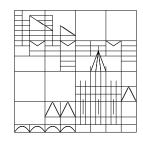
University of Konstanz Department of Mathematics and Statistics Prof. Dr. Robert Denk

April 28, 2014



Nonlinear partial differential equations Exercises and Questions

Question 1. Let E be a topological space.

a) Define a topology τ on \mathbb{R} such that the space of all upper semicontinuous functions $f: E \to \mathbb{R}$ coincides with the space of all continuous functions $f: E \to (\mathbb{R}, \tau)$.

b) Let $f \in USC(E)$. What can be said on the range of f?

c) Let Λ be a set and $\{f_{\lambda} : \lambda \in \Lambda\} \subset USC(E)$. Are the functions $\sup_{\lambda \in \Lambda} f_{\lambda}$ and $\inf_{\lambda \in \Lambda} f_{\lambda}$ semicontinuous? What can be said if Λ is finite?

Question 2. Let $G \subset \mathbb{R}^n$ be a domain, $u \in USC(G)$ and $x_0 \in G$. Show that $J^+u(x_0)$ is the set of all $(\nabla \varphi(x_0), \nabla^2 \varphi(x_0))$ with $\varphi \in C^2(U)$ such that $u - \varphi$ has a local maximum at x_0 .

Question 3. Let $G \subset \mathbb{R}^n$ be a domain and $u: G \to [-\infty, \infty]$ be a function. Define

$$u^*(x) := \lim_{r \searrow 0} \left[\sup\{u(y) : y \in G, |x - y| < r \} \right] \quad (x \in G).$$

Show that u^* is the smallest upper semicontinuous function (with values in $[-\infty, \infty]$) greater or equal to u.

Please prepare your answers for presentation and discussion on May 6th (15.15-16.45, F 420).