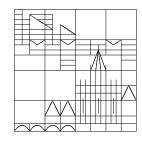
University of Konstanz Department of Mathematics and Statistics Prof. Dr. Robert Denk

May 8, 2014



Nonlinear partial differential equations Exercises and Questions, Part 2

Question 1. Let $G \subset \mathbb{R}^n$ be a domain and $u \in USC(G)$. Show that the set of all points $x \in G$ with non-empty superjet $J^+u(x)$ is dense in G.

Hint: For $x \in G$ and $\varepsilon > 0$, define x_{ε} as the maximum point of the function $y \mapsto u(y) - \frac{1}{\varepsilon}|y - x|^2$ in a closed ball around x.

Question 2. Compute $J_U u(x)$ for all $x \in U$ in the following cases:

- (a) $U = (-1, 1), u(x) := 1 |x| (x \in U),$
- (b) $U = \mathbb{R}, u(x) := \chi_{[0,\infty)}(x) \ (x \in U)$ (Heaviside-Funktion),
- (c) $U = [0, 1], u(x) := 0 \ (x \in U).$

Question 3. Let $G \subset \mathbb{R}^n$ be a bounded domain, $f \in C(\overline{G})$, $A, B \subset \mathbb{R}^m$ be compact sets, $\sigma \in C(A \times B \times \overline{G}, \mathbb{R}^{n \times n}), (a, b, x) \mapsto \sigma^{(a, b)}(x)$ with

 $\|\sigma^{(a,b)}(x) - \sigma^{(a,b)}(y)\| \le L|x-y| \quad (x,y \in \overline{G}, a \in A, b \in B)$

for a constant L > 0. Define F by

$$F(x,r,p,X) := \sup_{a \in A} \inf_{b \in B} \left[-\operatorname{tr}(\sigma^{(a,b)}(x)(\sigma^{(a,b)}(x))^{\top}X) - f(x) \right]$$

for $x \in \overline{G}$, $r \in \mathbb{R}$, $p \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times n}_{sym}$ (Isaacs equation). Show that F satisfies condition (M2).

Please prepare your answers for presentation and discussion on May 20th (15.15-16.45, F 420).