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1. Introduction

In this paper we consider a partial differential operator depending polynomially
on the parameter λ and acting on a manifold M with boundary Γ. The operator
is assumed to have the form

(1-1) A(x, D, λ) = A2m(x,D) + λA2m−1(x,D) + · · ·+ λ2m−2µA2µ(x, D) .

Here m and µ are integer numbers with m > µ ≥ 0, the number λ is a complex
parameter and A2µ, . . . , A2m are partial differential operators of the form

(1-2) Aj(x, D) =
∑
|α|≤j

aαj(x)Dα (j = 2µ, 2µ + 1, . . . , 2m)

with scalar coefficients aαj(x). Here we used the standard multi-index notation.
We assume that the manifold, its boundary and the coefficients of A are infinitely
smooth.

In typical examples, a pencil of the form (1-1) will not satisfy the condition of
ellipticity with parameter due to Agmon [1] and Agranovich–Vishik [3]. We will
therefore consider a general notion of ellipticity with parameter which is connected
with the Newton polygon and which will turn out to be suitable for pencils of the
form (1-1). We define the principal symbol of Aj as

(1-3) A
(0)
j (x, ξ) :=

∑
|α|=j

aαj(x)ξα (j = 2µ, . . . , 2m)

and set

(1-4) A(0)(x, ξ, λ) := A
(0)
2m(x, ξ) + λA

(0)
2m−1(x, ξ) + . . . + λ2m−2µA

(0)
2µ (x, ξ) .

An operator pencil of the form (1-1) and acting in Rn is called N -elliptic with
parameter in [0,∞) if the estimate

(1-5) |A(0)(x, ξ, λ)| ≥ C |ξ|2µ (λ + |ξ|)2m−2µ (x ∈ Rn, ξ ∈ Rn, λ ∈ [0,∞))
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holds with a constant C independent of x, ξ and λ (cf. [4], [7]). For a pencil acting
on a manifold the inequality (1-5) has to be fulfilled locally in each coordinate
system, cf. Section 4 below.

In the case µ = 0 this is the definition of ellipticity with parameter introduced
by Agmon–Agranovich–Vishik, so from now on we will consider the case µ > 0.
The main difficulty in the investigation of N -elliptic pencils of the form (1-1) lies
in the fact that the principal symbol vanishes for ξ = 0 even for positive λ.

Operator pencils depending polynomially on the parameter λ and satisfying a
condition of N -ellipticity with parameter arise, for instance, as the determinant
of a Douglis–Nirenberg system (mixed order system) of the form A(x,D) − λI
which are elliptic with parameter in the sense of [4] (cf. also [8]). There is also a
close connection between pencils which are N -elliptic with parameter and parabolic
problems. In particular, the composition of two operators which are 2bj-parabolic
in the sense of Petrovskii (j = 1, 2) is in general no longer parabolic in this sense
but belongs to the class of N -parabolic operators. See [7] as a reference for N -
parabolicity on manifolds without boundary.

The main tool in the theory of pencils of the form (1-1) is given by the Newton
polygon approach, cf. [4] and [7]. The idea of this method is, roughly speaking,
to assign to the parameter λ various weights and to obtain for every weight a dif-
ferent principal part of A(x,D, λ). On manifolds without boundary the operator
A(x,D, λ) can be considered as a small perturbation of the corresponding principal
part in some subregion of all (ξ, λ) which depends on the weight of λ. These con-
siderations lead to existence and uniqueness results as well as to a priori estimates;
see [4] for Douglis–Nirenberg systems and [7] for parabolic problems.

On manifolds with boundary, however, the situation is more complicated. Here
the pencil A(x,D, λ) has to be considered as a singular perturbation of the corre-
sponding principal part, and we have to deal with additional boundary conditions.
Replacing λ by ε−1 in (1-1) we see the close connection to the theory of singular
perturbations (cf. also [6], [9], [10]).

In the following, we will derive an a priori estimate for the Dirichlet problem
corresponding to the pencil (1-1). A more detailed exposition can be found in [5].
First we will introduce Sobolev spaces which correspond to Newton polygons. The
a priori estimate will take place in these spaces, and one fundamental result is
the description of the trace spaces of these Sobolev spaces which can be found in
Section 2. The proof of the a priori estimate (Theorem 4.4) will use an estimate
on the solutions of an ordinary differential equation on the half-line which can be
found in Theorem 3.2.
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2. Sobolev spaces corresponding to the Newton polygon

Let us consider a polynomial in the variables ξ ∈ Rn and λ ∈ C of the form

(2-1) P (ξ, λ) =
∑
α,k

aαkξαλk

with complex coefficients aαk. Denote by ν(P ) the set of all integer points (i, k)
such that an α exists with |α| = i and aαk 6= 0. Then the Newton polygon N(P ) is
defined as the convex hull of all points in ν(P ), their projections on the coordinate
axes and the origin. To define and investigate Sobolev spaces corresponding to the
Newton polygon N(P ), we first introduce some simple geometric notions. For a
detailed discussion of the Newton polygon, we refer the reader to [7], Chapters 1
and 2.

Let Γ1, . . . , ΓS be the sides of the Newton polygon not lying on the coordinate
axes and indexed in the clockwise direction. Suppose that

(0, 0), (a1, b1), . . . , (aS+1, bS+1) , a1 = 0, bS+1 = 0 ,

are the vertices of the polygon N(P ). Then the side Γs is given by

(2-2) Γs = {(a, b) ∈ R2 : 1 · a + rs · b = ds} (s = 1, . . . , S)

where rs = (as+1 − as)/(bs − bs+1). The vector (1, rs) is an exterior normal to the
side Γs, where we admit r1 = ∞ if Γ1 is horizontal. Further we have rS = 0 in the
case that ΓS is vertical. In what follows we will suppose that ΓS is not vertical.
Since N(P ) is convex, we have

∞ ≥ r1 > . . . > rS > 0 .

To the Newton polygon N(P ) we assign its weight function

(2-3) ΞP (ξ, λ) :=
∑

(i,k)∈N(P )

|ξ|i |λ|k ,

where the summation on the right-hand side is extended over all integer points of
N(P ). It is easily seen that we have

(2-4) ΞP (ξ, λ) ≈
S∏

s=1

(
|ξ|2 + |λ|

2
rs

)ms

,

where m1, . . . , mS are nonnegative numbers depending on the geometry of the
Newton polygon. We restrict ourselves to the case that all mj are integers.
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The Sobolev space HΞP (Rn) is defined as the space of all distributions u ∈
S ′(Rn) such that ΞP (·, λ)Fu(·) ∈ L2(Rn). Here S(Rn) and S ′(Rn) denote the
Schwartz space and its dual, respectively, and Fu stands for the Fourier transform
of u. The space HΞP (Rn) is endowed with the norm

(2-5) ‖u‖ΞP ,Rn :=
(∫

Rn

Ξ2
P (ξ, λ)|Fu(ξ)|2 dξ

)1/2

.

For the theory of boundary value problems it is essential to know the trace spaces
{u(·, 0)|u ∈ HΞP (Rn)} of all traces u(·, 0) defined in Rn−1 = {(x′, 0)|x′ ∈ Rn−1}.
We denote by Ξ(−l)

P (ξ, λ) the function corresponding to the Newton polygon which
is constructed from N(P ) by a shift of length l to the left parallel to the abscissa.
We preserve the notation HΞ

(−l)
P (Rn−1) for the spaces in Rn−1 corresponding to

the weight functions Ξ(−l)
P (ξ′, λ) := Ξ(−l)

P (ξ′, 0, λ) (ξ′ ∈ Rn−1).

Theorem 2.1. For every λ0 > 0 there exists a constant C > 0, independent of u
and λ, such that

(2-6) ‖Dl
nu(x′, 0)‖

Ξ
(−l− 1

2 )
P ,Rn−1

≤ C‖u‖ΞP ,Rn (l = 0, . . . , 2m1 + . . . + 2mS − 1)

holds for u ∈ HΞP (Rn) and λ ∈ C with |λ| ≥ λ0.

The proof of this theorem uses the equivalence (2-4), general results on trace
spaces as contained in [11] and complicated but elementary estimates on one-
dimensional integrals. See [5], Section 2, for details.

For general weight functions µ(ξ) instead of ΞP (ξ, λ), the definition of the space
Hµ(Rn

+) can be found, e.g., in [11]. The norm in these spaces is given as a quotient
norm. For HΞP (Rn

+) it can be seen that an equivalent norm may be defined by

(2-7)
( M∑

l=0

∫ ∞

0

‖(Dl
nu)(·, xn)‖2

Ξ
(−l)
P ,Rn−1 dxn

)1/2

,

where M = 2m1 + · · ·+ 2mS (cf. (2-4)).

3. The zeros of the symbol and an ODE estimate

Now we again consider an operator pencil of the form (1-1) and its model problem
in Rn

+ with constant coefficients and without lower order terms. Let A(ξ, λ) be a
polynomial in ξ ∈ Rn and λ ∈ C of the form

(3-1) A(ξ, λ) = A2m(ξ) + λA2m−1(ξ) + . . . + λ2m−2µA2µ(ξ) ,

where Aj(ξ) is a homogeneous polynomial in ξ of degree j. If A(ξ, λ) is N -elliptic
with parameter in [0,∞) in the sense of (1-5) then standard arguments show that
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the number of roots of A(ξ′, τ, λ) with (ξ′, λ) ∈ Rn−1×C, considered as a polynomial
in τ , is independent of (ξ′, λ) and (for n > 2) equal to m. Similarly to the theory
of singular perturbations (cf. [10]) we consider the auxiliary polynomial of degree
2m− 2µ given by

(3-2) Q(τ) := τ−2µA(0, τ, 1) .

This polynomial has no real roots, and we say that A(ξ′, τ, λ) degenerates regularly
for λ → ∞ if the polynomial Q(τ) defined in (3-2) has exactly m − µ roots with
positive imaginary part (counted according to their multiplicities).

In order to investigate the behaviour of the fundamental solutions of A(ξ′, Dt, λ)
the main step is to split the roots τ1(ξ′, λ), . . . , τm(ξ′, λ) of A(ξ′, ·, λ) with positive
imaginary part into two groups. This is possible due to the following lemma which
can be proved using the theory of Puisseux series (see [5], Section 3).

Lemma 3.1. Let the polynomial A(ξ, λ) in (3-1) be N -elliptic with parameter in
[0,∞) and assume that A degenerates regularly for λ → ∞. Then, with a suitable
numbering of the roots τj(ξ′, λ) of A(ξ′, τ, λ) with positive imaginary part, we have:

(i) Let S(ξ′) = {τ0
1 (ξ′), . . . , τ0

µ(ξ′)} be the set of all zeros of A2µ(ξ′, τ) with
positive imaginary part. Then for all r > 0 there exists a λ0 > 0 such that the
distance between the sets {τ1(ξ′, λ), . . . , τµ(ξ′, λ)} and S(ξ′) is less than r for all ξ′

with |ξ′| = 1 and all λ ≥ λ0.
(ii) Let τ1

µ+1, . . . , τ1
m be the roots of the polynomial Q(τ) (cf. (3-2)) with positive

imaginary part. Then

(3-3) τj(ξ′, λ) = λτ1
j + τ̃1

j (ξ′, λ) (j = µ + 1, . . . , m) ,

and there exist constants Kj and λ1, independent of ξ′ and λ, such that for λ ≥ λ1

the inequality

(3-4) |τ̃1
j (ξ′, λ)| ≤ Kj |ξ′|

1
k1 λ1− 1

k1 (|ξ′| ≤ λ)

holds, where k1 is the maximal multiplicity of the roots of Q(τ).

Now we consider for fixed ξ′ ∈ Rn−1, λ ∈ [0,∞) and j = 1, . . . , m the ordinary
differential equation on the half-line

A(ξ′, Dt, λ) wj(t) = 0 (t > 0) ,(3-5)

Dk−1
t wj(t)|t=0 = δjk (k = 1, . . . , m) ,(3-6)

wj(t) → 0 (t → +∞) .

Here Dt stands for −i ∂
∂t . The following result will be the main step in the proof of

the a priori estimate (Theorem 4.4).
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Theorem 3.2. For every ξ′ ∈ Rn−1\{0} and λ ∈ [0,∞) the ordinary differential
equation (3-5)–(3-6) has a unique solution wj(ξ′, t, λ), and the estimate

(3-7) ‖Dl
twj(ξ′, ·, λ)‖L2(R+) ≤ C


|ξ′|l−j+ 1

2 , j ≤ µ, l ≤ µ,

|ξ′|1+µ−j(λ + |ξ′|)l−µ− 1
2 , j ≤ µ, l > µ,

|ξ′|l−µ(λ + |ξ′|)µ−j+ 1
2 , j > µ, l ≤ µ,

(λ + |ξ′|)l−j+ 1
2 , j > µ, l > µ,

holds with a constant C not depending on ξ′ and λ.

Sketch of proof. In the standard way (cf., e.g., [2], Section 2) we can write wj in
the form

(3-8) wj(ξ′, t, λ) =
1

2πi

∫
γ(ξ′,λ)

Mj(ξ′, τ, λ)
A+(ξ′, τ, λ)

eitτ dτ

where Mj(ξ′, τ, λ) is a polynomial in τ of degree m− j, and

A+(ξ′, τ, λ) :=
m∏

k=1

(τ − τj(ξ′, λ)) .

In (3-8) we have to integrate along a closed contour γ = γ(ξ′, λ) which encloses
all roots τ1, . . . , τm. Expressing the coefficients of M in terms of τj , we can apply
Lemma 3.1 to find estimates for the integrand. Splitting the integral for large λ in
the form

∫
γ
· · · =

∫
γ1
· · ·+

∫
γ2
· · · according to the splitting of the roots {τ1, . . . , τm}

into two groups (cf. Lemma 3.1), wo obtain for each of the two integrals different
estimates. A comparison of the right-hand sides of these estimates finally leads to
the inequality (3-7).

4. The main results

To prove the a priori estimate for the Dirichlet boundary value problem corre-
sponding to the operator pencil (1-1), we first consider model problems in Rn and
Rn

+.
Let A be a polynomial of the form (3-1). In connection with this polynomial we

consider the Newton polygon Nm,µ which is defined as the convex hull of the points

(0, 0), (0,m− µ), (µ,m− µ), (m, 0) .

For this Newton polygon the weight function Ξ(ξ, λ) is equivalent to (1 + |ξ|)µ(λ +
|ξ|)m−µ, cf. (2-4). We remark that this weight function differs from ΞA(ξ, λ)
as defined in Section 2 and corresponds to the “energy space” conncected with
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A(D,λ). The spaces HΞ(Rn) and H1/Ξ(Rn) are defined in analogy to the definition
of HΞP (Rn).

The operator A(D,λ) acts continuously from HΞ(Rn) to H
1
Ξ (Rn). From Theo-

rem 2.1 we see that the operator

Dj−1
n : u 7→

[(
∂

∂xn

)j−1

u

]∣∣∣∣∣
Rn−1

(j = 1, . . . , m)

acts continuously from HΞ(Rn) to HΞ(−j+ 1
2 )

(Rn−1).
The following proposition is proved by elementary calculations.

Proposition 4.1. (A priori estimate in Rn.) Let A(ξ, λ) be N -elliptic with param-
eter in [0,∞). Then for every λ0 > 0 the inequality

(4-1) ‖u‖Ξ,Rn ≤ C
(
‖A(D,λ)u‖ 1

Ξ ,Rn + λm−µ‖u‖L2(Rn)

)
holds for all λ ≥ λ0 with a constant C = C(λ0) independent of u and λ.

Theorem 4.2. (A priori estimate in Rn
+.) Let A(ξ, λ) be N -elliptic with parameter

in [0,∞) and degenerate regularly for λ → ∞. Then for every λ0 > 0 there exists
a constant C = C(λ0) such that for all λ ≥ λ0 and all u ∈ HΞ(Rn

+) the estimate

(4-2)

‖u‖Ξ,Rn
+
≤ C

(
‖A(D,λ)u‖ 1

Ξ ,Rn
+

+
m∑

j=1

‖Dj−1
n u‖

Ξ(−j+ 1
2 ),Rn−1

+ λm−µ‖u‖L2(Rn
+)

)
holds.

The proof of this estimate is quite elaborated and can be found in [5]. By
standard arguments we may restrict ourselves to the case f := A(D,λ)u = 0. The
main step in the proof is to find an estimate for the solution v of

A(D,λ) v = 0 ,(4-3)

Dj−1
n v(x)|xn=0 = hj(x′) ,(4-4)

of the form

(4-5) ‖v‖Ξ,Rn
+
≤ const

( m∑
j=1

‖hj‖Ξ(−j+1/2),Rn−1 + λm−µ‖v‖L2(Rn)

)
.

Here hj ∈ HΞ(−j+1/2)
(Rn−1). The proof of (4-5) uses the norm (2-7) with M = m,

Theorem 3.2 and a comparison of the right-hand side of (3-7) with the weight
function Ξ(ξ′, λ).
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Now let A(x,D, λ) be an operator pencil of the form (1-1) acting on the compact
manifold M with boundary Γ. The Sobolev spaces HΞ(M) and HΞ(−j+1/2)

(Γ) are
defined in the usual way, using a partition of unity.

We choose a finite number of coordinate systems. In each of these systems the
operator is of the form (1-1). The principal part of the operator is invariantly
defined at each of these systems and at every fixed point x0 ∈ M it is of the form

(4-6) A(0)(x0, D, λ) = A
(0)
2m(x0, D) + . . . + λ2m−2µA

(0)
2µ (x0, D)

(here A
(0)
j denotes the principal part of Aj). We suppose that for each x0 ∈ M our

operator is N -elliptic with parameter. From the reason of continuity and compact-
ness the constant C in inequality (1-5) can be chosen independent of x0.

Now we fix a point x0 ∈ Γ and a coordinate system in the neighbourhood of x0

such that in this system locally the boundary Γ is given by the equation xn = 0.
In this case we can define an analog of the polynomial (3-2):

(4-7) Q(x0, τ) = τ−2µA(0)(x0, 0, τ, 1)

Suppose that at a point x0 ∈ Γ and in a fixed coordinate system this polynomial
has m − µ roots in the upper half-plane of the complex plane. It easily follows
from this fact that every polynomial (4-7) corresponding to an arbitrary x0 ∈ Γ
has the same property. In this case we say that the operator A(x,D, λ) degenerates
regularly at the boundary Γ.

We consider the Dirichlet boundary value problem connected with the pencil
A(x,D, λ), i.e. the operator

(A(x, D, λ), DΓ) where DΓu =

(
u|Γ,

∂

∂ν
u

∣∣∣∣
Γ

, . . . ,

(
∂

∂ν

)m−1

u

∣∣∣∣∣
Γ

)
.

Here ∂
∂ν stands for the normal derivative.

We obviously have

Lemma 4.3. The operator

(A(x,D, λ), DΓ) : HΞ(M) −→ H
1
Ξ (M)×

m∏
j=1

HΞ(−j+ 1
2 )

(Γ)

is continuous with norm bounded by a constant independent of λ.

One of the main results of this paper states is the following a priori estimate in
terms of the Sobolev spaces corresponding to the Newton polygon. In particular,
this shows that the definition of these spaces is appropriate for such pencils.
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Theorem 4.4. Let A(x, D, λ) be an operator pencil of the form (1-1), acting on
the manifold M with boundary Γ. Let A be N -elliptic with parameter in [0,∞) and
assume that A degenerates regularly at the boundary Γ. Then for λ ≥ λ0 there
exists a constant C = C(λ0), independent of u and λ, such that

(4-8)
‖u‖Ξ,M ≤ C

(
‖A(x,D, λ)u‖ 1

Ξ ,M +
m∑

j=1

∥∥∥( ∂

∂ν

)j−1

u
∥∥∥

Ξ(−j+ 1
2 ),Γ

+ λm−µ‖u‖L2(M)

)
.

The proof of this theorem uses the technique of localization (“freezing the coef-
ficients”) in order to reduce the proof of the a priori estimate to the corresponding
results for the model problems in Rn and Rn

+.
Starting from the representation (3-8) of the fundamental solutions wj of (3-5)–

(3-6) it is possible to construct a (rough) right parametrix for (A,DΓ); see [5] for
details (cf. also [12] for the construction of the parametrix in the case of ellipticity
with parameter in the sense of Agmon–Agranovich–Vishik).

Theorem 4.5. The operator (A,DΓ) has a (right) parametrix in the sense that

(A,DΓ)B = I + T ,

where I denotes the identity operator in H
1
Ξ (M)×

∏m
j=1 HΞ(−j+1/2)

(Γ) and

T : H
1
Ξ (M)×

m∏
j=1

HΞ(−j+1/2)
(Γ) → HΘ(M)×

m∏
j=1

HΞ(−j+3/2)
(Γ)

is continuous with norm bounded by a constant independent of λ. Here we posed
Θ(ξ, λ) = (1 + |ξ|)/Ξ(ξ, λ).

Final remarks. The application of the Newton polygon method to operator pen-
cils of the form (1-1) is not restricted to Dirichlet boundary conditions. It is also
possible to prove an a priori estimate for general boundary value problems. This
will be done in a forthcoming paper of the authors.
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