Herr Stefan Hain

REDUCED BASIS METHOD FOR PARAMETER FUNCTIONS WITH APPLICATION IN QUANTUM MECHANICS

Dienstag, 11. Juni 2019

Beginn: 10:15 Uhr
Raum: C421
Interessenten sind herzlich willkommen!
S. Volkwein, G. Ciaramella

Abstract

The aim of the project is to consider the time-dependent linear Schrödinger equation (SE) $$
\begin{aligned} \mathrm{i} \partial_{t} \psi(t, x) & =-\Delta \psi(t, x)+\mu(t, x) \psi(t, x)+f(t, x) & & (t, x) \in(0, T) \times \Omega, \\ \psi(t, x) & =0 & & (t, x) \in(0, T) \times \partial \Omega, \\ \psi(0, x) & =\psi(x) & & x \in \Omega, \end{aligned}
$$ with a variable reaction coefficient μ, which is interpreted as a parameter function within the Reduced Basis Method (RBM). Typically, the parameter space \mathcal{P} is given by a finite-dimensional subset of $\mathbb{R}^{P}, P \in \mathbb{N}$. However, the parameter space consisting of all possible reaction coefficients is of infinite dimension. While finite-dimensional parameter spaces have been studied well, there has been done little work on the infinite-dimensional setting so far. First progress in this direction has been made by A. Mayerhofer and K. Urban, where the initial value of parabolic PDEs is interpreted as a parameter function. In the end, this setting should be transferred to a PDE constrained optimal control problem, where an external potential arises in the SE as parameter function.

For this we propose an ansatz based on a space-time variational formulation of the SE on which we want to focus in this talk. It is well-known, that a space-time variational formulation of a time-dependent paraterized PDE leads at least analytically - to sharper error estimates for the reduced solution, which is a crucial aspect for the construction of a reduced model within the RBM. However, the setting of a well-posed variational space-time formulation with a weakly differentiable initial value as well as its stable discretization, based on tensor formats, is - according to our knowledge - not studied, yet. Numerical examples will be presented.

