)).

In view of the Bipolar Theorem (1), f is thus P-monotone, and assertion
(iii) follows.
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Suppose now that dom(f∗) ⊂ D. Then

f(X + cΠ) = sup
µ∈D

(〈µ,X + cΠ〉 − f∗(µ)) = f(X)− c,

and the lemma is proved.

C Proof of Lemma 3.3

Since P◦ is a cone, δ∗(X | P◦) = supµ∈P◦〈µ,X〉 can only take values 0 or ∞.
In view of the Bipolar Theorem (1), δ∗(X | P◦) = 0 if and only if X ∈ P,
and the first equality in (3) follows. The second follows by a dual argument.

Straightforward inspection shows that the conjugate of the closed convex
function on the right hand side of (4) is the indicator function δ(· | D) of D,
which proves (4).

Now let f be a closed convex function with f(0) = 0. Then f∗(µ) ≥
〈µ, 0〉 − f(0) = 0. From part (i) of Lemma 3.2 we thus derive

f(X) = f∗∗(X) = sup
µ∈P◦

(〈µ,X〉 − f∗(µ)) ≤ sup
µ∈P◦

〈µ,X〉 = δ∗(X | P◦)

if f is P-monotone, which together with (3) proves (i). Parts (ii) and (iii)
follows similarly from part (ii) of Lemma 3.2.

D Proof of Lemma 3.6

From (7) we have, for any Z ∈ E,

|〈µ,Z〉| ≤ ‖µ‖E∗‖Z‖E ≤ −κ‖Z‖E〈µ,Π〉 ∀µ ∈ P◦.

Hence (5) follows. Moreover, we have ‖µ‖E∗ ≤ −κ〈µ,Π〉 = κ for all µ ∈
P◦ ∩ D. Since P◦ ∩ D is also σ(E∗, E)-closed, it is thus σ(E∗, E)-compact
by Alaoglu’s Theorem (e.g. Theorem 6.25 in [1]).

Let f be proper convex P-monotone and Π-invariant function. Then
f satisfies (6), by Lemma 3.5. In particular, 〈µ,X〉 − f∗(µ) is σ(E∗, E)-
upper semicontinuous in µ. Hence (8) follows since, by parts (i) and (ii)
Lemma 3.2,

f(X) = f∗∗(X) = sup
µ∈P◦∩D

(〈µ,X〉 − f∗(µ)) (31)

and P◦ ∩ D is σ(E∗, E)-compact.

Remark D.1. Note that, in view of (28) and (31), property (8) is in fact
equivalent to

∂f(X) ∩ P◦ ∩ D 6= ∅ ∀X ∈ E.
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E Proof of Theorem 4.2

P-monotonicity of fP and fP ≤ f follow from the transitivity and reflexivity
of ≥P , respectively. If f is P-monotone then fP(X) = infX≥PY f(Y ) ≥
f(X), whence the first part of the theorem is proved.

By Lemma 3.3, we have fP = f�δ∗(· | P◦), and thus f∗P = f∗+δ(· | P◦),
see (29). Theorem 4.2 now follows from Lemma E.1 below.

Lemma E.1. Let C ⊂ E∗ be a σ(E∗, E)-closed convex set. Then f̂ :=
(f∗ + δ(· | C))∗ = cl(f�δ∗(· | C)) is the greatest closed convex function ma-
jorized by f and whose conjugate function has its effective domain contained
in C.

Proof of Lemma E.1. The equality for f̂ follows from (27) and (29).
From the convex duality (27) we have that

f1 ≤ f2 ⇒ f∗1 ≥ f∗2 ⇒ cl (f1) ≤ cl (f2) (32)

for all functions f1, f2 : E → [−∞,∞].
In view of (32) we thus have f̂ ≤ cl (f) ≤ f . Now let g ≤ f be a closed

convex function with dom(g∗) ⊂ C. Then g∗ = g∗+ δ(· | C) ≥ f∗+ δ(· | C) =
f̂∗, whence g = g∗∗ ≤ f̂ .

F Proof of Theorem 4.3

Notice that, in view of Lemma 3.2 and Theorem 4.2, we have µ ∈ P◦ and
thus f∗(µ) = f∗P(µ).

(i)⇒(ii): in view of the preceding remark, we deduce from (28)

fP(X) = 〈µ,X〉 − f∗P(µ) ≤ 〈µ, Y 〉 − f∗(µ) ≤ f∗∗(Y ) ≤ f(Y ) = fP(X).

(ii)⇒(i): we deduce from (28)

fP(X) ≤ f(Y ) = 〈µ, Y 〉 − f∗(µ) = 〈µ,X〉 − f∗P(µ) ≤ fP(X).

(ii)⇔(iii): this follows from (28).
(iii)⇔(iv): in view of (28) and (3) we have

µ ∈ ∂δ(X − Y | P) ⇔ 〈µ,X − Y 〉 = δ(X − Y | P) + δ(µ | P◦) = 0.
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G Proof of Theorem 4.6

In view of (10) and Theorem 4.2 we conclude that fP,Π is P-monotone. Let
c ∈ R. Using (11), we calculate

fP,Π (X + cΠ) = inf {f(Y )− λ | X + cΠ ≥P Y + λΠ}
= inf {f(Y )− λ | X ≥P Y + (λ− c)Π}
= inf

{
f(Y )− (λ′ + c) | X ≥P Y + λ′Π

}
= inf

{
f(Y )− λ′ | X ≥P Y + λ′Π

}
− c

= inf {f(Y ) + δ∗(Z | D) | X ≥P Y + Z} − c

= fP,Π(X)− c.

Hence fP,Π is Π-invariant. For c = 0, we deduce from the above equalities
in particular that fP,Π ≤ f . If f is P-monotone Π-invariant, Theorem 4.2
and (4) yield

fP,Π(X) = f�δ∗(· | D)(X) = inf
λ∈R

(f(X − λΠ)− λ) = f(X),

which proves the first part of the theorem.
Moreover, in view of (29), (10) and (3),

f∗P,Π = f∗ + δ(· | D) + δ(· | P◦) = f∗ + δ(· | P◦ ∩ D).

The theorem now follows from Lemma E.1.

H Proof of Theorem 4.9

Note that (13) is a consequence of (12) and Theorem 4.6. It thus remains
to prove (12).

We first claim that

inf
λ∈R

sup
µ∈P◦

(〈µ,X〉+ λ(〈µ,Π〉+ 1)) = sup
µ∈P◦∩D

〈µ,X〉 . (33)

Indeed, we can assume supµ∈P◦∩D 〈µ,X〉 < ∞, otherwise (33) is obvious.
Following the arguments in the proof of Lemma 1 in [14], we define the
nonempty convex set

Ξ :=
{

(y0, y1) ∈ R2 y0 < 〈µ,X〉
y1 = 〈µ,Π〉+ 1, for some µ ∈ P◦

}
.
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Since P◦ ∩D 6= ∅, it follows that supµ∈P◦∩D 〈µ,X〉 ∈ R and by construction
(supµ∈P◦∩D 〈µ,X〉 , 0) 6∈ Ξ. Hence, by the separating hyperplane theorem,
there exists a nonzero vector (c0, c1) ∈ R2 such that

c0y0 + c1y1 ≤ c0 sup
µ∈P◦∩D

〈µ,X〉 (34)

for all (y0, y1) in the closure of Ξ. Since y0 can become arbitrarily small, it
follows that c0 ≥ 0. If c0 = 0 then c1(〈µ,Π〉+ 1) ≤ 0 for all µ ∈ P◦. But for
µ ∈ P◦ ∩ D and λ > 0 we have 〈µ,Π〉 = −1 and λµ ∈ P◦ and thus

〈λµ,Π〉+ 1
{

> 0, λ < 1
< 0, λ > 1

and therefore c1 = 0. This shows that c0 > 0. For c∗ := c1
c0

, inequality (34)
implies

sup
µ∈P◦

{〈µ,X〉+ c∗(〈µ,Π〉+ 1)} ≤ sup
µ∈P◦∩D

〈µ,X〉 . (35)

In view of (35) we have

inf
λ∈R

sup
µ∈P◦

(〈µ,X〉+ λ(〈µ,Π〉+ 1)) ≤ sup
µ∈P◦

{〈µ,X〉+ c∗(〈µ,Π〉+ 1)}

≤ sup
µ∈P◦∩D

〈µ,X〉 ≤ inf
λ∈R

sup
µ∈P◦

(〈µ,X〉+ λ(〈µ,Π〉+ 1)),

whence the claim (33) is proved.
Combining (4) and (33) we conclude

δ∗(· | D)�δ∗(· | P◦)(X) = inf
Y ∈E

(δ∗(Y | D) + sup
µ∈P◦

〈µ,X − Y 〉)

= inf
λ∈R

sup
µ∈P◦

(−λ + 〈µ,X − λΠ〉)

= inf
λ∈R

sup
µ∈P◦

(〈µ,X〉+ λ(〈µ,Π〉+ 1))

= sup
µ∈P◦∩D

〈µ,X〉 = δ∗(X | P◦ ∩ D)

and (12) is proved.
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[5] Bühlmann, H. and Jewell W.S. (1979), ”Optimal Risk Exchanges,”
Astin Bulletin, 10, 243–262.
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