Nonlinear partial differential equations
 Exercises and Questions, Part 3

Question 1. Let $G \subset \mathbb{R}^{n}$ be a domain. A function $u: G \rightarrow \mathbb{R}$ is called convex if

$$
u(t x+(1-t) y) \leq t u(x)+(1-t) u(x)(t \in[0,1], x, y \in U)
$$

holds for all open convex subsets $U \subset G$ with $\bar{U} \subset G$ and \bar{U} compact. The function u is called semi-convex if there exists a constant $C>0$ such that $x \mapsto u(x)+\frac{C}{2}|x|^{2}$ is convex.
Let $u \in C^{2}(G)$ be semi-convex and $\theta \in C^{2}(\mathbb{R})$ with $\theta^{\prime}(s)>0(s \in \mathbb{R})$. Show that $\theta \circ u$ is semi-convex. Can we replace $C^{2}(G)$ by $W_{p}^{2}(G)$ with $p \in[1, \infty]$? What do you know about convex functions in $W_{\infty}^{1}(G)$?

Question 2. Let $H \subset \mathbb{R}^{n+1}$ be a domain, U be a dense subset of $H \times \mathbb{R}^{n+1} \times \mathbb{R}_{\text {sym }}^{(n+1) \times(n+1)}$, and $E: U \rightarrow \mathbb{R}$ be a function. Then the equation $E=0$ is called geometric in U if for all $\lambda>0$ and $\mu \in \mathbb{R}$ there exist constants $C_{1}(\lambda, \mu), C_{2}(\lambda, \mu)>0$ such that

$$
C_{1}(\lambda, \mu) E(y, q, Y) \leq E(y, \lambda q, \lambda Y+\mu q \otimes q) \leq C_{2}(\lambda, \mu) E(y, q, Y)
$$

holds whenever all terms are defined.
a) Show that if $E=0$ is geometric in U then $E_{*}=0$ and $E^{*}=0$ are both geometric in \bar{U}.
b) Let $G \subset \mathbb{R}^{n}$ be a domain, $F:(0, T) \times G \times \mathbb{R}^{n} \times \mathbb{R}_{\text {sym }}^{n \times n} \rightarrow \mathbb{R}$ be a function. Set $D:=\binom{\nabla}{\partial_{t}}$, $y:=(t, x)$, and $E\left(y, D u(y), D^{2} u(y)\right):=\partial_{t} u+F\left(t, x, \nabla u(t, x), \nabla^{2} u(t, x)\right)$. Show that $E=0$ is geometric if and only if for all $\lambda>0$ and $\mu \in \mathbb{R}$

$$
F(t, x, \lambda p, \lambda X+\mu p \otimes p)=\lambda F(t, x, p, X)
$$

holds whenever all terms are defined.
Question 3. Show that the MCF equation

$$
\partial_{t} u(t, x)-|\nabla u(t, x)| \operatorname{div}\left(\frac{\nabla u(t, x)}{|\nabla u(t, x)|}\right)=0
$$

is geometric.

Please prepare your answers for presentation and discussion on June 2nd (15.15-16.45, F 420).

