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Abstract

One efficient strategy for dealing with optimal control problems on an infinite time hori-
zon is the receding horizon framework which is also known as Model Predictive Control
(MPC). In this approach, an infinite horizon optimal control problem is approximated
by a sequence of finite horizon problems in a receding horizon fashion. Stability (conver-
gence to the steady state) is not generally ensured due to the use of a finite prediction
horizon. Thus, in order to ensure the asymptotic stability of the controlled system, addi-
tional terminal cost functions and/or terminal constraints are often needed to add to the
finite horizon problems. In this thesis we are concerned with the stabilization of several
classes of infinite-dimensional controlled systems by means of a Receding Horizon Con-
trol (RHC) scheme. In this scheme, no terminal costs or terminal constraints are used to
ensured the stability. The key assumption is the stabilizability of the underlying system.
Based on this condition the suboptimality and stability of RHC are investigated. To
justify the applicability of this framework, we consider controlled systems governed by
three different types of partial differential equations, including the linear wave equation,
the viscous Burgers equation, and the nonlinear KdV equation. For all these cases, the
well-posedness of the underlying controlled system, the asymptotic stability of RHC,
and the suboptimality of RHC are studied. Moreover, numerical experiments are given
to validate the theoretical results.

Keywords: receding horizon control, model predictive control, asymptotic stabil-
ity, infinite-dimensional systems, pde-constrained optimization
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Zusammenfassung

Eine effiziente Strategie um optimale Steuerungsprobleme mit unendlichem Zeithori-
zont zu behandeln, ist die modellprädiktive Regelung oder das sogennante Prinzip des
zurückweichenden Horizonts. In dieser Strategie wird ein optimales Steuerungsproblem
mit unendlichem Zeithorizont durch eine Folge von optimalen Steuerungsproblemen mit
endlichem Zeithorizont nach Art eines sogenannten zurückweichenden Horizonts (rece-
ding horizon fashion) approximiert. Aufgrund der Verwendung eines endlichen Vorhersa-
gehorizonts ist die Stabilität im Allgemeinen jedoch nicht garantiert. Um die asymptoti-
sche Stabilität des kontrollierten Systems sicherzustellen, ist es daher oft notwendig, den
Problemen mit endlichem Zeithorizont zusätzliche Terminal-Kostenfunktionen und/oder
zusätzliche Endzeitpunkt-Restriktionen hinzuzufügen. In dieser Arbeit beschäftigen wir
uns mit der Stabilisierung einer Klasse von unendlichdimensionalen kontrollierten Sys-
temen mit der Hilfe eines RHC-Schemas (Receding Horizon Control). In diesem Schema
werden weder Terminal-Kostenfunktionen noch Endzeitpunkt-Restriktionen benötigt,
um die Stabilität sicherzustellen. Die Stabilisierbarkeit des zugrunde liegenden Systems
ist hier die Schlüsselbedingung. Basierend auf dieser Bedingung werden die Suboptima-
lität und die Stabilität der RHC-Kontrolle untersucht. Um die Anwendbarkeit dieses
Schemas zu rechtfertigen, betrachten wir kontrollierte Systeme für verschiedene Typen
partieller Differentialgleichungen. Dazu gehören die lineare Wellengleichung, die viskose
Burgers Gleichung, und die nichtlineare KdV-Gleichung. Für diese Fälle werden die
Wohldefiniertheit des kontrollierten Systems, die asymptotische Stabilität der RHC-
Kontrolle, und die Suboptimalität von der RHC-Kontrolle untersucht. Ferner werden
numerische Experimente präsentiert um die theoretischen Ergebnisse zu bestätigen.

Schlagworte: zurückweichende Horizont-kontrolle, modellprädiktive Regelung, asym-
ptotische Stabilität, unendlichdimensionalen Systemen, Optimierung mit Differential-
gleichungsnebenbedingungen
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Preface

This thesis contains six chapters. The first chapter briefly overviews the main results
of the thesis and the last chapter is devoted to the conclusion and future work. The
remaining four chapters are besed on material from three papers by the author [10, 11,
12]. Chapter 2 and 4 use the material from the research paper [11], coauthored with
Karl Kunisch. Chapter 3 originates mostly from Reference [12], coauthored with Karl
Kunisch. Finally, Chapter 5 is based on Reference [10], coauthored with Karl Kunisch
and Anne-Céline Boulanger.
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Chapter 1

General Introduction

1.1 Background and Problem Formulation

In this thesis, we consider the optimal control problem which consists of minimizing

J∞(u, y0) :=

∫ ∞
0

`(y(t), u(t))dt (1.1)

subject to {
d
dty(t) = f(y(t)) +Bu(t) for t > 0,

y(0) = y0,
(1.2)

where f(0) = 0, `(0, 0) = 0. The state y(t) and the control u(t) are respectively elements
of spatially dependent function spaces H and U , and B ∈ L(U,H) is the control operator.
Furthermore, the incremental cost function `(·, ·) is assumed to be uniformly positive
definite in both the state and control variables. We denote the dual space of H with H∗.

To deal with problem (1.1)-(1.2) in practice, we can first replace ∞ by a large finite
time horizon T∞ > 0 in (1.1). Then by writing the first-order optimality conditions
for the resulting optimal control problem defined on the interval (0, T∞), we obtain the
following two-point boundary-value system of equations

d

dt
y(t) = ∂pH(y(t), u(t), p(t)) t ∈ (0, T∞), y(0) = y0,

d

dt
p(t) = −∂yH(y(t), u(t), p(t)) t ∈ (0, T∞), p(T∞) = 0,

u(t) = arg minu∈U H(y(t), u, p(t)) t ∈ (0, T∞),

(1.3)

where for every y ∈ H, p ∈ H∗, and u ∈ U , the Hamiltonian H is defined by

H(y, u, p) := `(y, u) + 〈p, f(y) +Bu〉H∗,H .

Here, numerically solving the coupled system (1.3) is of significant challenge for the case
that T∞ is large. Therefore, a large number of research efforts have been devoted to the
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General Introduction

numerical treatment of the two-points boundary-value coupled system of the form (1.3).
An alternative approach to deal with (1.1)-(1.2) consists in constructing the feedback law
based on the Bellman’s dynamics programming principle. We need to find the solution
V∞ : H → R+ of the following Hamilton-Jacobi-Bellman equation

min
u∈U
H(y, u, ∂yV∞) = 0, (HJB)

where the positive function V∞ is the value function and defined by

V∞(y0) := inf
u∈L2(0,∞;U)

{J∞(u, y0) subject to (1.2)}.

But for the case of infinite-dimensional controlled systems, discretization leads to
finite-dimensional (HJB) equations of very large dimensions and due to the curse of
dimensionality, it is infeasible to numerically solve (HJB).

Another strategy for solving problem (1.1)-(1.2) numerically employs the receding
horizon control (RHC), which is also known as model predictive control (MPC). This
method consists of obtaining a suboptimal solution of the infinite horizon problem by
concatenation of a sequence of finite horizon optimal controls on a sequence of overlap-
ping intervals. Further, within this framework, the process of generating the sequence
of intervals and concatenation are carried out in such way that the resulting control
has a feedback mechanism and it is defined on the whole of the interval [0,∞). Indeed,
the receding horizon framework bridges to a certain degree the gap between closed-loop
control and open-loop control. Since when proceeding in this manner, the exact solution
of (1.1)-(1.2) is not obtained, the question of justifying the RHC technique arises. This
is typically addressed by analysing whether the RHC control meets the control objective
which is formulated within (1.1)-(1.2). Frequently this control objective is given by the
stabilization problem. Due to replacing the infinite prediction horizon by a family of
finite ones, the asymptotic stability of the receding horizon control scheme is not a priori
guaranteed. It can even be demonstrated by a simple linear example that the naive ap-
plication of a RHC strategy can lead to an unstable controlled system. Thus, often it is
necessary to impose additional conditions or add terminal costs or terminal constraints
to the finite horizon problems to guarantee the desired system performance.

Here, the control objective formulated within (1.1)-(1.2) is given by the stabilization
problem. In other words, within (1.1)-(1.2) we aim to find a control u ∈ L2(0,∞;U)
which steers the system to the steady state and, simultaneously, minimizes the infinite
horizon running cost (1.1). Usually, the succinct use of the structure of the dynami-
cal system under consideration together with possible terminal costs and/or terminal
constraints for the finite horizon problems can ensure the asymptotic stability of RHC
under appropriate assumptions.

In the past three decades, numerous results have been published on RHC for finite-
dimensional systems, see [1, 2, 41, 61, 66, 76, 77, 106] and the many references therein.
Some of these frameworks use a terminal constraint as well as a terminal cost. Among
them we can refer to [41] for the continuous-time controlled system and [113] for discrete-
time controlled system. In both these approaches, a terminal cost and a terminal in-
equality constraint are added to every finite time horizon problem, where the terminal

2



1.1 Background and Problem Formulation

cost is a quadratic penalty term with a positive definite matrix. Due to the presence of
terminal costs and terminal constraints in the finite horizon problems, these strategies
require high computational effort.

Later in [117], a globally stabilizing RHC law was obtained by using a global Control
Lyapunov Function (CLF) as the terminal cost functions [7, 129]. CLF is considered as
a generalization of the Lyapunov function for the controlled system. It is a uniformly
positive and continuously differentiable function whose value decreases along atleast a
controlled trajectory from a given initial points. Moreover, due to the Artstein theorem
[7] for finite-dimensional controlled systems the existence a stabilizing feedback control
is equivalent to existence of a global CLF. This framework is attractive in the sense
that the stability of controlled system is ensured without enforcing terminal constraints.
On the other hand, finding and constructing a global CLF for the underlying controlled
system is often difficult or even impossible. For similar works in this direction, we refer
to [78, 117]. In [78], finite-dimensional controlled systems have been considered for which
CLF exist just locally (on a neighbourhood of the steady state). Afterwards, in [75] this
framework has been extended for the case of infinite-dimensional controlled systems. By
considering an appropriate functional analytic setting, they generalized the definition
of CLF to infinite-dimensional controlled systems. Here it is more delicate to show the
stability of RHC, since the Artstein theorem is not valid any more and the Heine-Borel
property fails to hold for the strong topology.

More recently several authors (see, e.g., [61, 62, 66, 76]) have managed to prove
the asymptotic stability of RHC even without use of CLF and terminal constraints.
In this framework the stability and also suboptimality of RHC are achieved through
generating an appropriate sequence of overlapping intervals and applying a suitable
concatenation scheme. So far, this framework has been well studied for finite-dimensional
dynamical systems [76, 120] and discrete-time dynamical systems [61, 62, 66]. In [62],
a general scheme for finite- and infinite-dimensional controlled systems with discrete-
time was presented. Relying on controllability properties of the underlying system, the
stability and the optimality of RHC was established. Afterwards in [3], this RHC scheme
was applied to the controlled system governed by partial differential equations and the
performance of RHC was analysed. But as far as we know, for infinite-dimensional
controlled systems with continuous-time dynamical systems there still does not exist
a rigorous theory. In this thesis we make a step in this direction. First we derive
an abstract framework for a general infinite-dimensional controlled system. Then, we
investigate the suboptimality and stability of RHC based on a few natural assumptions.
Among them a stabilizability condition of the controlled system under consideration is
the key condition. This framework is inspired by, but different from, [120] since we
treat partial rather than ordinary differential equations. As a consequence, Barbalat’s
lemma which relies on the finite dimensionality of the state space, is not applicable.
Moreover, we consider also systems which are locally or semi-globally stabilizable. To
justify the applicability of this framework, we apply it to three different types of partial
differential equations including second order hyperbolic equations, parabolic equations,
and dispersive equations. With respect to the nature of the differential equation under

3



General Introduction

study, we investigate the prerequisite assumptions of the receding horizon framework
and derive different types of stability results. Moreover for every controlled system,
numerical simulations are presented to validate our theoretical results.

1.2 Outline of the Thesis

The outline and the contributions of the thesis are as follows.

Chapter 2: A General RHC Scheme for Infinite-dimensional Controlled Systems
In this chapter, a receding horizon algorithm for infinite-dimensional controlled
systems of the form (1.1)-(1.2) is introduced. For this framework we consider an
appropriate functional analytic setting. The stabilizability of the controlled system
(1.2) and well-posedness of finite horizon open-loop problems are the necessary con-
ditions for this framework. Relying on these conditions and Bellman’s principle, we
show that there is a sufficiently long horizon length for which RHC is suboptimal.
This suboptimality property consists of inequalities which estimate the value of
the running cost (1.1) evaluated along RHC in terms of the infinite horizon value
function V∞ from above and below. Then we show that for a sufficiently long
horizon length, the finite horizon value function decreases exponentially along the
receding horizon trajectory. Throughout the chapter, we consider both of the cases
local and global stabilizability. At the end of chapter, we discuss the exponential
stability of RHC with regard to the uniformly positiveness of the finite horizon
value function.

Chapter 3: On the global Stabilizability of the Wave Equation via RHC In this
chapter, we apply the proposed receding horizon algorithm in Chapter 2 for the
stabilization of the linear wave equation. Here different control actions, namely,
distributed control, Dirichlet boundary control, and Neumann boundary control
are considered. For each case, depending on the regularity of the solution, the
global stabilizability assumption, well-posedness of the controlled system, well-
posedness, and first-order optimality conditions for the finite horizon open-loop
problems are investigated. The observability conditions are essential here. We
will see that these conditions are equivalent to the stabilizability conditions. In
addition, depending on these conditions, first the uniform positiveness of the finite
horizon value function is obtained. Then, as a consequence, the global exponen-
tial stability of RHC is shown. At the end, we end the chapter with numerical
experiments for each RHC actions.

Chapter 4: On the Stabilizability of the Burgers Equation by RHC In this chap-
ter, we apply the proposed receding horizon algorithm in Chapter 2 for the stabi-
lization of the Burgers equation with periodic boundary conditions and homoge-
neous Neumann boundary conditions. Here RHC is active on a small open subset
of the physical domain. With respect to the underlying boundary conditions, the
global or local stabilizability assumption for the controlled system is investigated.
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1.2 Outline of the Thesis

Here for the Burgers equation, the uniform positiveness of the finite horizon value
function fails to hold. Thus, by using other techniques the asymptotic stability
of RHC is demonstrated. Finally we present numerical experiments in which the
effect of RHC control with and without terminal control penalty is compared.

Chapter 5: On the semi-global Stabilizability of the KdV Equation via RHC
This chapter is devoted to the stabilization of the nonlinear KdV equation via RHC
which is active on a small open subset of the domain. First, we study the global
well-posedness of the nonlinear KdV equation in the weak sense. Then existence of
the finite horizon optimal control is investigated. Based on the semi-global stabi-
lizability result from [114] we first show that the RHC is suboptimal. Then by an
observability type estimate, we prove that the resulting receding horizon controlled
system is semi-global exponentially stable. This requires techniques which differ
from those which were employed in the previous chapters. At the end, we close
the chapter with numerical experiments.

Chapter 6: Conclusion and Future Work In this chapter, we summarize the main
contributions of the thesis and indicate possible directions for future work.
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Chapter 2

A General RHC Scheme for
Infinite-dimensional Controlled
Systems

2.1 Introduction

Recall the following optimal control problem

min
u∈L2(0,∞;U)

J∞(u, y0) :=

∫ ∞
0

`(y(t), u(t))dt, (2.1)

subject to {
d
dty(t) = f(y(t)) +Bu(t) for t > 0,

y(0) = y0,
(2.2)

where f(0) = 0, `(0, 0) = 0. The state y(t) and the control u(t) are respectively ele-
ments of spatially dependent function spaces H and U , and B is the control operator.
Furthermore, the incremental cost function `(·, ·) is assumed to be uniformly positive
definite in both the state and control variables.

In this chapter, we introduce a receding horizon framework to deal with infinite-
dimensional optimal control problems of the form (2.1)-(2.2). For this framework we
consider an appropriate functional analytic setting. The stabilizability of controlled
system (2.2) is the key condition. Based on this condition and Bellman’s principle, we
develop an abstract setting which estimates the value of the cost J∞ evaluated along
the receding horizon control and trajectory in terms of the minimal value functional
associated to (2.1)-(2.2). This property is called suboptimality.

To briefly recapture the receding horizon approach, we choose a sampling time δ > 0
and an appropriate prediction horizon T > δ. Then sampling instances tk := kδ for
k = 0, 1, . . . are defined. At every sampling instance tk, an open-loop optimal control
problem is solved over a finite prediction horizon [tk, tk + T ]. The optimal control thus
obtained is applied to steer the system from time tk with the initial state yrh(tk) until

6



2.2 Suboptimality and Stability of RHC

time tk+1 := tk+δ, at which point a new measurement of state is assumed to be available.
The process is repeated starting from the new state: we obtain a new optimal control
and a new predicted state trajectory by shifting the prediction horizon forward in time.
Throughout, we denote the receding horizon state- and control variables by yrh(·) and
urh(·), respectively. Also, (y∗T (·; y0, t0), u∗T (·; y0, t0)) stands for the optimal state and
control of the optimal control problem with finite time horizon T and initial function y0

at initial time t0. We next summarize the resulting Algorithm 2.1.

Algorithm 2.1 Receding Horizon Algorithm

Input: Let the prediction horizon T , the sampling time δ < T , and the initial state

y0 ∈ H be given.

1: Set k := 0, t0 := 0, and yrh(t0) := y0.

2: Find the optimal pair (y∗T (·; yrh(tk), tk), u
∗
T (·; yrh(tk), tk)) over the time horizon

[tk, tk + T ] by solving the finite horizon open-loop problem

min
u∈L2(tk,tk+T ;U)

JT (u, yrh(tk)) := min
u∈L2(tk,tk+T ;U)

∫ tk+T

tk

`(y(t), u(t))dt,

subject to

{
d
dty(t) = f(y(t)) +Bu(t) for t ∈ (tk, tk + T ),

y(tk) = yrh(tk)

3: Set

urh(τ) := u∗T (τ ; yrh(tk), tk) for all τ ∈ [tk, tk + δ),

yrh(τ) := y∗T (τ ; yrh(tk), tk) for all τ ∈ [tk, tk + δ],

tk+1 := tk + δ,

k := k + 1.

4: Go to step 2.

2.2 Suboptimality and Stability of RHC

Let V ⊂ H = H∗ ⊂ V ∗ be a Gelfand triple of real Hilbert spaces with V densely
contained in H. Further let U denote the control space which is also assumed to be a
real Hilbert space. For any T > 0 and y0 ∈ H we consider the controlled dynamical
system {

d
dty(t) = f(y(t)) +Bu(t) for t ∈ (0, T ),

y(0) = y0,
(2.3)

where f is a continuous function from V to V ∗, f(0) = 0, and B ∈ L(U, V ∗). Here
L(U, V ∗) denotes the space of all continuous linear operators from U to V ∗. Throughout

7



A General RHC Scheme for Infinite-dimensional Controlled Systems

the chapter, it is assumed that for any triple (T, y0, u) ∈ R+ × H × L2(0, T ;U) there
exists a unique y ∈W (0, T ), where

W (0, T ) = L2(0, T ;V ) ∩H1(0, T ;V ∗), (2.4)

satisfying

y(t)− y(0) =

∫ t

0
(f(y(s)) +Bu(s))ds in V ∗

for t ∈ [0, T ]. For sufficient conditions on f we refer to, e.g., [131, Chapter II.3]. We
recall that W (0, T ) is continuously embedded in C([0, T ];H), see e.g. [131, 139].

To define the optimal control problems we introduce the continuous incremental
function ` : H × U → R+ satisfying

`(y, u) ≥ α`(‖y‖2H + ‖u‖2U ) (2.5)

for a number α` > 0 independent of y ∈ H and u ∈ U , and `(0, 0) = 0. For every T > 0
and y0 ∈ H consider the finite horizon optimal control problem

min
u∈L2(0,T ;U)

JT (u, y0) := min
u∈L2(0,T ;U)

∫ T

0
`(y(t), u(t))dt,

subject to{
d
dty(t) = f(y(t)) +Bu(t) for t ∈ (0, T ),

y(0) = y0.

(PT )

Throughout we fix a neighborhood N0 of the origin in H. We assume the following:

(PT ) admits an optimal pair (y∗T (·; y0, 0), u∗T (·; y0, 0)) for any

y0 ∈ N0 and T > 0.
(A1)

Conditions on ` and f which imply (A1) are wellknown from, e.g., [134]. The functional
J∞ is defined as JT in (PT ) with T replaced by ∞. With (A1) holding, the following
definition is well-posed.

Definition 2.2.1. For any y0 ∈ N0 the infinite horizon value function V∞(·) is defined
as the extended real valued function

V∞(y0) := inf
u∈L2(0,∞;U)

{J∞(u, y0) subject to (2.3)}.

Similarly, the finite horizon value function VT (·) is defined by

VT (y0) := min
u∈L2(0,T ;U)

{JT (u, y0) subject to (2.3)}.

The following notion of local stabilizability will be used.
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2.2 Suboptimality and Stability of RHC

Definition 2.2.2 (Local stabilizability). The dynamical system (2.3) is called locally
stabilizable if for every positive T and initial function y0 ∈ N0 there exists a control
û(·, y0) ∈ L2(0, T ;U) with

VT (y0) ≤ JT (û, y0) ≤ γ(T )‖y0‖2H , (2.6)

where γ : R+ → R+ is a continuous, nondecreasing and bounded function.

If N0 can be chosen to be all of H then we call (2.3) globally stabilizable. We shall
require the following two assumptions:

The dynamical system (2.3) is locally stabilizable for

the neighborhood N0.
(A2)

For every T > 0 there exists a constant cT ≥ 0 such that for every

y0 ∈ N0 and u with ‖u‖L2(0,T ;U) ≤
√
γ(T )/α` ‖y0‖H we have

‖y(t)‖2H ≤ ‖y0‖2H + cT
∫ t

0 ‖y(s)‖2Hds+ cT
∫ t

0 ‖u(s)‖2U ds for all t ∈ [0, T ].

 (A3)

Below Bd1(0) denotes a ball in H centered at 0 with radius d1.

Lemma 2.2.1. If (A1)-(A3) hold and T > δ > 0, then there exists a neighborhood
Bd1(0) ⊂ N0 with d1 = d1(T ) > 0 such that for every y0 ∈ Bd1(0) the following inequali-
ties hold:

VT (y∗T (δ; y0, 0)) ≤
∫ t̃

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

+ γ(T + δ − t̃)‖y∗T (t̃; y0, 0)‖2H for all t̃ ∈ [δ, T ],

(2.7)

and∫ T

t̃
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T − t̃)‖y∗T (t̃; y0, 0)‖2H for all t̃ ∈ [0, T ]. (2.8)

Proof. First observe that, due to (2.5), for every y0 ∈ N0 and t̃ ∈ [0, T ] we have by
Bellman’s principle

α`

∫ t̃

0
(‖y∗T (t; y0, 0)‖2H + ‖u∗T (t; y0, 0)‖2U )dt ≤

∫ t̃

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

= VT (y0)− VT−t̃(y
∗
T (t̃; y0, 0)),

and as a consequence ‖u∗T ‖2L2(0,T ;U) ≤
γ(T )
α`
‖y0‖2H . By (2.6), (A3), and the above inequal-

ity we have

‖y∗T (t̃; y0, 0)‖2H ≤ ‖y0‖2H + cT

∫ t̃

0
‖y∗T (t; y0, 0)‖2Hdt+ cT

∫ t̃

0
‖u∗T (t; y0, 0)‖2Udt

≤ ‖y0‖2H +
cT
α`

(VT (y0)− VT−t̃(y
∗
T (t̃; y0, 0)))

≤ ‖y0‖2H +
cT
α`
VT (y0) ≤ (1 +

cT
α`
γ(T ))‖y0‖2H .

9
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Since N0 is a neighborhood of zero, it follows that there exists a ball Bδ1(0) ⊆ N0.

Choosing d1 :=
√

(1 + cT
α`
γ(T ))−1δ2

1 we obtain that for every y0 ∈ Bd1(0) we have

y∗T (t̃; y0, 0) ∈ N0 for all t̃ ∈ [0, T ].

We turn to the verification of (2.7). For simplicity of notation, we denote
y∗T (δ; y0, 0) by y∗(δ), where y0 ∈ Bd1(0). Due to Bellman’s optimality principle, we have
for every t̃ ∈ [δ, T ]

VT (y∗(δ)) =

∫ T+δ

δ
`(y∗T (t; y∗(δ), δ), u∗T (t; y∗(δ), δ))dt

=

∫ t̃

δ
`(y∗T (t; y∗(δ), δ), u∗T (t; y∗(δ), δ))dt+ VT+δ−t̃(y

∗
T (t̃; y∗(δ), δ)).

(2.9)

By optimality of y∗T (·; y∗(δ), δ) as a solution on [δ, T + δ] with initial state y∗(δ) ∈ N0 at
t = δ we obtain

VT (y∗(δ)) =

∫ T+δ

δ
`(y∗T (t; y∗(δ), δ), u∗T (t; y∗(δ), δ))dt,

=

∫ t̃

δ
`(y∗T (t; y∗(δ), δ), u∗T (t; y∗(δ), δ))dt+ VT+δ−t̃(y

∗
T (t̃; y∗(δ), δ)),

≤
∫ t̃

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ VT+δ−t̃(y

∗
T (t̃; y0, 0))

≤
∫ t̃

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T + δ − t̃)‖y∗T (t̃; y0, 0)‖2H ,

where for the last inequality we used (2.6).
To prove the second inequality let t̃ ∈ [0, T ] be arbitrary. By Bellman’s principle and

(2.6), we have

VT (y0) =

∫ t̃

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+

∫ T

t̃
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

=

∫ t̃

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ VT−t̃(y

∗
T (t̃; y0, 0))

≤
∫ t̃

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T − t̃)‖y∗T (t̃; y0, 0)‖2H .

(2.10)

Therefore,∫ T

t̃
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T − t̃)‖y∗T (t̃; y0, 0)‖2H for all t̃ ∈ [0, T ],

as desired.
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Lemma 2.2.2. Suppose that for some initial function y0 ∈ H, properties (2.7) and (2.8)
of Lemma 2.2.1 hold. Then for the choice of

θ1 := 1 +
γ(T )

α`(T − δ)
, θ2 :=

γ(T )

α`δ
,

we have the following estimates

VT (y∗T (δ; y0, 0)) ≤ θ1

∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt, (2.11)

and ∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ θ2

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt. (2.12)

Proof. To verify the inequality (2.11) recall that y∗T (·; y0, 0) ∈ C([0, T ];H). Hence there
is a t̄ ∈ [δ, T ] such that

t̄ = arg min
t∈[δ,T ]

‖y∗T (t; y0, 0)‖2H .

By (2.7) we have

VT (y∗T (δ; y0, 0))

≤
∫ t̄

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T + δ − t̄)‖y∗T (t̄; y0, 0)‖2H

≤
∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T )‖y∗T (t̄; y0, 0)‖2H

≤
∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+

γ(T )

T − δ

∫ T

δ
‖y∗T (t; y0, 0)‖2Hdt.

(2.13)

Furthermore, by (2.5)∫ T

δ
‖y∗T (t; y0, 0)‖2Hdt ≤

1

α`

∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt. (2.14)

Now by using (2.13) and (2.14), we have

VT (y∗T (δ; y0, 0)) ≤
(

1 +
γ(T )

α`(T − δ)

)∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.

Turning to (2.12) we define

t̂ = arg min
t∈[0,δ]

‖y∗T (t; y0, 0)‖2H .

11
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Then by (2.8) we have∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤

∫ T

t̂
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤γ(T − t̂)‖y∗T (t̂; y0, 0)‖2H
≤γ(T )‖y∗T (t̂; y0, 0)‖2H

≤γ(T )

δ

∫ δ

0
‖y∗T (t; y0, 0)‖2Hdt.

(2.15)

Moreover, we have

γ(T )

δ

∫ δ

0
‖y∗T (t; y0, 0)‖2Hdt ≤

γ(T )

α`δ

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt. (2.16)

By (2.15) and (2.16) we can estimate∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T )

α`δ

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.

Proposition 2.2.1. Suppose that (A1)-(A3) hold and that δ > 0. Then there exist
T ∗ > δ and α ∈ (0, 1) such that the following inequality is satisfied

VT (y∗T (δ; y0, 0)) ≤ VT (y0)− α
∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt (2.17)

for every T ≥ T ∗ and y0 ∈ Bd1(T )(0) with d1(T ) defined in Lemma 2.2.1.

Proof. Since for θ1 and θ2 defined in Lemma 2.2.2 we have

1− θ2(θ1 − 1) = 1− γ2(T )

α2
`δ(T − δ)

,

and
γ2(T )

α2
`δ(T − δ)

→ 0 as T →∞,

there exist T ∗ > δ and α ∈ (0, 1) such that 1 − θ2(θ1 − 1) ≥ α for all T ≥ T ∗. Next
let T ≥ T ∗ and y0 ∈ Bd1(T )(0). Then from the definition of VT (y0), Lemma 2.2.1, and
Lemma 2.2.2 we have

VT (y∗T (δ; y0, 0))− VT (y0) = VT (y∗T (δ; y0, 0))−
∫ T

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤(θ1 − 1)

∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt−

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤(θ2(θ1 − 1)− 1)

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤− α
∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.
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This implies (2.17).

Theorem 2.2.1 (Suboptimality). Suppose that (A1)-(A3) hold, and let a sampling time
δ > 0 be given. Then there exist numbers T ∗ > δ and α ∈ (0, 1) such that for every fixed
prediction horizon T ≥ T ∗, the receding horizon control urh obtained from Algorithm 2.1
satisfies

αV∞(y0) ≤ αJ∞(urh, y0) ≤ VT (y0) ≤ V∞(y0) (2.18)

for all y0 ∈ Bd2(0) with some d2 = d2(T ) > 0.

Proof. The right and left inequalities are obvious; therefore we need to verify only the
middle one. For fixed δ > 0 choose T ∗ and α according to Proposition 2.2.1. Define

d2 :=
√

((1 + cT
αα`

γ(T ))−1d2
1, where T ≥ T ∗ and d1 is defined in Lemma 2.2.1. We

proceed by induction with respect to the receding horizon sampling index k.
First, since d2 < d1, the assumptions of Proposition 2.2.1 are applicable due to

Lemma 2.2.1, and we have

VT (yrh(t1)) ≤ VT (y0)− α
∫ t1

0
`(yrh(t), urh(t))dt (2.19)

and also

‖yrh(t1)‖2H
(A3)

≤ ‖yrh(0)‖2H + cT

∫ t1

0
(‖yrh(t)‖2H + ‖urh(t)‖2U )dt

(2.5)

≤ ‖y0‖2H +
cT
α`

∫ t1

0
`(yrh(t), urh(t))dt

(2.19)

≤ ‖y0‖2H +
cT
αα`

(VT (y0)− VT (yrh(t1)))

≤ ‖y0‖2H +
cT
αα`

VT (y0)
(2.6)

≤ (1 +
cT
αα`

γ(T ))‖y0‖2H ≤ d2
1.

Proceeding by induction, we assume that

yrh(tk) ∈ Bd1(0) for all k = 0, . . . , k′, (2.20)

and that

VT (yrh(tk′)) ≤ VT (y0)− α
∫ tk′

0
`(yrh(t), urh(t))dt (2.21)

for k′ ∈ N.
Since yrh(tk′) ∈ Bd1(0), by Lemma 2.2.1 and Proposition 2.2.1 we have

VT (yrh(tk′+1)) ≤ VT (yrh(tk′))− α
∫ tk′+1

tk′

`(yrh(t), urh(t))dt. (2.22)

Combined with (2.21), this gives

VT (yrh(tk′+1)) ≤ VT (y0)− α
∫ tk′+1

0
`(yrh(t), urh(t))dt. (2.23)
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Moreover, by repeated use of (A3), which is applicable by (2.20) and due to (2.23), (2.5),
and (2.6), we have

‖yrh(tk′+1)‖2H
(A3)

≤ ‖yrh(tk′)‖2H + cT

∫ tk′+1

tk′

(‖yrh(t)‖2H + ‖urh(t)‖2U )dt

(A3)

≤ ‖yrh(0)‖2H + cT

∫ tk′+1

0
(‖yrh(t)‖2H + ‖urh(t)‖2U )dt

(2.5)

≤ ‖yrh(0)‖2H +
cT
α`

∫ tk′+1

0
`(yrh(t), urh(t))dt

(2.23)

≤ ‖y0‖2H +
cT
αα`

(VT (y0)− VT (yth(tk′+1)))

≤ ‖y0‖2H +
cT
αα`

VT (y0)
(2.6)

≤ (1 +
cT
αα`

γ(T ))‖y0‖2H ≤ d2
1.

Hence yrh(tk′+1) ∈ Bd1(0) which concludes the induction step. Taking the limit k′ →∞
we find

αJ∞(urh, y0) = α

∫ ∞
0

`(yrh(t), urh(t))dt ≤ VT (y0), (2.24)

which concludes the proof.

Remark 2.2.1. If (2.3) is globally stabilizable, i.e., if (2.6) holds with N0 replaced by
H and if also (A1) is satisfied for all y0 ∈ H, then Theorem 2.2.1 holds for all y0 ∈ H,
without the need of (A3). In fact, (A3) was only used in the proof of Lemma 2.2.1 for
the construction of Bd1(0), which is no longer needed if (A2) holds globally.

In the following Theorem, we will show that the value function VT−δ exponentially
decays along the receding horizon trajectory yrh.

Theorem 2.2.2 (Exponential decay). Suppose that (A1)-(A3) hold and let a sampling
time δ > 0 be given. Then there exist numbers T ∗ > δ, α > 0 such that for every
prediction horizon T ≥ T ∗, and every y0 ∈ Bd2(0) with d2(T ) > 0, the receding horizon
trajectory yrh(·) satisfies

VT (yrh(tk)) ≤ e−ζtkVT (y0), (2.25)

where ζ is a positive number depending on α, δ, and T but independent of y0. Moreover,
for every positive t, we have

VT−δ(yrh(t)) ≤ ce−ζtVT (y0) (2.26)

with a positive constant c depending on α, δ, and T but independent of y0.

Proof. Let δ > 0 be arbitrary. Then according to Theorem 2.2.1 and (2.17), there exists
a positive number T ∗ such that for every T ≥ T ∗ and y0 ∈ Bd2(0) with d2 > 0 we have

VT (yrh(tk+1))− VT (yrh(tk)) ≤ −α
∫ tk+1

tk

`(yrh(t), urh(t))dt for every k ∈ N, (2.27)
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with a positive α < 1. Moreover, by using (2.11) and (2.12), we have

VT (yrh(tk+1)) ≤θ1

∫ tk+T

tk+1

`(y∗T (t; yrh(tk), tk), u
∗
T (t; yrh(tk), tk)) dt

≤θ1θ2

∫ tk+1

tk

`(y∗T (t; yrh(tk), tk), u
∗
T (t; yrh(tk), tk)) dt

=θ1θ2

∫ tk+1

tk

`(yrh(t), urh(t)) dt,

(2.28)

where θ1 > 0 and θ2 > 0 are defined in Lemma 2.2.2 and the last equality follows from
Step 3 in Algorithm 2.1. Now, by using (2.27) and (2.28), we obtain

VT (yrh(tk+1))− VT (yrh(tk)) ≤
−α
θ1θ2

VT (yrh(tk+1)) for every k ∈ N.

Therefore, by defining η := (1 + α
θ1θ2

)−1 for every k ∈ N we can write

VT (yrh(tk)) ≤ ηVT (yrh(tk−1)) ≤ η2VT (yrh(tk−2)) ≤ · · · ≤ ηkVT (y0). (2.29)

Now by defining ζ := |ln η|
δ , we obtain the inequality (2.25).

Turning to the inequality (2.26) with t > 0 arbitrary, then there exists an index k
such that t ∈ [tk, tk+1]. Now since T − δ ≤ T + tk − t and by using Bellman’s optimality
principle we have

VT−δ(yrh(t)) ≤ VT+tk−t(yrh(t))

= VT (yrh(tk))−
∫ t

tk

`(y∗T (s; yrh(tk), tk), u
∗
T (s; yrh(tk), tk)) ds

≤ VT (yrh(tk)).

(2.30)

By using (2.29) and (2.30), we obtain

VT−δ(yrh(t)) ≤ VT (yrh(tk)) ≤
ηk+1

η
VT (y0) =

1

η
e−ζtk+1VT (y0) ≤ 1

η
e−ζtVT (y0).

Remark 2.2.2. The above result is similar to the result obtained in [75, Theorem 2.4],
if the value function VT−δ is considered as a control Lyapunov function G. At every
iteration k of Algorithm 2.1 for every open-loop optimal control problem we have

min
u∈L2(tk,tk+T ;U)

JT (u, yrh(tk))

=

∫ T+tk

tk

`(y∗T (t; yrh(tk), tk), u
∗
T (t; yrh(tk), tk))dt

=

∫ δ+tk

tk

`(y∗T (t; yrh(tk), tk), u
∗
T (t; yrh(tk), tk))dt+ VT−δ(y

∗
T (δ + tk; yrh(tk), tk))

=

∫ tk+1

tk

`(yrh(t), urh(t))dt+ VT−δ(yrh(tk+1)).
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This means that the terminal cost VT−δ is implicitly added to the objective function of
every open-loop optimal control problem. Indeed Vt−δ can be interpreted as an approx-
imation of the infinite horizon value function V∞ which is incorporated in the objective
function of every open-loop problem.

Remark 2.2.3 (Uniformly positiveness of the finite horizon value function). Note that
the inequality (2.26) does not imply the asymptotic stability of the RHC law defined by
Algorithm 2.1 within the neighborhood Bd2(0), unless the finite horizon value function
Vt−δ is uniformly positive on the level-sets of Vt−δ. That is, for every positive r > 0 we
have

VT−δ(y) ≥ C‖y‖2H for all y ∈ Πr, (UPV)

where C is a positive constant depending on the time horizon T − δ and Πr is defined
by

Πr := {y ∈ H | VT−δ(y) ≤ r}.

In the case of finite-dimensional controlled systems, the above condition was investigated
in [136]. However for infinite-dimensional controlled systems, this condition holds only
in special cases [58]. For instance, we will see in the next chapter that the conditions of
type (UPV) hold globally for the optimal control problems governed by the linear wave
equation and incremental functions of the form (3.5), see Lemmas 3.2.2, 3.3.3, and 3.4.2.
Hence, for these cases the inequality (2.26) leads to the exponential stability of RHC
defined by Algorithm 2.1. On the other hand, such an inequality of the form (UPV) does
not hold for optimal control problems governed by parabolic PDE’s, specifically not for
the Burgers equation and the incremental functions of the form (4.5). As an example,
consider the optimal control for the heat equation (linearized Burgers equation) defined
on the open interval (0, 1) with the incremental function defined by (4.5). It is known
that VT for this problem has the form

VT (y) = 〈y,ΛT y〉L2(0,1) for all y ∈ L2(0, 1), (2.31)

where the linear operator ΛT is the solution of the differential Riccati equation. One
can show that the operator ΛT is compact and, as a consequence, zero is the only
accumulation point of the spectrum of ΛT . Therefore, in Chapter 4 we need to show by
different techniques that the receding horizon state yrh tends to the origin as t → ∞.
See Theorems 4.2.1 and 4.3.1.

Theorem 2.2.3. Suppose that for the finite horizon value function VT : H → R+ and
the receding horizon trajectory yrh : R+ → H, the following assumptions hold:

1. limt→∞ VT (yrh(t)) = 0.

2. For all y ∈ H such that VT (y) = 0, we have y = 0.

3. VT is weakly lower semi-continuous.

4. ‖yrh(t)‖H ≤ C for all t ≥ 0.
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Then we will show that yth(t) ⇀ 0 as t → 0. In other word, we will show the origin is
weakly stable.

Proof. Assume that {tn}n is an arbitrary sequence of positive numbers such that tn →∞
as n → ∞. From Assumption 4, the sequence yrh(tn) is uniformly bounded in H.
Therefore it has at least a weak accumulation point. Moreover, let ŷ be an arbitrary
weak accumulation point of {yrh(tn)}n, then there exists a subsequence {yrh(tnk)}k which
converges weakly to ŷ. Now by using Assumptions 2 and 3 we have

0 ≤ VT (ŷ) ≤ lim inf
k→∞

VT (yrh(tnk)) = 0, (2.32)

and by using Assumption 1 we have

ŷ = 0. (2.33)

Since 0 is the unique weak accumulation point of the sequence {yrh(tn)}n, we obtain

yrh(tn) ⇀ 0 in H. (2.34)

Since the sequence {tn} is arbitrary, we are finished with the proof.
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Chapter 3

On the global Stabilizability of
the Wave Equation via RHC

3.1 Introduction

In this chapter we apply the receding horizon framework which has been introduced in
Chapter 2 for the stabilization of the linear wave equation

ÿ −∆y = 0,

where y = y(t, x) is a real valued function of real variables t and x. Moreover, the double
dots above the y stand for a second derivative with respect to time. Our RHC acts
on a part of either the domain or Dirichlet boundary conditions or Neumann boundary
conditions. The stabilization problem for the wave equation has been studied extensively
by many authors, see for instance [5, 68, 71, 90, 94, 104, 112, 130] and the references cited
therein. In these contributions the stabilization problem is obrained by means of a proper
choice of a feedback control law. We peruse the control law computed by Algorithm 2.1
which rests on the solutions of a sequence of open-loop optimal control problems governed
by the wave equation on finite intervals. To study the open-loop optimal control problems
for the wave equation, numerically and analytically, we refer to [42, 69, 70, 85, 87, 88,
110]. Moreover we investigate the suboptimality and exponential stability of RHC for
all the mentioned control types with respect to appropriate functional analytic settings.
For all the cases, the key conditions are the observability conditions. By help of these
conditions, we obtain not just the asymptotic stability but also the exponential stability
of RHC.

To be more precise, we are concerned with minimizing an infinite horizon performance
index

J∞(u; (y1
0, y

2
0)) :=

∫ ∞
0

`((y(t), ẏ(t)), u(t))dt (3.1)

over all controls u ∈ L2(0,∞;U) with an appropriate control space U and subject to the
following cases:

18
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1. Distributed control: In this case we consider the following controlled system
ÿ −∆y = Bu in (0,∞)× Ω,

y = 0 on (0,∞)× ∂Ω,

y(0) = y1
0, ẏ(0) = y2

0 on Ω,

(3.2)

where Ω ∈ Rn is a bounded domain with the smooth boundary ∂Ω, the control
u is active on a nonempty open subset of Ω, and the control operator B is an
extension-by-zero operator.

2. Dirichlet control: In this case the control acts on a part of Dirichlet boundary
conditions 

ÿ −∆y = 0 in (0,∞)× Ω,

y = u on (0,∞)× Γc,

y = 0 on (0,∞)× Γ0,

y(0) = y1
0, ẏ(0) = y2

0 on Ω,

(3.3)

where, similar to the above case, Ω ∈ Rn is a bounded domain with the smooth
boundary ∂Ω. Moreover, the two disjoint components Γc, Γ0 are relatively open
in ∂Ω and int(Γc) 6= ∅.

3. Neumann control: In this case, we are dealing with the following one-dimensional
wave equation with a Neumann control action at one side of boundary

ÿ − yxx = 0 (t, x) ∈ (0,∞)× (0, L),

y(t, 0) = 0 t ∈ (0,∞),

yx(t, L) = u(t) t ∈ (0,∞),

y(0, x) = y1
0, ẏ(0, x) = y2

0 x ∈ (0, L),

(3.4)

where L > 0.

By denoting (y(t), ẏ(t)) by Y(t), and choosing an appropriate control space U , each con-
trolled system in the above cases can be rewritten as the following first order controlled
system in an abstract Hilbert space H{

Ẏ = AY + Bu t ∈ (0,∞),

Y(0) = Y0 := (y1
0, y

2
0),

(AP)

with an unbounded operator A and a control operator B which are defined according
to the boundary conditions of the above cases, see, e.g., [92, 126, 132]. Now we can
reformulate our infinite horizon problem as the following problem

min{J∞(u;Y0) | (Y, u) satisfies (AP), u ∈ L2(0,∞;U)}. (OP∞)

The incremental function ` : H× U → R+ is given by

`(Y, u) :=
1

2
‖Y‖2H +

β

2
‖u‖U , (3.5)
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On the global Stabilizability of the Wave Equation via RHC

where β is a positive constant.
To deal with the infinite horizon problem (OP∞), one can employ the algebraic Ric-

cati operator, see, e.g., [72, 93, 95]. But for the case of infinite-dimensional controlled
systems, discretization leads to finite-dimensional Riccati equations of very large order
and ultimately one is confronted with the curse of dimensionality. Model reduction
techniques do not offer an efficient alternative either. In fact, the transfer function cor-
responding to the controlled system (3.2)-(3.4) has infinitely many unstable poles, and
thus the model reduction based on balanced truncation will not produce finite H∞−error
bounds, see e.g., [47]. For the sake of consistency in presentation, we reformulate Al-
gorithm 2.1 for the problem OP∞ and summarize the corresponding steps in Algorithm
3.1.

Algorithm 3.1 Receding Horizon Algorithm

Require: Let the prediction horizon T , the sampling time δ < T , and the initial point

(y1
0, y

2
0) ∈ H be given. Then we proceed through the following steps:

1: k := 0, t0 := 0 and Yrh(t0) := (y1
0, y

2
0).

2: Find the optimal pair (Y∗T (·;Yrh(tk), tk), u
∗
T (·;Yrh(tk), tk)) over the time horizon

[tk, tk + T ] by solving the finite horizon open-loop problem

min
u∈L2(tk,tk+T ;U)

JT (u;Yrh(tk)) := min
u∈L2(tk,tk+T ;U)

∫ tk+T

tk

`(Y(t), u(t))dt,

subject to

{
Ẏ = AY + Bu t ∈ (tk, tk + T )

Y(tk) = Yrh(tk)

3: Set

urh(τ) := u∗T (τ ; yrh(tk), tk) for all τ ∈ [tk, tk + δ),

Yrh(τ) := Y∗T (τ ; yrh(tk), tk) for all τ ∈ [tk, tk + δ],

tk+1 := tk + δ,

k := k + 1.

4: Go to step 2.

The rest of this chapter is organized as follows: Sections 3.2, 3.3, and 3.4 deal,
respectively, with the cases in which RHC enters as a distributed control, a Dirichlet
boundary condition, and a Neumann boundary condition. In each of these sections, first
well-posedness of the finite horizon optimal control problems are investigated, and then
the suboptimality and exponential stability of RHC are analysed. Finally, in Section
3.5 we demonstrate numerical experiments in which Algorithm 3.1 is implemented for
every type of the control actions. In addition, for each example the performance of RHC
is evaluated and compared for different choices of the prediction horizon T and a fixed
sampling time δ.
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3.2 Distributed Control

3.2 Distributed Control

In this section we consider the following controlled system
ÿ −∆y = Bu in (0,∞)× Ω,

y = 0 on (0,∞)× ∂Ω,

y(0) = y1
0, ẏ(0) = y2

0 on Ω.

(3.6)

Here Ω ∈ Rn is a bounded domain with the smooth boundary ∂Ω and the control
operator B is the extension-by-zero operator defined by

(Bu)(x) :=

{
u(x) x ∈ ω,
0 x ∈ Ω\ω,

where the control domain ω is a nonempty open subset of Ω. We define H1 := H1
0 (Ω)×

L2(Ω), U := L2(ω), and the energy E(·, y) along a trajectory y by

E(t, y) := ‖y(t)‖2H1
0 (Ω) + ‖ẏ(t)‖2L2(Ω). (3.7)

The incremental function ` : H1 × L2(ω)→ R+ is given by

`((y, z), u) :=
1

2
‖(y, z)‖2H1

+
β

2
‖u‖2L2(ω). (3.8)

For simplicity, in some places we denote the pair (y(t), ẏ(t)) by Y(t) at every time t > 0.
Similarly, Y0 stands for the initial pair (y1

0, y
2
0).

3.2.1 Existence and uniqueness of the solution

Consider the following linear wave equation
ÿ −∆y = f in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,

y(0) = y1
0, ẏ(0) = y2

0 on Ω.

(3.9)

Definition 3.2.1 (Weak solution). Let T > 0, (y1
0, y

2
0) ∈ H1, and f ∈ L2(0, T ;L2(Ω)).

Then (y, ẏ) ∈ C0([0, T ];H1) with ÿ ∈ L2(0, T ;H−1(Ω)) is referred to as the weak solution
of (3.9), if for almost every t ∈ (0, T ) we have

〈ÿ(t), v〉H−1(Ω),H1
0 (Ω) + (∇y(t),∇v)L2(Ω) = (f(t), v)L2(Ω) for all v ∈ H1

0 (Ω), (3.10)

and also

(y(0), ẏ(0)) = (y1
0, y

2
0) in H1.
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On the global Stabilizability of the Wave Equation via RHC

Definition 3.2.2 (Very weak solution). Let T > 0, (y1
0, y

2
0) ∈ L2(Ω) × H−1(Ω), and

f ∈ L2(0, T ;H−1(Ω)) be given. A function y ∈ L2(0, T ;L2(Ω)) is referred to as the very
weak solution of (3.9), if the following inequality holds∫ T

0
(g(t), y(t))L2(Ω) dt =

− (y1
0, ϑ̇(0))L2(Ω) + 〈y2

0, ϑ(0)〉H−1(Ω),H1
0 (Ω) +

∫ T

0
〈f(t), ϑ(t)〉H−1(Ω),H1

0 (Ω) dt,

for all g ∈ L2(0, T ;L2(Ω)), with ϑ the weak solution of the following backward in time
problem 

ϑ̈−∆ϑ = g in (0, T )× Ω,

ϑ = 0 on (0, T )× ∂Ω,

ϑ(T ) = 0, ϑ̇(T ) = 0 on Ω.

The very weak solution is also called solution by transposition.

We recall the following results for (3.9), see, e.g., [97, 99].

Theorem 3.2.1 (Existence and regularity of solutions). We have the following existence
and regularity results for (3.9):

1. Let T > 0, (y1
0, y

2
0) ∈ H1, and f ∈ L2(0, T ;L2(Ω)) be given. Then there exist a

unique weak solution y with (y, ẏ) ∈ C0([0, T ];H1) to (3.9) satisfying (y(0), ẏ(0)) =
(y1

0, y
2
0) in H1. Moreover, for this weak solution the following estimate holds

‖y‖C0([0,T ];H1
0 (Ω)) + ‖ẏ‖C0([0,T ];L2(Ω)) + ‖ÿ‖L2(0,T ;H−1(Ω))

≤ c1

(
‖y1

0‖H1
0 (Ω) + ‖y2

0‖L2(Ω) + ‖f‖L2(0,T ;L2(Ω))

)
,

(3.11)

where the constant c1 is independent of y1
0, y2

0, and f . Moreover, for this weak
solution we have the following hidden regularity

∂νy ∈ L2(0, T ;L2(∂Ω)),

and the corresponding estimate

‖∂νy‖L2(0,T ;L2(∂Ω)) ≤ cN
(
‖y1

0‖H1
0 (Ω) + ‖y2

0‖L2(Ω) + ‖f‖L2(0,T ;L2(Ω))

)
,

where the constant cN is independent of y1
0, y2

0, and f .

2. For every T > 0, f ∈ L2(0, T ;H−1(Ω)), and every pair (y1
0, y

2
0) ∈ L2(Ω)×H−1(Ω),

there exists a unique very weak solution to (3.9). Moreover, this very weak solution
belongs to the space

C1([0, T ];H−1(Ω)) ∩ C0([0, T ];L2(Ω)),

and we have the following estimate

‖y‖C0([0,T ];L2(Ω)) + ‖ẏ‖C0([0,T ];H−1(Ω))

≤ c̄1

(
‖y1

0‖L2(Ω) + ‖y2
0‖H−1(Ω) + ‖f‖L2(0,T ;H−1(Ω))

)
,

(3.12)

where the constant c̄1 is independent of y1
0, y2

0, and f .
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3.2.2 Existence of the optimal control

Since, in Algorithm 3.1, the solution of (OP∞) is approximated by solving a sequence
of the finite horizon open-loop optimal controls, one needs to be sure that any of these
optimal control problems in Step 2 of Algorithm 3.1 is well-defined. Each of these
optimal control problems can be rewritten as minimizing the following performance
index function

JT (u; (y1
0, y

2
0)) :=

∫ T

0
`((y(t), ẏ(t)), u(t))dt (3.13)

over all u ∈ L2(0, T ;L2(ω)), subject to
ÿ −∆y = Bu in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,

y(0) = y1
0, ẏ(0) = y2

0 on Ω,

(3.14)

where (y1
0, y

2
0) ∈ H1.

Proposition 3.2.1 (Existence and uniqueness of the optimal control). For every T > 0
and (y1

0, y
2
0) ∈ H1, the optimal control problem

min
{
JT (u; (y1

0, y
2
0)) | (y, u) satisfies (3.14), u ∈ L2(0, T ;L2(ω))

}
(OPT )

admits a unique solution.

Proof. According to Theorem 3.2.1, for every control u ∈ L2(0, T ;L2(ω)), there exists
a unique weak solution y to (3.14) with (y, ẏ) ∈ C0([0, T ];H1). As a result, the set of
admissible controls is nonempty and by (3.8) we have

JT (u; (y1
0, y

2
0)) ≥ β

2
‖u‖2L2(0,T ;L2(ω)). (3.15)

Let ((yn, ẏn), un) ∈ C([0, T ];H1) × L2(0, T ;L2(ω)) be a pair of minimizing sequences
such that

lim
n→∞

JT (un; (y1
0, y

2
0)) = σ,

where yn is the unique weak solution corresponding to un. By (3.11), (3.15), and due to
the structure of `, the set {((yn, ẏn), un)}n is bounded in C0([0, T ];H1)×L2(0, T ;L2(ω)).
Therefore there exist subsequences yn,ẏn, ÿn, and un such that

yn ⇀∗ y∗ in L∞(0, T ;H1
0 (Ω)),

ẏn ⇀∗ ẏ∗ in L∞(0, T ;L2(Ω)),

ÿn ⇀ ÿ∗ in L2(0, T ;H−1(Ω)),

un ⇀ u∗ in L2(0, T ;L2(ω)),

(3.16)
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where

y∗ ∈ L∞(0, T ;H1
0 (Ω)),

ẏ∗ ∈ L∞(0, T ;L2(Ω)),

ÿ∗ ∈ L2(0, T ;H−1(Ω)),

u∗ ∈ L2(0, T ;L2(ω)).

Now it remains to show that y∗ is the weak solution to (3.14) corresponding to the control
u∗. By the definition of weak and weak-star convergence, for almost every t ∈ [0, T ] and
for every v ∈ H1

0 (Ω), we have

〈ÿn(t)− ÿ∗(t), v〉H−1(Ω),H1
0 (Ω) → 0,

(∇yn(t)−∇y∗(t),∇v)L2(Ω) → 0,

(Bun(t)−Bu∗(t), v)L2(Ω) → 0.

(3.17)

Due to the fact that (y∗(0), ẏ∗(0)) ∈ H1 and using (3.17) and (3.10) with f = Bu, we
conclude that y∗ is the weak solution to (3.14) corresponding to u∗. Since un → u∗

weakly in L2(0, T ;L2(ω)) and JT (·; (y1
0, y

2
0)) is weakly lower semi-continuous we have

0 ≤ JT (u∗; (y1
0, y

2
0)) ≤ lim inf

n→∞
JT (un; (y1

0, y
2
0)) = σ,

and, as a consequence, the pair (y∗, u∗) is optimal. Uniqueness follows from the strict
convexity of JT (·; (y1

0, y
2
0)).

3.2.3 Optimality conditions

Lemma 3.2.1. Consider the following linear wave equation
ÿ −∆y = f in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,

y(0) = 0, ẏ(0) = 0 on Ω,

(3.18)

with a forcing function f ∈ L2(0, T ;L2(Ω)). Moreover, let g ∈ L2(0, T ;H−1(Ω)) and
(p1
T , p

2
T ) ∈ L2(Ω)×H−1(Ω). Then the weak solution to (3.18) and the very weak solution

p to 
p̈−∆p = g in (0, T )× Ω,

p = 0 on (0, T )× ∂Ω,

p(T ) = p1
T , ṗ(T ) = p2

T on Ω,

(3.19)

satisfy the following equality∫ T

0
(f(t), p(t))L2(Ω) dt

=

∫ T

0
〈g(t), y(t)〉H−1(Ω),H1

0 (Ω) dt+ (p1
T , ẏ(T ))L2(Ω) − 〈p2

T , y(T )〉H−1(Ω),H1
0 (Ω).

(3.20)
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Proof. First, due to Theorem 3.2.1 and the time reversibility of the linear wave equation,
the solution p to (3.19) belongs to the space

C1([0, T ];H−1(Ω)) ∩ C0([0, T ];L2(Ω)).

Moreover, equality (3.20) can be first established for a smooth solution of (3.19) by inte-
gration by parts and the Green formula. Moreover, for (g, p1

T , p
2
T ) ∈ L2(0, T ;L2(Ω))×H1

the solution to (3.19) belongs to the space C0([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω)) (see, e.g.,

[97, 99]), and the spaces L2(0, T ;L2(Ω)) and H1 are dense in the spaces L2(0, T ;H−1(Ω))
and L2(Ω) ×H−1(Ω), respectively. Next, (3.20) is derived by using density arguments
and passing to the limit which is justified due to estimate (3.12).

In the following, we derive the first-order optimality conditions for the finite horizon
problems of the form (OPT ). Due to the presence of the tracking term for the velocity
ẏ(·) in the performance index function (3.13), we will see that the solution of ajdoint
equation exists in the very weak sense.

Theorem 3.2.2 (First-order optimality conditions). Let (ȳ, ū) be the optimal solution
to (OPT ). Then for (y1

0, y
2
0) ∈ H1 we have the following optimality conditions

¨̄y −∆ȳ = Bū in (0, T )× Ω,

ȳ = 0 on (0, T )× ∂Ω,

ȳ(0) = y1
0, ˙̄y(0) = y2

0 on Ω,

¨̄p−∆p̄ = −¨̄y −∆ȳ in (0, T )× Ω,

p̄ = 0 on (0, T )× ∂Ω,

p̄(T ) = 0, ˙̄p(T ) = − ˙̄y(T ) on Ω,

βū = −B∗p̄ in (0, T )× Ω,

where p ∈ C1([0, T ];H−1(Ω)) ∩ C0([0, T ];L2(Ω)) is the solution of the adjoint equation.

Proof. For sake of simplicity in notation, we remove the overbar in the notation of (ȳ, ū).
Let (y1

0, y
2
0) ∈ H1 be given. Computing the directional derivative of JT (·, (y1

0, y
2
0)) at u

in the direction of an arbitrary δu ∈ L2(0, T ;L2(ω)) we obtain

J ′T (u, (y1
0, y

2
0))δu

=

∫ T

0
(y(t), δy(t))H1

0 (Ω)dt+

∫ T

0
(ẏ(t), δ̇y(t))L2(Ω)dt+ β

∫ T

0
(u(t), δu(t))L2(ω)dt,

=

∫ T

0
〈−∆y(t), δy(t)〉H−1(Ω),H1

0 (Ω)dt

+

∫ T

0
(ẏ(t), δ̇y(t))L2(Ω)dt+ β

∫ T

0
(u(t), δu(t))L2(ω)dt,

(3.21)

where −∆ : H1
0 (Ω) → H−1(Ω) is the Laplace operator with homogeneous Dirichlet

boundary conditions and it is an isomorphism. Moreover δy ∈ C0([0, T ];H1
0 (Ω)) ∩
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C1([0, T ];L2(Ω)) is the weak solution of
δ̈y −∆δy = Bδu in (0, T )× Ω,

δy = 0 on (0, T )× ∂Ω,

δy(0) = 0, δ̇y(0) = 0 on Ω.

(3.22)

Next, we show that∫ T

0
(ẏ(t), δ̇y(t))L2(Ω)dt

= 〈ẏ(T ), δy(T )〉H−1(Ω),H1
0 (Ω) −

∫ T

0
〈ÿ(t), δy(t)〉H−1(Ω),H1

0 (Ω)dt.

(3.23)

We proceed with the help of an approximation argument. Since the spaces H2(Ω) ∩
H1

0 (Ω), H1
0 (Ω), and L2(0, T ;H1

0 (Ω)) are dense in the spacesH1
0 (Ω), L2(Ω), and L2(0, T ;L2(Ω)),

respectively, there exist sequences {y1n
0 }n ⊂ H2(Ω) ∩ H1

0 (Ω), {y2n
0 }n ⊂ H1

0 (Ω), and
{fn}n ⊂ L2(0, T ;H1

0 (Ω)) such that

y1n
0 → y1

0 in H1
0 (Ω),

y2n
0 → y2

0 in L2(Ω),

fn → Bu in L2(0, T ;L2(Ω)).

Moreover, for any triple (y1n
0 , y2n

0 , fn) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)×L2(0, T ;H1
0 (Ω)), the

solution of yn of (3.9) belongs to the space C0([0, T ];H2(Ω)∩H1
0 (Ω))∩C1([0, T ];H1

0 (Ω))
with ÿn ∈ L2(0, T ;L2(Ω)) (see, e.g., [97, 99]), and due to (3.11) we have

‖yn − y‖C0([0,T ];H1
0 (Ω)) + ‖ẏn − ẏ‖C0([0,T ];L2(Ω)) + ‖ÿn − ÿ‖L2(0,T ;H−1(Ω))

≤ c1

(
‖y1n

0 − y1
0‖H1

0 (Ω) + ‖y2n
0 − y2

0‖L2(Ω) + ‖fn −Bu‖L2(0,T ;L2(Ω))

)
.

For the solution yn of (3.9) with (y1n
0 , y2n

0 , fn) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)×L2(0, T ;H1
0 (Ω))

and the solution δy of (3.22) we have∫ T

0
(ẏn(t), δ̇y(t))L2(Ω)dt =

∫ T

0
〈ẏn(t), δ̇y(t)〉H1

0 (Ω),H−1(Ω)dt =

(ẏn(T ), δy(T ))L2(Ω) −
∫ T

0
〈ÿn(t), δy(t)〉H−1(Ω),H1

0 (Ω)dt.

By passing the limits we obtain∫ T

0
(ẏn(t), δ̇y(t))L2(Ω)dt→

∫ T

0
(ẏ(t), δ̇y(t))L2(Ω)dt,

(ẏn(T ), δy(T ))L2(Ω) → (ẏ(T ), δy(T ))L2(Ω) = 〈ẏ(T ), δy(T )〉H−1(Ω),H1
0 (Ω),∫ T

0
〈ÿn(t), δy(t)〉H−1(Ω),H1

0 (Ω)dt→
∫ T

0
〈ÿ(t), δy(t)〉H−1(Ω),H1

0 (Ω)dt,
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and we are finished with the justification of (3.23). Now due to (3.21) and (3.23), the
first order optimality condition is equivalent to the following equality∫ T

0
〈−ÿ(t)−∆y(t), δy(t)〉H−1(Ω),H1

0 (Ω)dt

+ 〈ẏ(T ), δy(T )〉H−1(Ω),H1
0 (Ω) + β

∫ T

0
(u(t), δu(t))L2(ω)dt = 0.

(3.24)

Moreover, due to Lemma 3.2.1 and using equality (3.20) for equation (3.22) we have∫ T

0
〈g(t), δy(t)〉H−1(Ω),H1

0 (Ω) dt

+ (p1
T , δ̇y(T ))L2(Ω) − 〈p2

T , δy(T )〉H−1(Ω),H1
0 (Ω) −

∫ T

0
(p(t), Bδu)L2(Ω) dt = 0,

(3.25)

for a given (g, p1
T , p

2
T ) ∈ L2(0, T ;H−1(Ω))×L2(Ω)×H−1(Ω) and its corresponding very

weak solution p ∈ C1([0, T ];H−1(Ω))∩C0([0, T ];L2(Ω)) to (3.19). By comparing (3.24)
with (3.25) and since δu ∈ L2(0, T ;L2(ω)) is arbitrary, we infer that

βu = −B∗p in L2(0, T ;L2(ω)),

p1
T = 0 in L2(Ω),

p2
T = −ẏ(T ) in H−1(Ω),

g = −ÿ −∆y in L2(0, T ;H−1(Ω)).

3.2.4 Stabilizability

In this subsection we recall some aspects on the stabilizability of the wave equation with
a distributed feedback law. Specifically, we consider the following controlled system

ÿ −∆y = u(y) in (0,∞)× Ω,

y = 0 on (0,∞)× ∂Ω,

y(0) = y1
0, ẏ(0) = y2

0 on Ω,

(3.26)

with the feedback control u given by u(y) := −a(x)ẏ, where the function a ∈ L∞(Ω)
satisfies

a1 ≥ a(x) ≥ a0 > 0 for almost every x ∈ ω, and a(x) = 0 in Ω\ω. (3.27)

The following observability conditions will be used later.
To specify the required observability conditions, for any (φ1

0, φ
2
0) ∈ H1 we denote by

φ the weak solution of the following system
φ̈−∆φ = 0 in (0, T )× Ω,

φ = 0 on (0, T )× ∂Ω,

φ(0) = φ1
0, φ̇(0) = φ2

0 on Ω.

(3.28)
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Then we have the following observability conditions:

OB1. There exists Tob1 > 0 such that for every T ≥ Tob1, the weak solution φ to (3.28)
with (φ, φ̇) ∈ C([0, T ];H1) satisfies the inequality

cob1‖(φ1
0, φ

2
0)‖2H1

≤
∫ T

0

∫
ω
|φ̇|2dxdt for every (φ1

0, φ
2
0) ∈ H1,

where the positive constant cob1 depends only on T and ω ⊆ Ω.

OB2. There exists Tob2 > 0 such that for every T ≥ Tob2, the weak solution φ to (3.28)
with (φ, φ̇) ∈ C([0, T ];H1) satisfies the inequality

cob2‖(φ1
0, φ

2
0)‖2H1

≤
∫ T

0

∫
Γc

|∂νφ|2dSdt for every (φ1
0, φ

2
0) ∈ H1,

where the positive constant cob2 depends only on T and Γc ⊆ ∂Ω.

The observability conditions OB1-OB2 are satisfied if and only if the Geometric
Control Conditions (GCC) hold (see, for instance, Bardos, Lebeau, and Rauch [19] and
Burq and Gérard [35]). Roughly speaking, GCC for (Ω, ω, Tob1) (resp. (Ω,Γc, Tob2))
states that all rays of the geometric optics should enter in the domain ω (resp. meet the
boundary Γc) in a time smaller than Tob1 (resp. Tob2). For a comprehensive study, we
refer to Reference [19].

The following equivalence is frequently claimed in the literature. Since it is not
straight forward to find a proof, we provide the arguments here.

Theorem 3.2.3 (Global stabilizability). Let (y1
0, y

2
0) ∈ H1 and a ∈ L∞(Ω) satisfying

(3.27) be given. Then for the controlled system (3.26) with the feedback law u(y) := −aẏ
we have

E(t, y) ≤Me−αtE(0, y) = Me−αt‖(y1
0, y

2
0)‖2H1

(3.29)

for positive constants M , and α independent of (y1
0, y

2
0), if and only if the observability

condition OB1 holds.

Proof. First we show that OB1 implies the exponential stabilizability. We set u(y) :=
−aẏ in (3.26). In this case the resulting closed-loop system is well-posed (see, e.g., [40]),
and for its unique weak solution we have

y ∈ C0([0,∞);H1
0 (Ω)) ∪ C1([0,∞);L2(Ω))

Now, for an arbitrary T > 0 consider the following controlled system
ÿ −∆y = −aẏ in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,

y(0) = y1
0, ẏ(0) = y2

0 on Ω.

(3.30)
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For the initial data (y1
0, y

2
0) ∈ (H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω), the strict solution of (3.30)

belongs to the space C0([0, T ];H2(Ω) ∩H1
0 (Ω)) ∩C1([0, T ];H1

0 (Ω)). By taking L2-inner
product of (3.30) with ẏ, and integrating over [0, T ], we obtain the following estimate

E(T, y)− E(0, y) ≤ −2a0

∫ T

0
‖ẏ(t)‖2L2(ω)dt. (3.31)

Now by using a density argument and the fact that (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω) is dense
in H1

0 (Ω) × L2(Ω), it can be shown that the inequality (3.31) is also true for the weak
solution of (3.30) with the initial data (y1

0, y
2
0) ∈ H1.

Moreover the solution y of (3.30) can be expressed as y := ψ + φ where φ ∈
C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1

0 (Ω)) is the weak solution to (3.28) with (φ1
0, φ

2
0) =

(y1
0, y

2
0), and ψ ∈ C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1

0 (Ω)) is the weak solution of
ψ̈ −∆ψ = −aẏ in (0, T )× Ω,

ψ = 0 on (0, T )× ∂Ω,

ψ(0) = 0, ψ̇(0) = 0 on Ω.

(3.32)

Now by using the observability condition OB1, and estimate (3.11) for (3.32) we have

E(0, y) = ‖(y1
0, y

2
0)‖2H1

≤ 1

cob1

∫ Tob1

0
‖φ̇(t)‖2L2(ω)dt

≤ 1

cob1

∫ Tob1

0

(
‖ẏ(t)‖2L2(ω) + ‖ψ̇(t)‖2L2(ω)

)
dt

≤ c′1
∫ Tob1

0
‖ẏ(t)‖2L2(ω)dt,

(3.33)

for a constant c′1 > 0 which is independent of (y1
0, y

2
0). By (3.31), (3.33) we obtain

E(Tob1, y)− E(0, y) ≤ −2a0

∫ Tob1

0
‖ẏ(t)‖2L2(ω)dt ≤ −

2a0

c′1
E(0, y) ≤ −2a0

c′1
E(Tob1, y).

Setting α :=
ln(1+

2a0
c′1

)

Tob1
, we have for every k = 1, 2, . . .

E(kTob1, y) ≤ e−αTob1E((k − 1)Tob1, y),

and as a consequence for every t ∈ [kTob1, (k + 1)Tob1] we infer that

E(t, y) ≤ E(kTob1, y) ≤ e−αkTob1E(0, y)

= (1 +
2a0

c′1
)e−α(k+1)Tob1E(0, y) ≤ (1 +

2a0

c′1
)e−αtE(0, y).

Thus we conclude (3.29).
Next we show that the stabilizability property (3.29) implies the observability con-

dition OB1 for (3.28) with an arbitrary initial pair (y1
0, y

2
0) ∈ H1. First, by setting
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u(y) := −aẏ in (3.26) with a function a ∈ L∞(Ω) satisfying (3.27), taking the L2-inner
product of (3.26) with ẏ, and integrating over [0, t] for t > 0, we obtain

E(t, y)− E(0, y) ≥ −2a1

∫ t

0
‖ẏ(t)‖2L2(ω)dt. (3.34)

where the constant a1 defined in (3.27). Further by (3.29), for a large enough T ′ > 0 we
have

2a1

∫ T ′

0
‖ẏ(t)‖2L2(ω)dt ≥

1

2
E(0, y). (3.35)

Moreover, the solution φ to (3.28) with the initial pair (y1
0, y

2
0) can be rewritten as

φ := y − ψ, where y is the weak solution to (3.30) and ψ is the weak solution to (3.32)
for T ′ instead of T .

Now assume that the solution of (3.32) is smooth enough. Taking the L2-inner
product of (3.32) with ψ̇ and integrating over [0, T ′] we have

0 ≤ 1

2

(
‖ψ̇(T ′)‖2L2(Ω) + ‖∇ψ(T ′)‖2L2(Ω)

)
=

∫ T ′

0

∫
Ω
−aẏψ̇dxdt

=

∫ T ′

0

∫
ω
−a(ψ̇ + φ̇)ψ̇dxdt.

(3.36)

Note that for a forcing function f ∈ L2(0, T ′;H1
0 (Ω)) instead of −aẏ, the weak solution

of (3.32) belongs to the space C0([0, T ′];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ′];H1

0 (Ω)), see, e.g.,
[97, 99]. By using a density argument and the fact that the space L2(0, T ′;H1

0 (Ω)) is
dense in L2(0, T ′;L2(Ω)), it can be shown that the inequality (3.36) is also true for the
weak solution of (3.32) with −aẏ as a forcing function. Moreover, (3.36) implies∫ T ′

0
‖ψ̇(t)‖2L2(ω)dt ≤

a2
1

a2
0

∫ T ′

0
‖φ̇(t)‖2L2(ω)dt. (3.37)

Note also that∫ T ′

0
‖φ̇(t)‖2L2(ω)dt+

∫ T ′

0
‖ψ̇(t)‖2L2(ω)dt ≥

∫ T ′

0
‖ẏ(t)‖2L2(ω)dt. (3.38)

Combining (3.35), (3.37), and (3.38), we complete the proof with

1

4a1
‖(y1

0, y
2
0)‖2H1

=
1

4a1
E(0, y) ≤ (1 +

a2
1

a2
0

)

∫ T ′

0
‖φ̇(t)‖2L2(ω)dt.

3.2.5 Stability of RHC

Definition 3.2.3 (Value function). For every pair (y1
0, y

2
0) =: Y0 ∈ H1, the infinite

horizon value function V∞ : H1 → R+ is defined as

V∞(Y0) := min
u∈L2(0,∞;L2(ω))

{J∞(u,Y0) subject to (3.6)}.
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Similarly, the finite horizon value function VT : H1 → R+ is defined by

VT (Y0) := min
u∈L2(0,T ;L2(ω))

{JT (u,Y0) subject to (3.14)}. (3.39)

Lemma 3.2.2. Suppose that the observability condition OB1 holds. For every T > 0,
there exists a control û ∈ L2(0, T ;L2(ω)) for (3.14) such that

VT (Y0) ≤ JT (û;Y0) ≤ γ2(T )‖Y0‖2H1
(3.40)

for every initial pair (y1
0, y

2
0) = Y0 ∈ H1, where γ2 : R+ → R+ is a nondecreasing, con-

tinuous, and bounded function. Moreover, there exists a constant γ1(T ) > 0 depending
on T such that

VT (Y0) ≥ γ1(T )‖Y0‖2H1
(3.41)

for all (y1
0, y

2
0) = Y0 ∈ H1.

Proof. Let (y1
0, y

2
0) ∈ H1 be given. By setting u(t) := −ẏ(t)|ω in the controlled system

(3.14), and using Theorem 3.2.3 for the choice

a(x) :=

{
1 x ∈ ω,
0 otherwise,

we obtain

E(t, y) ≤Me−αtE(0, y) for all t ∈ [0, T ].

Here the constants M and α were defined in Theorem 3.2.3. By integrating from 0 to T
we have ∫ T

0
E(t, y)dt ≤ M

α
(1− e−αT )E(0, y).

By the definition of the value function VT in (3.39) we have

VT ((y1
0, y

2
0)) ≤

∫ T

0

(
1

2
E(t, y) +

β

2
‖ẏ(t)‖2L2(ω)

)
dt ≤(1 + β)M

2α
(1− e−αT )‖(y1

0, y
2
0)‖2H1

=γ2(T )‖(y1
0, y

2
0)‖2H1

,

thus (3.40) holds.

To verify (3.41), we use the superposition argument for equation (3.14) with an
arbitrary control u ∈ L2(0, T ;L2(ω)). We rewrite the solution of (3.14) as y = φ + ϕ
where φ is the solution to (3.28) with the initial pair (y1

0, y
2
0) instead of (φ1

0, φ
2
0), and ϕ

is the solution to the following equation
ϕ̈−∆ϕ = Bu in (0, T )× Ω,

ϕ = 0 on (0, T )× ∂Ω,

ϕ(0) = 0, ϕ̇(0) = 0 on Ω.

(3.42)
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By using the observability condition OB1 for (3.28) with the initial pair (y1
0, y

2
0) and Ω

instead of ω, and using the estimate (3.11) for (3.42) we obtain

‖(y1
0, y

2
0)‖2H1

≤ 1

cob1(T )

∫ T

0
‖φ̇(t)‖2L2(Ω)dt

≤ 1

cob1(T )

∫ T

0

(
‖ẏ(t)‖2L2(Ω) + ‖ϕ̇(t)‖2L2(Ω)

)
dt

≤ 1

cob1(T )

∫ T

0

(
‖ẏ(t)‖2L2(Ω) + Tc2

1‖u(t)‖2L2(ω)

)
dt

≤ c′′1(T )

∫ T

0

(
1

2
‖(y(t), ẏ(t))‖2H1

+
β

2
‖u(t)‖2L2(ω)

)
dt

= c′′1(T )

∫ T

0
`(Y(t), u(t))dt.

Since u ∈ L2(0, T ;L2(ω)) is arbitrary, we obtain (3.41) for a constant c′′1(T ) independent
of u and (y1

0, y
2
0).

Remark 3.2.1. The property (3.41) is equivalent to the injectivity of the differential
Recatti operator corresponding to (OPT ) which in turn is equivalent to the observability
condition OB1, see, [57, Theorem 3.3].

Remark 3.2.2. Note that, as it has been shown in Lemma 3.2.2, the observability
condition OB1 is equivalent to the stabilizability condition (3.40). The stabilizability
condition (3.40) and well-posedness (Proposition 3.2.1) of open-loop problems in the
form (OPT ) are equivalent to the conditions (A2) and (A1) in Chapter 2, respectively.
Moreover, since the stabilizability condition (3.40) holds globally, the condition (A3) is
no longer needed and we can use the receding horizon framework introduced in Chapter
2. In addition, by using the uniform positiveness of the value function VT which has
been established in (3.41) based on the observability condition OB1, we shall verify the
exponential stability of RHC (see Remark 2.2.3).

From this point on, we denote (y(t), ẏ(t)) by Y(t) and we define α` := min(1,β)
2 .

Furthermore, for the sake of convenience in reading we recall some of the lemmas from
Chapter 2.

Lemma 3.2.3. If the observability condition OB1 holds and T > δ > 0, then for every
Y0 := (y1

0, y
2
0) ∈ H1 the following inequalities hold

VT (Y∗T (δ;Y0, 0)) ≤
∫ t̃

δ
`(Y∗T (t;Y0, 0), u∗T (t;Y0, 0))dt

+ γ2(T + δ − t̃)‖Y∗T (t̃;Y0, 0)‖2H1
for all t̃ ∈ [δ, T ],

(3.43)

and∫ T

t̃
`(Y∗T (t;Y0, 0), u∗T (t;Y0, 0))dt ≤ γ(T − t̃)‖Y∗T (t̃;Y0, 0)‖2H1

for all t̃ ∈ [0, T ]. (3.44)
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Proof. The proof is similar to the proof of Lemma 2.2.1.

Lemma 3.2.4. Suppose that the observability condition OB1 holds and let Y0 ∈ H1 be
given. Then for the choice

θ1 := 1 +
γ2(T )

α`(T − δ)
, θ2 :=

γ2(T )

α`δ
,

we have the following estimates

VT (Y∗T (δ;Y0, 0)) ≤ θ1

∫ T

δ
`(Y∗T (t;Y0, 0), u∗T (t;Y0, 0))dt, (3.45)

and ∫ T

δ
`(Y∗T (t;Y0, 0), u∗T (t;Y0, 0))dt ≤ θ2

∫ δ

0
`(Y∗T (t;Y0, 0), u∗T (t;Y0, 0))dt. (3.46)

Proof. The proof is similar to the proof of Lemma 2.2.2.

Proposition 3.2.2. Suppose that the observability condition OB1 holds and let δ > 0
be given. Then there exist T ∗ > δ and α ∈ (0, 1) such that the following inequality is
satisfied

VT (Y∗T (δ;Y0, 0)) ≤ VT (Y0)− α
∫ δ

0
`(Y∗T (t;Y0, 0), u∗T (t;Y0, 0))dt (3.47)

for every T ≥ T ∗ and Y0 ∈ H1.

Proof. The proof is similar to the proof of Proposition 2.2.1.

Theorem 3.2.4 (Suboptimality and exponential decay). Suppose that the observability
condition OB1 holds and let a sampling time δ > 0 be given. Then there exist numbers
T ∗ > δ and α ∈ (0, 1), such that for every fixed prediction horizon T ≥ T ∗ and every Y0 ∈
H1, the receding horizon control urh obtained from Algorithm 3.1 for the stabilization of
(3.6) satisfies the suboptimality inequality

αV∞(Y0) ≤ αJ∞(urh,Y0) ≤ VT (Y0) ≤ V∞(Y0), (3.48)

and exponential stability

‖Yrh(t)‖2H1
≤ c′e−ζt‖Y0‖2H1

for t ≥ 0, (3.49)

where the positive numbers ζ and c′ depend on α, δ, and T , but are independent of Y0.

Proof. To show the suboptimality inequality, we refer to the proof of Theorem 2.2.1 in
Chapter 2. Now we turn to inequality (3.49). It is of interest to verify this inequality
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in two different ways. First, due to Theorem 2.2.2 in Chapter 2, there exists a T ∗ > 0
such that for every T ≥ T ∗ we have

VT−δ(Yrh(t)) ≤ ce−ζ1tVT (Y0) for every Y0 ∈ H1, t > 0, (3.50)

where the constants c and ζ1 are given by

ζ1 :=
ln(1 + α

1+θ1θ2
)

δ
, c := (1 +

α

1 + θ1θ2
).

Here θ1(T, δ), θ2(T, δ) are defined as in Lemma 3.2.4. Using Lemma 3.2.2 and (3.50) we
obtain

γ1(T − δ)‖Yrh(t)‖2H1
≤ VT−δ(Yrh(t)) ≤ ce−ζ1tVT (Y0) ≤ cγ2(T )e−ζ1t‖Y0‖2H1

for every Y0 ∈ H1. Setting c′1 := cγ2(T )
γ1(T−δ) we have

‖Yrh(t)‖2H1
≤ c′1e−ζ1t‖Y0‖2H1

for every Y0 ∈ H1, t > 0,

and thus (3.49) holds.
Second way: by Proposition 3.2.2, there exist a T ∗ > 0 and α ∈ (0, 1) such that for

every T ≥ T ∗, Y0 ∈ H1, and k ∈ N with k ≥ 1, we have

VT (Yrh(tk))− VT (Y(tk−1)) ≤ −α
∫ tk

tk−1

`(Yrh(t), urh(t))dt

≤ −αVδ(Yrh(tk−1)),

(3.51)

where tk = kδ for k = 0, 1, 2, . . . . Moreover, due to Lemma 3.2.2, for every Y0 ∈ H1 we
obtain

Vδ(Y0) ≥ γ1(δ)‖Y0‖2H1
≥ γ1(δ)

γ2(T )
VT (Y0). (3.52)

Using (3.51) and (3.52) we can write

VT (Yrh(tk)) ≤
(

1− αγ1(δ)

γ2(T )

)
VT (Yrh(tk−1)) for every k ≥ 1.

Since 0 < γ1(δ) ≤ γ2(δ) ≤ γ2(T ) and α ∈ (0, 1), we have η :=
(

1− αγ1(δ)
γ2(T )

)
∈ (0, 1).

Furthermore, by defining ζ2 := | ln η|
δ and using the similar argument as above we can

infer that

γ1(T )‖Yrh(tk)‖2H1
≤ VT (Yrh(tk)) ≤ e−ζ2tkVT (Y0) ≤ γ2(T )e−ζ2tk‖Y0‖2H1

for every k ≥ 1. Hence, by setting c′′ := γ2(T )
γ1(T ) we can write

‖Yrh(tk)‖2H1
≤ c′′e−ζ2kδ‖Y0‖2H1

for every k ≥ 1. (3.53)
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Now we consider the following controlled system


ÿ −∆y = Burh in (tk, tk+1)× Ω,

y = 0 on (tk, tk+1)× ∂Ω,

(y(tk), ẏ(tk)) = (yrh(tk), ẏrh(tk)) for k > 0 on Ω,

(y(tk), ẏ(tk) = (y1
0, y

2
0) for k = 0 on Ω,

(3.54)

with the solution yrh(t) for t ∈ [tk, tk+1]. First we assume that the solution yrh of (3.54)
is smooth enough. Taking the L2-inner product of (3.54) with ẏ and integrating over
[tk, tk+1], we have for t ∈ [tk, tk+1]

‖Yrh(t)‖2H1
≤ ‖Yrh(tk)‖2H1

+

∫ t

tk

‖ẏrh(t)‖2L2(Ω)dt+

∫ t

tk

‖urh(t)‖2L2(ω)dt

≤ ‖Yrh(tk)‖2H1
+

1

α`

∫ tk+1

tk

`(Yrh(t), urh(t))dt

≤ ‖Yrh(tk)‖2H1
+

1

α`
VT (Yrh(tk))

≤
(

1 +
γ2(T )

α`

)
‖Yrh(tk)‖2H1

.

(3.55)

Since for a forcing function f ∈ L2(tk, tk+1;H1
0 (Ω)) instead of Burh ∈ L2(tk, tk+1;L2(Ω))

and initial data (y(tk), ẏ(tk)) ∈ (H1
0 (Ω) ∩H2(Ω)) ×H1

0 (Ω), the weak solution of (3.54)
belongs to the space C0([tk, tk+1];H2(Ω)∩H1

0 (Ω))∩C1([tk, tk+1];H1
0 (Ω)) (see, e.g., [97,

99]), by using a density argument and the fact that L2(tk, tk+1;H1
0 (Ω)) and (H1

0 (Ω) ∩
H2(Ω))×H1

0 (Ω) are, respectively, dense in L2(tk, tk+1;L2(Ω)) and H1, it can be shown
that inequality (3.55) is also true for the weak solution of (3.54).

Now for every t > 0, there exist a k ∈ N0 such that t ∈ [tk, tk+1]. Combining (3.53)
and (3.55), we have

‖Yrh(t)‖2H1
≤
(

1 +
γ2(T )

α`

)
‖Yrh(tk)‖2H1

≤ c′′(α` + γ2(T ))

α`
e−ζ2tk‖Y0‖2H1

≤ c′′(α` + γ2(T ))

α`

(
1− αγ1(δ)

γ2(T )

)−1

e−ζ2tk+1‖Y0‖2H1
,

≤ c′′(α` + γ2(T ))

α`

(
1− αγ1(δ)

γ2(T )

)−1

e−ζ2t‖Y0‖2H1
,

and by setting c′′2 := c′(α`+γ2(T ))
α`

(
1− αγ1(δ)

γ2(T )

)−1
we have (3.49).
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3.3 Dirichlet Boundary Control

In this section, we consider the case when the control acts on a part of Dirichlet boundary
conditions. To be more precise, we deal with the controlled system of the form

ÿ −∆y = 0 in (0,∞)× Ω,

y = u on (0,∞)× Γc,

y = 0 on (0,∞)× Γ0,

y(0) = y1
0, ẏ(0) = y2

0 on Ω.

(3.56)

Here Ω ∈ Rn is a bounded domain with the smooth boundary ∂Ω := Γc ∪ Γ0, where the
two disjoint components Γc, Γ0 are relatively open in ∂Ω and int(Γc) 6= ∅. Moreover, by
setting U := L2(Γc) and H2 := L2(Ω)×H−1(Ω), we are searching over all control func-
tions u ∈ L2(0,∞;U) for a given initial pair (y1

0, y
2
0) ∈ H2. For simplicity, we denote the

pair (y(t), ẏ(t)) with Y(t) for t ≥ 0 and the initial function Y0 := (y1
0, y

2
0). Moreover, let

−∆ : H1
0 (Ω)→ H−1(Ω) be the Laplace operator with homogeneous Dirichlet boundary

conditions, and define the operator G : H−1(Ω) → H1
0 (Ω) by G := (−∆)−1. Further,

we denote the unique linear extension of G with G : (H2(Ω) ∩H1
0 (Ω))∗ → L2(Ω), where

(H2(Ω)∩H1
0 (Ω))∗ stands for the dual space of H2(Ω)∩H1

0 (Ω). The incremental function
` : H2 × L2(Γc)→ R+ is given by

`((y, z), u) :=
1

2
‖(y, z)‖2H2

+
β

2
‖u‖2L2(Γc)

. (3.57)

Moreover, we will use the space H1
Γ0

(Ω) := {q ∈ H1(Ω) : q|Γ0 = 0} and the control
operator Bbd which is defined by

(Bbdu)(x) :=

{
u(x) x ∈ Γc,

0 x ∈ Γ0.

3.3.1 Existence and uniqueness of the solution

Consider the following linear wave equation with the inhomogeneous Dirichlet boundary
condition imposed on the whole of the boundary

ÿ −∆y = 0 in (0, T )× Ω,

y = h on (0, T )× ∂Ω,

y(0) = y1
0, ẏ(0) = y2

0 on Ω.

(3.58)

Definition 3.3.1 (Very weak solution). Let T > 0, (y1
0, y

2
0) ∈ H2, and h ∈ L2(0, T ;L2(∂Ω))

be given. A function y ∈ L∞(0, T ;L2(Ω)) is referred to as the very weak solution of
(3.58), if the following inequality holds∫ T

0
(f(t), y(t))L2(Ω)dt

= −(y1
0, ϑ̇(0))L2(Ω) + 〈y2

0, ϑ(0)〉H−1(Ω),H1
0 (Ω) −

∫ T

0
(∂νϑ(t), h(t))L2(∂Ω) dt,

(3.59)
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for all f ∈ L1(0, T ;L2(Ω)), with ϑ the weak solution of the following backward in time
problem 

ϑ̈−∆ϑ = f in (0, T )× Ω,

ϑ = 0 on (0, T )× ∂Ω,

ϑ(T ) = 0, ϑ̇(T ) = 0 on Ω.

(3.60)

The very weak solution is also called solution by transposition. We have the following
result for the very weak solution of (3.58), see, e.g., [97, 99].

Theorem 3.3.1 (Existence and regularity of the very weak solution). For every T > 0,
(y1

0, y
2
0) ∈ H2, and h ∈ L2(0, T ;L2(∂Ω)), there exists a unique very weak solution to

(3.58) belonging to the space

C0([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)),

and satisfies the following estimate

‖y‖C0([0,T ];L2(Ω)) + ‖ẏ‖C0([0,T ];H−1(Ω)) + ‖ÿ‖L2(0,T ;(H1
0 (Ω)∩H2(Ω))∗)

≤ c2

(
‖y1

0‖L2(Ω) + ‖y2
0‖H−1(Ω) + ‖h‖L2(0,T ;L2(∂Ω))

)
(3.61)

for a constant c2 depending on T and the domain Ω.

3.3.2 Existence of the optimal control

In Step 2 of Algorithm 3.1, each finite horizon optimal control problem can be rewritten
as minimizing the following performance index function

JT (u; (y1
0, y

2
0)) :=

∫ T

0
`((y(t), ẏ(t)), u(t))dt (3.62)

over all u ∈ L2(0, T ;L2(Γc)), subject to
ÿ −∆y = 0 in (0, T )× Ω,

y = u on (0, T )× Γc,

y = 0 on (0, T )× Γ0,

y(0) = y1
0, ẏ(0) = y2

0 on Ω.

(3.63)

where (y1
0, y

2
0) ∈ H2. We have the following existence result.

Proposition 3.3.1 (Existence and uniqueness of the optimal control). For every T > 0
and (y1

0, y
2
0) ∈ H2, the optimal control problem

min
{
JT (u; (y1

0, y
2
0)) | (y, u) satisfies (3.63), u ∈ L2(0, T ;L2(Γc))

}
(OPDT )

admits a unique solution.
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Proof. We use the standard argument of calculus of variation. Since the objective func-
tion JT (u; (y1

0, y
2
0)) is bounded from below we have

inf
L2(0,T ;L2(Γc))

JT (u; (y1
0, y

2
0)) = σ <∞.

Therefore, there is a minimizing sequence {un}n ⊂ L2(0, T ;L2(Γc)) such that

‖un‖2L2(0,T ;L2(Γc))
≤ 2

β
JT (un; (y1

0, y
2
0)) <∞, (3.64)

and, as a consequence, the sequence has a weakly convergent subsequence un ⇀ u∗

with limit u∗ ∈ L2(0, T ;L2(Γc)). Due to Theorem 3.3.1 and estimate (3.61) for (3.63),
there exists a bounded sequence of very weak solutions {yn}n ⊂ L∞(0, T ;L2(Ω)) ∩
W 1,∞(0, T ;H−1(Ω)) to (3.63) corresponding to the control sequence {un}n. Hence,
there exist weakly-star convergent subsequences {yn}n and {ẏn}n such that

yn ⇀∗ y∗ in L∞(0, T ;L2(Ω)),

ẏn ⇀∗ ẏ∗ in L∞(0, T ;H−1(Ω)).

Now it remains to show that y∗ is the very weak solution to (3.63) corresponding to the
control u∗. To see this, we only need to pass the limits in the very weak formulation
(3.59) for the pair of sequences (yn, Bbdu

n) in the place of (y, h). This Follows from the
fact that ∫ T

0
(yn(t)− y∗(t), f(t))L2(Ω)dt→ 0 for every f ∈ L1(0, T ;L2(Ω)),∫ T

0
(∂νϑ(t), Bbd(u

n(t)− u∗(t)))L2(∂Ω)dt→ 0 for any weak solution ϑ(f) to (3.60).

Now since the solution operator S : L2(0, T ;L2(Γc)) → L2(0, T ;H2) defined by u 7→
(y, ẏ) is affine and continuous, the objective function JT (·; (y1

0, y
2
0)) is weakly lower semi-

continuous and we have

0 ≤ JT (u∗; (y1
0, y

2
0)) ≤ lim inf

n→∞
JT (un; (y1

0, y
2
0)) = σ.

As a result, the pair (y∗, u∗) is optimal. Uniqueness follows from the strictly convexity
of JT (·; (y1

0, y
2
0)).

3.3.3 Optimality conditions

Lemma 3.3.1. Consider the following linear wave equation
ÿ −∆y = 0 in (0, T )× Ω,

y = u on (0, T )× Γc,

y = 0 on (0, T )× Γ0,

y(0) = 0, ẏ(0) = 0 on Ω,

(3.65)
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3.3 Dirichlet Boundary Control

with a function u ∈ L2(0, T ;L2(Γc)) and let g ∈ L2(0, T ;L2(Ω)) and (p1
T , p

2
T ) ∈ H1

0 (Ω)×
L2(Ω). Then the very weak solution to (3.65) and the weak solution p to

p̈−∆p = g in (0, T )× Ω,

p = 0 on (0, T )× ∂Ω,

p(T ) = p1
T , ṗ(T ) = p2

T on Ω,

(3.66)

satisfy the following equality∫ T

0
(g(t), y(t))L2(Ω) dt+ 〈p1

T , ẏ(T ))〉H1
0 (Ω),H−1(Ω) − (p2

T , y(T ))L2(Ω)

= −
∫ T

0
(u(t), ∂νp(t))L2(Γc) dt.

(3.67)

Proof. First, due to Theorem 3.3.1 the solution y to (3.65) belongs to the space

C1([0, T ];H−1(Ω)) ∩ C0([0, T ];L2(Ω)).

Moreover, due to Theorem 3.2.1 and the time reversibility of the linear wave equation,
the solution p to (3.66) belongs to the space

C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1
0 (Ω)),

and we have the following hidden regularity

∂νp ∈ L2(0, T ;L2(∂Ω)).

Therefore, all the terms in equality (3.67) are well-defined. Further, the solution to
(3.65) is equal to the solution of the following system

ÿ −∆y = 0 in (0, T )× Ω,

y = Bbdu on (0, T )× ∂Ω,

y(0) = 0, ẏ(0) = 0 on Ω,

(3.68)

and equality (3.67) is equal to the following equality∫ T

0
(g(t), y(t))L2(Ω) dt+ 〈p1

T , ẏ(T ))〉H1
0 (Ω),H−1(Ω) − (p2

T , y(T ))L2(Ω)

= −
∫ T

0
(Bbdu(t), ∂νp(t))L2(∂Ω) dt.

(3.69)

Now equality (3.69) can be first established for a smooth solution of (3.68) by integration
by parts and the Green formula. Next we approximate the solution by a sequence of
regular functions {yn}n which obtained by putting a sequence of regular functions {hn}n
in the place of Bbdu in (3.68), see, e.g., [100, Proposition 3.3, page 102]. Finally, (3.69)
is derived by using density arguments and passing to the limit which is justified due to
estimate (3.61).
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In the following, we derive the first-order optimality conditions for the finite horizon
problems of the form (OPDT ). Since the objective function in (OPDT ) involves the
tracking term of the velocity ẏ in the space L2(0, T ;H−1(Ω)), the solution to the adjoint
equation gains more regularity than the one to (3.63) and this solution exists in the weak
sense.

Theorem 3.3.2 (First-order optimality conditions). Let (ȳ, ū) be the optimal solution
to (OPDT ). Then for (y1

0, y
2
0) ∈ H2 we have the following optimality conditions

¨̄y −∆ȳ = 0 in (0, T )× Ω,

ȳ = ū on (0, T )× Γc,

ȳ = 0 on (0, T )× Γ0,

ȳ(0) = y1
0, ˙̄y(0) = y2

0 on Ω,

¨̄p−∆p̄ = ȳ − G ¨̄y in (0, T )× Ω,

p̄ = 0 on (0, T )× ∂Ω,

p̄(0) = 0, ˙̄p(T ) = −G ˙̄y(T ) on Ω,

βū = ∂ν p̄ on (0, T )× Γc,

where p ∈ C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1
0 (Ω)) is the solution of the adjoint equation

Proof. For sake of simplicity in notation, we remove the overbar in the notation of (ȳ, ū).
Let (y1

0, y
2
0) ∈ H2 be given. Computing the directional derivative of JT (·, (y1

0, y
2
0)) at ū

in the direction of an arbitrary δu ∈ L2(0, T ;L2(Γc)) we obtain

J ′T (u, (y1
0, y

2
0))δu

=

∫ T

0
(y(t), δy(t))L2(Ω)dt+

∫ T

0
(ẏ(t), δ̇y(t))H−1(Ω)dt+ β

∫ T

0
(u(t), δu(t))L2(Γc)dt,

(3.70)

where δy ∈ C1([0, T ];H−1(Ω)) ∩ C0([0, T ];L2(Ω)) is the very weak solution of
δ̈y −∆δy = 0 in (0, T )× Ω,

δy = δu on (0, T )× Γc,

δy = 0 on (0, T )× Γ0,

δy(0) = 0, δ̇y(0) = 0 on Ω.

(3.71)

As defined G : (H2(Ω) ∩ H1
0 (Ω))∗ → L2(Ω) denotes the unique linear extension

of G : H−1(Ω) → H1
0 (Ω). Well-posedness of G is justified since H−1(Ω) is dense in

(H2(Ω)∩H1
0 (Ω))∗. Moreover one can show that G is the inverse of the operator (−∆̃)∗ :

L2(Ω) → (H2(Ω) ∩ H1
0 (Ω))∗, where −∆̃ : (H2(Ω) ∩ H1

0 (Ω)) → L2(Ω) is the Laplace
operator with homogeneous Dirichlet boundary conditions. Next we show that∫ T

0
(ẏ(t), δ̇y(t))H−1(Ω)dt = (Gẏ(T ), δy(T ))L2(Ω) −

∫ T

0
(Gÿ(t), δy(t))L2(Ω)dt. (3.72)
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We proceed with the help of an approximation argument. The spaces H1
0 (Ω), L2(Ω),

and H2
0 (0, T ;H

3
2 (∂Ω)) := {q ∈ H2(0, T ;H

3
2 (∂Ω)) : q(0) = q̇(0) = 0} are dense in

the spaces L2(Ω), H−1(Ω), and L2(0, T ;L2(∂Ω)), respectively, and the solutions of
(3.63) (resp. (3.71)) is equal to the solution of (3.58) provided we choose Bbdu ∈
L2(0, T ;L2(∂Ω)) (resp. Bbdδu) as the inhomogeneous Dirichlet part h and the pair
(y1

0, y
2
0) (resp. (0, 0)) as the initial pair. Therefore, there exist sequences {y1n

0 }n ⊂
H1

0 (Ω), {y2n
0 }n ⊂ L2(Ω), {hn}n ⊂ H2

0 (0, T ;H
3
2 (∂Ω)), and {δhn}n ⊂ H2

0 (0, T ;H
3
2 (∂Ω))

such that

y1n
0 → y1

0 in L2(Ω),

y2n
0 → y2

0 in H−1(Ω),

hn → Bbdu in L2(0, T ;L2(∂Ω)),

δhn → Bbdδu in L2(0, T ;L2(∂Ω)).

Moreover, for any triple (y1n
0 , y2n

0 , hn) ∈ H1
0 (Ω)×L2(Ω)×H2

0 (0, T ;H
3
2 (∂Ω)), the solution

of yn of (3.58) belongs to the space C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1(Ω)) with ÿn ∈
L2(0, T ;H−1(Ω)) (see, e.g., [100]), and similarly, for any triple (0, 0, δhn) ∈ H1

0 (Ω) ×
L2(Ω)×H2

0 (0, T ;H
3
2 (∂Ω)), the solution of (3.58) belongs to the space C1([0, T ];L2(Ω))∩

C0([0, T ];H1(Ω)). By using estimate (3.61) we have

‖yn−y‖C0([0,T ];L2(Ω)) + ‖ẏn − ẏ‖C0([0,T ];H−1(Ω)) + ‖ÿn − ÿ‖L2(0,T ;(H1
0 (Ω))∩H2(Ω))∗)

≤ c2

(
‖y1n

0 − y1
0‖L2(Ω) + ‖y2n

0 − y2
0‖H−1(Ω) + ‖hn −Bbdu‖L2(0,T ;L2(∂Ω))

)
,

and

‖δyn − δy‖C0([0,T ];L2(Ω)) + ‖ ˙δyn − δ̇y‖C0([0,T ];H−1(Ω)) ≤ c2‖δhn −Bbdδu‖L2(0,T ;L2(∂Ω)).

For a solution yn of (3.58) with (y1n
0 , y2n

0 , hn) ∈ H1
0 (Ω)×L2(Ω)×H2

0 (0, T ;H
3
2 (∂Ω)) and

a solution δyn of (3.58) with (0, 0, δhn) ∈ H1
0 (Ω)× L2(Ω)×H2

0 (0, T ;H
3
2 (∂Ω)), we have∫ T

0
(ẏn(t), ˙δyn(t))H−1(Ω)dt =

∫ T

0
〈Gẏn(t), ˙δyn(t)〉H1

0 (Ω),H−1(Ω)dt =

(Gẏn(T ), δyn(T ))L2(Ω) −
∫ T

0
(Gÿn(t), δyn(t))L2(Ω)dt.

By passing the limit, we obtain∫ T

0
(ẏn(t), ˙δyn(t))H−1(Ω)dt→

∫ T

0
(ẏ(t), δ̇y(t))H−1(Ω)dt,

(Gẏn(T ), δyn(T ))L2(Ω) → (Gẏ(T ), δy(T ))L2(Ω) = (Gẏ(T ), δy(T ))L2(Ω),∫ T

0
(Gÿn(t), δyn(t))L2(Ω)dt→

∫ T

0
(Gÿ(t), δy(t))L2(Ω)dt,

41



On the global Stabilizability of the Wave Equation via RHC

and we are finished with the justification of (3.72). Now due to (3.70) and (3.72), the
first order optimality condition is equivalent to the following equality∫ T

0
(y(t)− Gÿ(t), δy(t))L2(Ω)dt+ (Gẏ(T ), δy(T ))L2(Ω) + β

∫ T

0
(u(t), δu(t))L2(Γc)dt = 0.

(3.73)
Moreover, due to Lemma 3.3.1 and by using equality (3.67) for equation (3.71), we have

∫ T

0
(g(t), δy(t))L2(Ω) dt+ 〈p1

T , δ̇y(T ))〉H1
0 (Ω),H−1(Ω)

− (p2
T , δy(T ))L2(Ω) +

∫ T

0
(∂νp(t), δu(t))L2(Γc) dt = 0,

(3.74)

for an arbitrary triple (g, p1
T , p

2
T ) ∈ L2(0, T ;L2(Ω))×H1

0 (Ω)×L2(Ω) and its corresponding
weak solution p ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) to (3.66). By comparing (3.73)
with (3.74) and since δu ∈ L2(0, T ;L2(Γc)) is arbitrary, we infer that

βu = ∂νp in L2(0, T ;L2(Γc)),

p1
T = 0 in H1

0 (Ω),

p2
T = −Gẏ(T ) in L2(Ω),

g = y − Gÿ in L2(0, T ;L2(Ω)).

3.3.4 Stabilizability

Similar to the previous section, we show that for the controlled system (3.56) there exists
a feedback law u(y) that stabilizes the system with respect to the energy

E(t, y) := ‖y(t)‖2L2(Ω) + ‖ẏ(t)‖2H−1(Ω), (3.75)

which is defined along a trajectory y.

Lemma 3.3.2 (Equivalence of the observability conditions). The observability condition
OB1 is equivalent to the following observability inequality:

OB3. For every T ≥ Tob1, the very weak solution φ to (3.28) with (φ, φ̇) ∈ C0([0, T ];H2)
satisfies the inequality

cob1‖(φ1
0, φ

2
0)‖2H2

≤
∫ T

0

∫
ω
|φ|2dxdt for every (φ1

0, φ
2
0) ∈ H2,

where the constants cob1, Tob1 have been defined in the observability condition OB1.

Similarly, the observability condition OB2 is equivalent to the following observability
condition:
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OB4. For every T ≥ Tob2, the very weak solution φ to (3.28) with (φ, φ̇) ∈ C0([0, T ];H2)
satisfies the inequality

cob2‖(φ1
0, φ

2
0)‖2H2

≤
∫ T

0

∫
Γc

|∂νGφ̇|2dSdt for every (φ1
0, φ

2
0) ∈ H2,

where the constants cob2, Tob2 have been defined in the observability condition OB2.

Proof. Similar results can be found in the literature e.g., [4, 98], but for sake of com-
pleteness we give a proof.

Proof of the first equivalence (OB1 ⇐⇒ OB3): Let v(t) :=
∫ t

0 φ(s)ds − Gφ2
0 for

t ≥ 0, with φ the very weak solution of (3.28) for the initial pair (φ1
0, φ

2
0) ∈ H2. Then,

for every T ≥ Tob1, v is the weak solution of the following problem
v̈ −∆v = 0 in (0, T )× Ω,

v = 0 on (0, T )× ∂Ω,

v(0) = −Gφ2
0, v̇(0) = φ1

0 on Ω.

(3.76)

Using the observability condition OB1 for (3.76), we obtain

cob1‖(φ1
0, φ

2
0)‖2H2

= cob1‖(−Gφ2
0, φ

1
0)‖2H1

≤
∫ T

0

∫
ω
|v̇|2dxdt =

∫ T

0

∫
ω
|φ|2dxdt

for a very weak solution φ of (3.28) with an arbitrary (φ1
0, φ

2
0) ∈ H2. Using a similar

argument, one can show the converse equivalence.
We turn to the second assertion i.e. the equivalence (OB2 ⇐⇒ OB4). Similarly

we set v := Gφ̇ with φ the very weak solution of (3.28) for the initial pair (φ1
0, φ

2
0) ∈ H2.

Then for every T ≥ Tob2, v is the weak solution to the following problem
v̈ −∆v = 0 in (0, T )× Ω,

v = 0 on (0, T )× ∂Ω,

v(0) = Gφ2
0, v̇(0) = −φ1

0 on Ω.

(3.77)

By using the observability condition OB2 for (3.77), we obtain

cob2‖(φ1
0, φ

2
0)‖2H2

= cob2‖(Gφ2
0,−φ1

0)‖2H1

≤
∫ T

0

∫
Γc

|∂νv|2dSdt =

∫ T

0

∫
Γc

|∂ν(Gφ̇)|2dSdt

for a very weak solution φ of (3.28) with an arbitrary (φ1
0, φ

2
0) ∈ H2. By a similar

argument, the converse equivalence can be shown.

Proposition 3.3.2. Suppose that T > 0 and u ∈ L2(0, T ;L2(Γc)). Then the following
linear wave equation 

ψ̈ −∆ψ = 0 in (0, T )× Ω,

ψ = u on (0, T )× Γc,

ψ = 0 on (0, T )× Γ0,

ψ(0) = 0, ψ̇(0) = 0 on Ω,

(3.78)
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admits a unique very weak solution ψ ∈ C0([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)). Moreover,
∂ν(Gψ) ∈ H1(0, T ;L2(Γc)) and we have the following estimate

‖∂ν(Gψ)‖H1(0,T ;L2(Γc)) ≤ c
′
2‖u‖L2(0,T ;L2(Γc)), (3.79)

where the constant c′2 depends only on T .

Proof. The proof can be found in, e.g., [4].

The proof of the first direction in the following equivalence can be found in, e.g., [4].
Nevertheless, we provide here a proof for completeness.

Theorem 3.3.3 (Global stabilizability). Suppose that (y1
0, y

2
0) ∈ H2 is given. Then the

solution of the controlled system (3.56) with the feedback law u(y) := ∂ν(Gẏ)|Γc converges
exponentially to zero with respect to H2, i.e.

E(t, y) ≤Me−αtE(0, y) = Me−αt‖(y1
0, y

2
0)‖2H2

(3.80)

for positive constants M , α independent of (y1
0, y

2
0), if and only if the observability con-

dition OB2 holds.

Proof. First assume that condition OB2 holds. We show the exponential decay inequality
(3.80).

Let (y1
0, y

2
0) ∈ H2 be given. Setting u(y) := ∂ν(Gẏ)|Γc in (3.56) we obtain a closed-

loop system. This system is well-posed (see, e.g., [4, 91]), and for its unique solution we
have

y ∈ C([0,∞);L2(Ω)) ∩ C1([0,∞);H−1(Ω)),

and ∂ν(Gẏ)|Γc ∈ L2(0,∞;L2(Γc)).
Now, for an arbitrary T > 0 consider the following controlled system

ÿ −∆y = 0 in (0, T )× Ω,

y = ∂ν(Gẏ) on (0, T )× Γc,

y = 0 on (0, T )× Γ0,

y(0) = y1
0, ẏ(0) = y2

0 on Ω.

(3.81)

Suppose that the solution y of (3.81) is smooth enough. Taking L2−inner product of
(3.81) with Gẏ, formally, and integrating over [0, T ], we obtain the following estimate

‖(y(T ), ẏ(T ))‖2H2
− ‖(y(0), ẏ(0))‖2H2

= −2

∫ T

0
‖∂ν(Gẏ(t))‖2L2(Γc)

dt. (3.82)

We can approximate the pair (y1
0, y

2
0) ∈ H2 by a sequence of pairs (y1n

0 , y2n
0 ) ∈ H1

Γ0
(Ω)×

L2(Ω) for which the corresponding solutions yn of (3.81), by using the standard semi
group theory, belong to the space C0([0, T ];H1

Γ0
(Ω)) ∩ C1([0, T ];L2(Ω)) and converge

to y in the space C0([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) as n tends to infinity. Then by
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3.3 Dirichlet Boundary Control

passing to the limits, it can be shown that equality (3.82) is also true for the initial pair
(y1

0, y
2
0) ∈ H2 and its corresponding solution y.

Further, the solution y of (3.81) can be rewritten as y = φ+ψ, where φ is the solution
of (3.28) with the initial pair (y1

0, y
2
0) in the place of (φ1

0, φ
2
0), and ψ is the solution to

(3.78) with u = ∂ν(Gẏ)|Γc . Since the condition OB2 is satisfied and due to Lemma 3.3.2,
the observability condition OB2 is equivalent to condition OB4, we are allowed to use
the observability condition OB4.

By using the observability condition OB4 for (3.28) with the initial pair (y1
0, y

2
0), and

estimate (3.79) for ψ with u = ∂ν(Gẏ)|Γc , we obtain

‖(y1
0, y

2
0)‖2H2

≤ 1

cob2

∫ Tob2

0

∫
Γc

|∂ν(Gφ̇)|2dSdt

≤ 1

cob2

(∫ Tob2

0

∫
Γc

|∂ν(Gẏ)|2dSdt+

∫ Tob2

0

∫
Γc

|∂ν(Gψ̇)|2dSdt
)

≤ 1 + c′2
2

cob2

∫ Tob2

0

∫
Γc

|∂ν(Gẏ)|2dSdt,

(3.83)

for Tob2 > 0 defined in the observability condition OB2. Combining (3.82) and (3.83),
we have

‖(y(Tob2), ẏ(Tob2))‖2H2
− ‖(y(0), ẏ(0))‖2H2

= −2

∫ Tob2

0
‖∂ν(Gẏ(t))‖2L2(Γc)

dt

≤ −2cob2

1 + c′2
2 ‖(y(0), ẏ(0))‖2H2

≤ −2cob2

1 + c′2
2 ‖(y(Tob2), ẏ(Tob2))‖2H2

.

As a result, we have

E(t, y) ≤Me−αtE(0, y) for every t > 0,

where α :=
ln(1+

2cob2

1+c′2
2 )

Tob2
and M := (1 + 2cob2

1+c′2
2 ).

Next we show that the stabilizability property (3.80) implies the observability condi-
tion OB2. Due to Lemma 3.3.2, it is sufficient to show that the stabilizability property
(3.80) implies the observability condition OB4 for a given pair (y1

0, y
2
0) ∈ H2.

Now, let inequality (3.80) holds for the pair (y1
0, y

2
0) ∈ H2. Then due to (3.80) and

(3.82), there exists a T ′ > 0 such that∫ T ′

0
‖∂ν(Gẏ(t))‖2L2(Γc)

dt ≥ 1

4
E(0, y). (3.84)

Moreover, the very weak solution φ to (3.28) with the initial pair (y1
0, y

2
0) ∈ H2 can

be rewritten as φ := y − ψ, where y is the solution to (3.81) and ψ is the solution to
(3.78) with u = ∂ν(Gẏ)|Γcfor T ′ instead of T .
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On the global Stabilizability of the Wave Equation via RHC

Next, we will show that for the very weak solution ψ to (3.78) with u = ∂ν(Gẏ)|Γc ∈
L2(0, T ′;L2(Γc)), we have the following inequality

0 ≤ 1

2

(
‖ψ̇(T ′)‖2H−1(Ω) + ‖ψ(T ′)‖2L2(Ω)

)
=

∫ T ′

0

∫
Γc

−∂ν(Gẏ)∂ν(Gψ̇)dSdt

=

∫ T ′

0

∫
Γc

−∂ν(Gψ̇ + Gφ̇)∂ν(Gψ̇)dSdt.

(3.85)

First, the solution to (3.78) with u = ∂ν(Gẏ)|Γc is equal to the solution of the following
systems 

ψ̈ −∆ψ = 0 in (0, T ′)× Ω,

ψ = Bbd (∂ν(Gẏ)|Γc) on (0, T ′)× ∂Ω,

ψ(0) = 0, ψ̇(0) = 0 on Ω.

(3.86)

Moreover, the space H2
0 (0, T ′;H

3
2 (∂Ω)) is dense in the space L2(0, T ′;L2(∂Ω)), and

for every h ∈ H2
0 (0, T ′;H

3
2 (∂Ω)) instead of Bbd (∂ν(Gẏ)|Γc) ∈ L2(0, T ′;L2(∂Ω)), as the

inhomogenous Drichlet part in (3.86), the very weak solution of (3.86) belongs to the
space C0([0, T ′];H1(Ω)) ∩ C1([0, T ′];L2(Ω)), see, e.g., [100]. Therefore, there exists a

sequence {hn}n ⊂ H2
0 (0, T ′;H

3
2 (∂Ω)) such that

hn → Bbd (∂ν(Gẏ)|Γc) in L2(0, T ′;L2(∂Ω)), (3.87)

and corresponding to this sequence, there exists a sequence of solutions

{ψn}n ⊂ C0([0, T ′];H1(Ω)) ∩ C1([0, T ′];L2(Ω))

which satisfy 
ψ̈n −∆ψn = 0 in (0, T ′)× Ω,

ψn = hn on (0, T ′)× ∂Ω,

ψn(0) = 0, ψ̇n(0) = 0 on Ω.

(3.88)

Moreover, due to the estimate (3.61), we obtain

‖ψn − ψ‖C0([0,T ′];L2(Ω)) + ‖ψ̇n − ψ̇‖C0([0,T ′];H−1(Ω)) ≤
c2‖hn −Bbd (∂ν(Gẏ)|Γc) ‖L2(0,T ′;L2(∂Ω)).

(3.89)

Now, by taking L2-inner product of (3.88) with Gψ̇n, and integrating over [0, T ′], we
obtain

0 ≤ 1

2

(
‖ψ̇n(T ′)‖2H−1(Ω) + ‖ψn(T ′)‖2L2(Ω)

)
=

∫ T ′

0

∫
∂Ω
−hn∂ν(Gψ̇n)dSdt. (3.90)

Now by using (3.89), passing the limits in (3.90), and using the following equality∫ T ′

0

∫
∂Ω

(−Bbd (∂ν(Gẏ)|Γc))∂ν(Gψ̇)dSdt =

∫ T ′

0

∫
Γc

−∂ν(Gẏ)∂ν(Gψ̇)dSdt, (3.91)
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3.3 Dirichlet Boundary Control

we conclude the inequality (3.85) for the very weak solution ψ to (3.78) with u =
∂ν(Gẏ)|Γc ∈ L2(0, T ′;L2(Γc)).

Next, (3.85) implies that∫ T ′

0
‖∂ν(Gψ̇(t))‖2L2(Γc)

dt ≤
∫ T ′

0
‖∂ν(Gφ̇(t))‖2L2(Γc)

dt. (3.92)

Using (3.84), (3.92), and the following inequality∫ T ′

0
‖∂ν(Gφ̇(t))‖2L2(Γc)

dt ≥∫ T ′

0
‖∂ν(Gẏ(t))‖2L2(Γc)

dt−
∫ T ′

0
‖∂ν(Gψ̇(t))‖2L2(Γc)

dt,

we complete the proof with∫ T ′

0
‖∂ν(Gφ̇(t))‖2L2(Γc)

dt ≥ 1

8
E(0, y).

3.3.5 Stability of RHC

From this point on, we denote (y(t), ẏ(t)) by Y(t) and we define α` := min(1,β)
2 .

Definition 3.3.2 (Value function). For every pair (y1
0, y

2
0) =: Y0 ∈ H2, the infinite

horizon value function V∞ : H2 → R+ is defined as

V∞(Y0) := min
u∈L2(0,∞;L2(Γc))

{J∞(u,Y0) subject to (3.56)}.

Similarly, the finite horizon value function VT : H2 → R+ is defined by

VT (Y0) := min
u∈L2(0,T ;L2(Γc))

{JT (u,Y0) subject to (3.63)}. (3.93)

Lemma 3.3.3. Suppose that the observability conditions OB1-OB2 hold. Then for every
T > 0, there exists a control û ∈ L2(0, T ;L2(Γc)) for (3.63) such that

VT (Y0) ≤ JT (û;Y0) ≤ γ2(T )‖Y0‖2H2
(3.94)

for every initial pair (y1
0, y

2
0) = Y0 ∈ H2, where γ2 : R+ → R+ is a nondecreasing, con-

tinuous, and bounded function. Moreover, there exists a constant γ1(T ) > 0 depending
on T such that

VT (Y0) ≥ γ1(T )‖Y0‖2H2
(3.95)

for all (y1
0, y

2
0) = Y0 ∈ H2.
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Proof. Let T > 0 and an initial pair (y1
0, y

2
0) ∈ H2 be given. Since the observability

condition OB2 holds, by setting u(t) := ∂ν(Gẏ(t))|Γc in the controlled system (3.63),
and using Theorem 3.3.3, we obtain

‖(y(t), ẏ(t))‖2H2
≤Me−αt‖(y(0), ẏ(0))‖2H2

for all t ∈ [0, T ],

where the constants M and α were defined in Theorem 3.3.3. By integrating from 0 to
T we have ∫ T

0
‖(y(t), ẏ(t))‖2H2

dt ≤ M

α
(1− e−αT )‖(y(0), ẏ(0))‖2H2

.

Moreover, by (3.80) and (3.82) we have∫ T

0
‖u(t)‖2L2(Γc)

dt =

∫ T

0
‖∂ν(Gẏ(t))‖2L2(Γc)

dt

≤1

2
(E(0, y) + E(T, y)) ≤ (1 +M)

2
‖(y1

0, y
2
0)‖2H2

.

(3.96)

By (3.57), (3.96), and the definition of the value function VT we have

VT (y1
0, y

2
0) ≤

∫ T

0

(
1

2
‖(y(t), ẏ(t))‖2H2

+
β

2
‖∂ν(Gẏ(t))‖2L2(Γc)

)
dt

≤
(
M

2α
(1− e−αT ) +

β(1 +M)

4

)
‖(y1

0, y
2
0)‖2H2

= γ2(T )‖(y1
0, y

2
0)‖2H2

,

which gives (3.94).
Now to verify (3.95), we use the superposition argument for (3.63) with an arbitrary

control u ∈ L2(0, T ;L2(Γc)). We rewrite the solution of (3.63) as y = φ+ ψ where φ is
the solution to (3.28) with the initial data (y1

0, y
2
0) and ψ is the solution to (3.78). Since

the condition OB1 is satisfied and due to Lemma 3.3.2, the observability condition OB1
is equivalent to the condition OB3, we are allowed to use the observability condition
OB3. Now by using the observability condition OB3 for (3.28) with the initial data
(y1

0, y
2
0) and Ω instead of ω, and using estimate (3.61) for (3.78), we obtain

‖(y1
0, y

2
0)‖2H2

≤ 1

cob1

∫ T

0
‖φ(t)‖2L2(Ω)dt

≤ 1

cob1

∫ T

0

(
‖y(t)‖2L2(Ω) + ‖ϕ(t)‖2L2(Ω)

)
dt

≤ 1

cob1

∫ T

0

(
‖y(t)‖2L2(Ω) + Tc2

2‖u(t)‖2L2(Γc)

)
dt

≤ c′′2(T )

∫ T

0

(
1

2
‖(y(t), ẏ(t))‖2H2

+
β

2
‖u(t)‖2L2(Γc)

)
dt

= c′′2(T )

∫ T

0
`(Y(t), u(t))dt.

Since u ∈ L2(0, T ;L2(Γc)) is arbitrary, we obtain (3.95) for a constant c′′2(T ) independent
of u and (y1

0, y
2
0).
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Remark 3.3.1. The property (3.95) is equivalent to the injectivity of the differential Re-
catti operator corresponding to (OPDT ) which in turn is equivalent to the observability
condition OB1, see, [57, Theorem 3.3].

Remark 3.3.2. Note that, as it has been shown in Lemma 3.3.3, the observability
condition OB2 is equivalent to the stabilizability condition (3.94). The stabilizability
condition (3.94) and well-posedness (Proposition 3.3.1) of open-loop problems in the
form (OPDT ) are equivalent to the conditions (A2) and (A1) in Chapter 2, respectively.
Moreover, since the stabilizability condition (3.94) holds globally, the condition (A3) is
no longer needed and we can use the receding horizon framework introduced in Chapter
2. In addition, by using the uniform positiveness of the value function VT which has
been established in (3.95) based on the observability condition OB1, we shall verify the
exponential stability of RHC (see Remark 2.2.3).

Theorem 3.3.4 (Suboptimality and exponential decay). Suppose that the observability
conditions OB1-OB2 hold and let a sampling time δ > 0 be given. Then there exist
numbers T ∗ > δ and α ∈ (0, 1), such that for every fixed prediction horizon T ≥ T ∗

and every Y0 ∈ H2, the receding horizon control urh obtained from Algorithm 3.1 for the
stabilization of (3.56) satisfies the suboptimality inequality

αV∞(Y0) ≤ αJ∞(urh,Y0) ≤ VT (Y0) ≤ V∞(Y0),

and exponential stability
‖Yrh(t)‖2H2

≤ c′e−ζt‖Y0‖2H2
, (3.97)

where the positive numbers ζ and c′ depend on α, δ, and T , but are independent from
Y0.

Proof. Let δ > 0 be given. To show the suboptimality inequality we refer to the proof
of Theorem 2.2.1 in Chapter 2. Now we turn to inequality (3.97). It is of interest to
compute the constant ζ and c′ in two different ways. First, due to Theorem 2.2.2 in
Chapter 2, there exists a T ∗ > 0 such that for every T ≥ T ∗ we have

VT−δ(Yrh(t)) ≤ ce−ζ1tVT (Y0) for every Y0 ∈ H2,

where the constants c and ζ1 are given by

ζ1 :=
ln(1 + α

1+θ1θ2
)

δ
, c := (1 +

α

1 + θ1θ2
),

and θ1(T, δ), θ2(T, δ) are defined by

θ1 := 1 +
γ2(T )

α`(T − δ)
, θ2 :=

γ2(T )

α`δ
.

Due to Lemma 3.3.3, and using (3.94) and (3.95) we obtain

‖Yrh(t)‖2H2
≤ cγ2(T )

γ1(T − δ)
e−ζ1t‖Y0‖2H2

for every Y0 ∈ H2.
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Second way: similar to the proof of Theorem 3.2.4, one can show that there exist a
T ∗ > 0 such that for every T ≥ T ∗ and k ≥ 1 we have

‖Yrh(kδ)‖2H2
≤ c′2e−ζ2kδ‖Y0‖2H2

for every Y0 ∈ H2, (3.98)

where ζ2 := | ln η|
δ with η :=

(
1− αγ1(δ)

γ2(T )

)
∈ (0, 1), and c′2 := γ2(T )

γ1(T ) . Moreover, for every

t > 0 there exists a k ∈ N such that t ∈ [kδ, (k + 1)δ]. Using (3.61), (3.94), and (3.98),
we have for t > 0,

‖Yrh(t)‖2H2
≤ 3c2

2

(
‖Yrh(kδ)‖2H2

+

∫ (k+1)δ

kδ
‖urh(t)‖2L2(Γc)

dt

)

≤ 3c2
2

(
‖Yrh(kδ)‖2H2

+
2

β
VT (Yrh(kδ))

)
≤ 3c2

2

(
‖Yrh(kδ)‖2H2

+
2γ2(T )

β
‖Yrh(kδ)‖2H2

)
≤ 3c2

2c
′
2(1 +

2γ2(T )

β
)e−ζ2kδ‖Y0‖2H2

≤ 3c2
2c
′
2(1 +

2γ2(T )

β
)

(
1− αγ1(δ)

γ2(T )

)−1

e−ζ2(k+1)δ‖Y0‖2H2

≤ 3c2
2c
′
2(1 +

2γ2(T )

β
)

(
1− αγ1(δ)

γ2(T )

)−1

e−ζ2t‖Y0‖2H2
,

and the proof is complete.

3.4 Neumann Boundary Control

In this section, we are dealing with the following one-dimensional wave equation with a
Neumann control action at one side of boundary

ÿ − yxx = 0 (t, x) ∈ (0,∞)× (0, L),

y(t, 0) = 0 t ∈ (0,∞),

yx(t, L) = u(t) t ∈ (0,∞),

y(0, x) = y1
0, ẏ(0, x) = y2

0 x ∈ (0, L),

(3.99)

where L > 0, u ∈ L2(0,∞), and (y1
0, y

2
0) ∈ V ×L2(0, L) with V := {q ∈ H1(0, L) : q(0) =

0}. The functional space V is equipped with the following scalar product

(φ, ψ) :=

∫ L

0
φxψxdx.

Moreover, V ∗ stands for the dual space of V . Similar to the previous sections we define
the functional space H3 := V × L2(0, L) with its corresponding energy

E(t, y) := ‖y(t)‖2V + ‖ẏ(t)‖2L2(0,L),
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along a trajectory y. The incremental function ` : V × L2(0, L) × R+ → R+ is defined
by

`((y, z), u) :=
1

2
‖(y, z)‖2H3

+
β

2
u2. (3.100)

Moreover, later we will use the space V 2 := {q ∈ H2(0, L) ∩ V : qx(L) = 0}.

Remark 3.4.1. Note that, for the case dim(Ω) ≥ 2, the generalization of controlled
system (3.99) has the form

ÿ −∆y = 0 in (0,∞)× Ω,

∂νy = u on (0,∞)× Γc,

y = 0 on (0,∞)× Γ0,

y(0) = y1
0, ẏ(0) = y2

0 on Ω,

(3.101)

where Ω ∈ Rn is a bounded domain with the smooth boundary ∂Ω := Γc ∪ Γ0, two
disjoint components Γc, Γ0 are relatively open in ∂Ω, and int(Γc) 6= ∅. Moreover u ∈
L2(0,∞;L2(Γc)), (y1

0, y
2
0) ∈ H3 with H3 := H1

Γ0
(Ω) × L2(Ω), and the functional space

H1
Γ0

(Ω) is defined by

H1
Γ0

(Ω) := {f ∈ H1(Ω) : f |Γ0 = 0}.

For every T > 0, the solution operator L : L2(0, T ;L2(Γc)) → C0([0, T ];H3) defined
by u 7→ (y, ẏ) is not continuous, see [92] for an example. For our framework we would
require that the solution operator is continuous from L2(0, T ;L2(Γc)) to C0([0, T ];H3).
However, this property does not hold as it was shown in [92]. In fact, the solution
(y(·), ẏ(·)), depending on the geometry of Ω, on any level belongs to a strictly larger
space than H3. Nevertheless, stabilization with respect to the energy H3 is of great
interest from physical point of view, and to the best of our knowledge, most of results
concerning the stabilization and controllability for the controlled system (3.101) are
dealing with the energy in H3.

3.4.1 Existence and uniqueness of the solution

Consider the following one dimensional wave equation with an inhomogeneous Neumann
boundary condition

ÿ − yxx = 0 (t, x) ∈ (0, T )× (0, L),

y(t, 0) = 0 t ∈ (0, T ),

yx(t, L) = u(t) t ∈ (0, T ),

y(0, x) = y1
0, ẏ(0, x) = y2

0 x ∈ (0, L).

(3.102)

Definition 3.4.1 (Weak solution). Let T > 0, (y1
0, y

2
0) ∈ H3, and u ∈ L2(0, T ) be

given. Then y is referred to as the weak solution to (3.102) if (y, ẏ) ∈ C0([0, T ];H3),
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(y(0), ẏ(0)) = (y1
0, y

2
0), and for every ϑ ∈ C1([0, T ]× [0, L]) with ϑ(0, τ) = 0,∀τ ∈ [0, T ],

it satisfies∫ L

0
ẏ(t, x)ϑ(t, x)dx−

∫ L

0
y2

0(x)ϑ(0, x)dx

+

∫ t

0

∫ L

0

(
−ϑ̇ẏ + ϑxyx

)
dxdτ −

∫ t

0
u(τ)ϑ(τ, L)dτ = 0

(3.103)

for almost every t ∈ [0, T ].

Theorem 3.4.1 (Existence and uniqueness of the weak solution). Let T > 0, L > 0,
(y1

0, y
2
0) ∈ H3, and u ∈ L2(0, T ) be given. Then there exists an unique weak solution y

with
y ∈ C0([0, T ];V ) ∩ C1([0, T ];L2(0, L)),

and for this weak solution we have the estimate

‖y‖C0([0,T ];V )+‖ẏ‖C0([0,T ];L2(0,L))+‖ÿ‖L2(0,T ;V ∗) ≤ c3

(
‖y1

0‖V + ‖y2
0‖L2(0,L) + ‖u‖L2(0,T )

)
,

(3.104)
where the constant c3 depends only on T and L. Furthermore, y(·, L) ∈ H1(0, T ) and
we have

‖ẏ(·, L)‖L2(0,T ) ≤ c4

(
‖y1

0‖V + ‖y2
0‖L2(0,L) + ‖u‖L2(0,T )

)
, (3.105)

for a constant c4 depending only on L and T .

Proof. The proof is given in, e.g., [45, page 68].

We will later need the following auxiliary problem.
ÿ − yxx = f (t, x) ∈ (0, T )× (0, L),

y(t, 0) = 0 t ∈ (0, T ),

yx(t, L) = 0 t ∈ (0, T ),

y(0, x) = y1
0, ẏ(0, x) = y2

0 x ∈ (0, L).

(3.106)

Definition 3.4.2 (Very weak solution). Let L > 0, T > 0, (y1
0, y

2
0) ∈ L2(0, L)×V ∗, and

f ∈ L2(0, T ;V ∗) be given. A function y ∈ L2(0, T ;L2(0, L)) is referred to as the very
weak solution of (3.106), if the following inequality holds∫ T

0
(g(t), y(t))L2(0,L) dt = −(y1

0, ϑ̇(0))L2(0,L) + 〈y2
0, ϑ(0)〉V ∗,V +

∫ T

0
〈f(t), ϑ(t)〉V ∗,V dt,

for all g ∈ L2(0, T ;L2(0, L)) and ϑ ∈ C1([0, T ];L2(0, L))∩C0([0, T ];V ) the weak solution
of the following backward in time problem

ϑ̈− ϑxx = g (t, x) ∈ (0, T )× (0, L),

ϑ(t, 0) = 0 t ∈ (0, T ),

ϑx(t, L) = 0 t ∈ (0, T ),

ϑ(T, x) = 0, ϑ̇(T, x) = 0 x ∈ (0, L).

The very weak solution is also called solution by transposition.
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3.4 Neumann Boundary Control

We have the following existence and regularity results for the very weak solution of
(3.106), see, e.g., [97, 99].

Theorem 3.4.2 (Existence and uniqueness of the very weak solution). For every L > 0,
T > 0, f ∈ L2(0, T ;V ∗), and every pair (y1

0, y
2
0) ∈ L2(Ω) × V ∗, there exists a unique

very weak solution to (3.106). Moreover, this very weak solution belongs to the space

C1([0, T ];V ∗) ∩ C0([0, T ];L2(0, L)),

and we have the following estimate

‖y‖C0([0,T ];L2(0,L)) + ‖ẏ‖C0([0,T ];V ∗) ≤ c̄4

(
‖y1

0‖L2(0,L) + ‖y2
0‖V ∗ + ‖f‖L2(0,T ;V ∗)

)
, (3.107)

where the constant c̄4 is independent of y1
0, y2

0, and f .

3.4.2 Existence of the optimal control

Consider the following optimal control problem

min
{
JT (u; (y1

0, y
2
0)) | (y, u) satisfies (3.102), u ∈ L2(0, T )

}
. (OPNT )

Proposition 3.4.1 (Existence and uniqueness of the optimal control). For every T > 0
and (y1

0, y
2
0) ∈ H3, the optimal control problem (OPNT ) admits a unique solution.

Proof. We use the standard argument of calculus of variation. Since the objective func-
tion JT (u; (y1

0, y
2
0)) is bounded from below we have

inf
u∈L2(0,T )

JT (u; (y1
0, y

2
0)) = σ <∞.

Therefore, there is a minimizing sequence {un}n ⊂ L2(0, T ) such that

‖un‖2L2(0,T ) ≤
2

β
JT (un; (y1

0, y
2
0)) <∞,

and, as a consequence, the sequence has a weakly convergent subsequence un ⇀ u∗

with the limit u∗ ∈ L2(0, T ). Due to Theorem 3.4.1 and estimate (3.104), there ex-
ists a bounded sequence of weak solutions {yn}n ⊂ L∞(0, T ;V ) ∩W 1,∞(0, T ;L2(0, L))
to (3.102) corresponding to the control sequence {un}n. Hence, there are weakly-star
convergent subsequences of {yn}n, {ẏn}n, and {ÿn}n such that

yn ⇀∗ y∗ in L∞(0, T ;V ),

ẏn ⇀∗ ẏ∗ in L∞(0, T ;L2(0, L)),

ÿn ⇀ ÿ∗ in L2(0, T ;V ∗).

Now it remains to show that y∗ is the weak solution to (3.102) corresponding to the
control u∗. To see this, we only need to pass the limits in the weak formulation (3.103)
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On the global Stabilizability of the Wave Equation via RHC

for the pair of sequences (yn, un). For every ϑ ∈ C1([0, T ]× [0, L]) such that ϑ(0, τ) = 0
for all τ ∈ [0, T ], we have for every t ∈ [0, T ]∫ t

0

∫ L

0
(ẏn(τ, x)− ẏ∗(τ, x))ϑ(τ, x)dxdτ → 0,∫ t

0

∫ L

0
(ẏn(τ, x)− ẏ∗(τ, x))ϑ̇(τ, x)dxdτ → 0,∫ t

0

∫ L

0
((yn)x(τ, x)− ẏ∗x(τ, x))ϑx(τ, x)dxdτ → 0,∫ t

0
(un(τ)− u∗(τ))ϑ(τ, L)dτ → 0.

Moreover, due to estimate (3.104), for every t ∈ [0, T ] the sequence {ẏn(t)}n is bounded
in L2(0, L). Hence, it has a weakly convergent subsequence ẏn(t) ⇀ ȳt with limit
ȳt ∈ L2(0, L). We define the time-point evaluation operator It : H1(0, T ;V ∗)→ V ∗ at a
time t ∈ [0, T ] by p 7→ p(t). This operator is continuous. Moreover, for every t ∈ [0, T ]
and q ∈ V we have

(ȳt, q)L2(0,L) = lim
n→∞

〈Itẏn, q〉V ∗,V = lim
n→∞

〈ẏn, I∗t q〉H1(0,T ;V ∗),(H1(0,T ;V ∗))∗

= 〈ẏ∗, I∗t q〉H1(0,T ;V ∗),(H1(0,T ;V ∗))∗

= 〈Itẏ∗, q〉V ∗,V ,

(3.108)

where I∗t : V → (H1(0, T ;V ∗))∗ is the adjoint operator to It. Therefore, for every
ϑ ∈ C1([0, T ] × [0, L]) such that ϑ(0, τ) = 0 for all τ ∈ [0, T ], we have for almost every
t ∈ [0, T ] ∫ L

0
ẏn(t, x)ϑ(t, x)dx→

∫ L

0
ẏ∗(t, x)ϑ(t, x)dx, (3.109)

and, as a consequence, y∗ is the weak solution to (3.102) corresponding to the control u∗.
Now since the solution operator S : L2(0, T ) → L∞(0, T ;H3) defined by u 7→ (y, ẏ) is
affine and continuous, the objective function JT (·; y1

0, y
2
0) is weakly lower semi-continuous

and we have
0 ≤ JT (u∗; (y1

0, y
2
0)) ≤ lim inf

n→∞
JT (un; (y1

0, y
2
0)) = σ.

As a result, the pair (y∗, u∗) is optimal. Uniqueness follows from the strictly convexity
of JT (·; (y1

0, y
2
0)).

3.4.3 Optimality conditions

Lemma 3.4.1. Consider the following linear wave equation
ÿ − yxx = 0 (t, x) ∈ (0, T )× (0, L),

y(t, 0) = 0 t ∈ (0, T ),

yx(t, L) = u(t) t ∈ (0, T ),

y(0, x) = 0, ẏ(0, x) = 0 x ∈ (0, L),

(3.110)
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3.4 Neumann Boundary Control

with an inhomogeneous Neumann part u ∈ L2(0, T ). Moreover, let g ∈ L2(0, T ;V ∗) and
(p1
T , p

2
T ) ∈ L2(0, L)×V ∗. Then the weak solution y to (3.110) and the very weak solution

p to 
p̈− pxx = g (t, x) ∈ (0, T )× (0, L),

p(t, 0) = 0 t ∈ (0, T ),

px(t, L) = 0 t ∈ (0, T ),

p(T, x) = p1
T , ṗ(T, x) = p2

T x ∈ (0, L),

(3.111)

satisfy the following equality∫ T

0
u(t)p(t, L) dt =

∫ T

0
〈g(t), y(t)〉V ∗,V dt+ (p1

T , ẏ(T ))L2(0,L) − 〈p2
T , y(T )〉V ∗,V . (3.112)

Proof. First due to Theorem 3.4.2 and the time reversibility of the linear wave equation,
the very weak solution p of (3.111) belongs to the space

C1([0, T ];V ∗) ∩ C0([0, T ];L2(0, L)).

Moreover, due to Theorem 3.4.1, the weak solution y of (3.110) belongs to the space
C1([0, T ];L2(0, L))∩C0([0, T ];V ). Therefore, the right hand side of (3.112) is well-posed.
We show that p(·, L) ∈ L2(0, T ) is well-defined and can be associated to the very weak
solution p to (3.111). Consider the following linear functional

`g,p1T ,p
2
T

(u) :=

∫ T

0
〈g(t), y(t)〉V ∗,V dt+ (p1

T , ẏ(T ))L2(0,L) − 〈p2
T , y(T )〉V ∗,V , (3.113)

where y(u) is the solution of (3.110) depending on u ∈ L2(0, T ). Moreover, due to
(3.113) and estimate (3.104) we have

|`g,p1T ,p2T (u)| ≤‖g‖L2(0,T ;V ∗)‖y‖L2(0,T ;V ) + ‖ẏ(T )‖L2(0,L)‖p1
T ‖L2(0,L) + ‖y(T )‖V ‖p2

T ‖V ∗ ,

≤ĉ4

(
‖g‖L2(0,T ;V ∗) + ‖p1

T ‖L2(0,L) + ‖p2
T ‖V ∗

)
‖u‖L2(0,T ),

(3.114)

for a constant ĉ4 depending on T and L. Therefore, `g,p1T ,p
2
T

: L2(0, T ) → R is a con-

tinuous linear functional. By using the Riesz representation theorem and (3.114), there
exist an unique object p(·, L) ∈ L2(0, T ) such that∫ T

0
u(t)p(t, L) dt = `g,p1T ,p

2
T

(u), (3.115)

and we have

‖p(·, L)‖L2(0,T ) ≤ ĉ4

(
‖g‖L2(0,T ;V ∗) + ‖p1

T ‖L2(0,L) + ‖p2
T ‖V ∗

)
. (3.116)
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Next, we show that p(·, L) is the trace of the solution p to (3.111). Since the spaces V ,
L2(0, L), and L2(0, T ;L2(0, L)) are dense in the spaces L2(0, L), V ∗, and L2(0, T ;V ∗), re-
spectively, there exist sequences {p1n

T }n ⊂ V , {p2n
T }n ⊂ L2(0, L), and {gn}n ⊂ L2(0, T ;L2(0, L))

such that

p1n
T → p1

T in L2(0, L),

p2n
T → p2

T in V ∗,

gn → g in L2(0, T ;V ∗).

Moreover, for any triple (p1n
T , p

2n
T , g

n) ∈ V × L2(0, L) × L2(0, T ;L2(0, T )), the solution
of pn of (3.111) belongs to the space C1([0, T ];L2(0, L)) ∩ C0([0, T ];V ) (see, e.g., [99]).
Now, by using (3.107) we have

‖pn − p‖C0([0,T ];L2(0,L)) + ‖ṗn − ṗ‖C0([0,T ];V ∗)

≤ c̄4

(
‖p1n
T − p1

T ‖L2(0,L) + ‖p2n
T − p2

T ‖V ∗ + ‖gn − g‖L2(0,T ;V ∗)

)
.

(3.117)

For the solution pn of (3.111) with (p1n
T , p

2n
T , g

n) ∈ V ×L2(0, L)×L2(0, T ;L2(0, L)) and
the solution y of (3.110) we have∫ T

0
u(t)pn(t, L) dt =

∫ T

0
〈gn(t), y(t)〉V ∗,V dt+ (p1n

T , ẏ(T ))L2(0,L) − 〈p2n
T , y(T )〉V ∗,V .

(3.118)
Moreover, due to (3.116), we have

‖pn(·, L)‖L2(0,T ) ≤ ĉ4

(
‖gn‖L2(0,T ;V ∗) + ‖p1n

T ‖L2(0,L) + ‖p2n
T ‖V ∗

)
.

Therefore the sequence pn(·, L) is bounded in L2(0, T ) and, as a consequence, there is a
weakly convergent subsequence {pn(·, L)}n such that pn(·, L) ⇀ p∗(·, L) with a function
p∗(·, L) ∈ L2(0, T ). Now by passing the limits we have∫ T

0
〈gn(t), y(t)〉V ∗,V dt→

∫ T

0
〈g(t), y(t)〉V ∗,V dt,

(p1n
T , ẏ(T ))L2(0,L) → (p1

T , ẏ(T ))L2(0,L),

〈p2n
T , y(T )〉V ∗,V → 〈p2

T , y(T )〉V ∗,V ,∫ T

0
u(t)pn(t, L) dt→

∫ T

0
u(t)p∗(t, L) dt,

and, as a consequence, by using (3.118) we obtain∫ T

0
u(t)p∗(t, L) dt =

∫ T

0
〈g(t), y(t)〉V ∗,V dt+ (p1

T , ẏ(T ))L2(0,L) − 〈p2
T , y(T )〉V ∗,V . (3.119)

Moreover, due to (3.117), we infer that

pn → p in C1([0, T ];V ∗) ∩ C0([0, T ];L2(0, L)).
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3.4 Neumann Boundary Control

Finally, (3.113), (3.115), and (3.119) imply∫ T

0
u(t)p∗(t, L) dt =

∫ T

0
u(t)p(t, L) dt = `g,p1T ,p

2
T

(u). (3.120)

Since equality (3.120) holds for all u ∈ L2(0, T ), we conclude p∗(·, L) = p(·, L) in L2(0, T ).

In the following, we derive the first-order optimality conditions for the finite horizon
problems of the form (OPNT ). Due to the presence of the tracking term for the velocity
ẏ ∈ L2(0, T ;L2(0, L)) in the objective function of (OPNT ), we will see that the solution
to the ajdoint equation has less regularity than the one to (3.102) and it exists in the
very weak sense.

Theorem 3.4.3 (First-order optimality conditions). Let (ȳ, ū) be the optimal solution
to (OPNT ). Then for (y1

0, y
2
0) ∈ H3 we have the following optimality conditions

¨̄y − ȳxx = 0 (t, x) ∈ (0, T )× (0, L),

ȳ(t, 0) = 0 t ∈ (0, T ),

ȳx(t, L) = ū(t) t ∈ (0, T ),

ȳ(0, x) = y1
0, ˙̄y(0, x) = y2

0 x ∈ (0, L),

¨̄p− p̄xx = ¨̄y + ȳxx (t, x) ∈ (0, T )× (0, L),

p̄(t, 0) = 0 t ∈ (0, T ),

p̄x(t, L) = 0 t ∈ (0, T ),

p̄(T, x) = 0, ˙̄p(T, x) = ˙̄y(T ) x ∈ (0, L),

βū(t, L) = p̄(t, L) t ∈ (0, T ),

where p the solution of the adjoint equation belongs to the space C0([0, T ];L2(0, L)) ∩
C1([0, T ];V ∗).

Proof. For sake of simplicity in notation, we remove the overbar in the notation of (ȳ, ū).
Let (y1

0, y
2
0) ∈ H3 be given. Computing the directional derivative of JT (·, (y1

0, y
2
0)) at u

in the direction of an arbitrary δu ∈ L2(0, T ) we obtain

J ′T (u, (y1
0, y

2
0))δu

=

∫ T

0
(y(t), δy(t))V dt+

∫ T

0
(ẏ(t), δ̇y(t))L2(0,L)dt+ β

∫ T

0
u(t)δu(t)dt,

=

∫ T

0
〈−yxx(t), δy(t)〉V ∗,V dt+

∫ T

0
(ẏ(t), δ̇y(t))L2(0,L)dt+ β

∫ T

0
u(t)δu(t)dt,

(3.121)

where the operator −∂xx : V → V ∗ defined by q 7→ −qxx with the boundary conditions
qx(L) = 0 and q(0) = 0 is an isomorphism, and δy ∈ C1([0, T ];L2(0, L)) ∩ C0([0, T ];V )
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is the weak solution of
δ̈y − δyxx = 0 (t, x) ∈ (0, T )× (0, L),

δy(t, 0) = 0 t ∈ (0, T ),

δyx(t, L) = δu(t) t ∈ (0, T ),

δy(0, x) = 0, δy(0, x) = 0 x ∈ (0, L).

(3.122)

Next, we show that∫ T

0
(ẏ(t), δ̇y(t))L2(0,L)dt = (ẏ(T ), δy(T ))L2(0,L) −

∫ T

0
〈ÿ(t), δy(t)〉V ∗,V dt. (3.123)

We proceed with the help of an approximation argument. Since the spaces V 2, V , and
Z with Z := {q ∈ C3([0, T ]) : u(0) = u̇(0) = 0} are dense in the spaces V , L2(0, L), and
L2(0, T ), respectively, there exist sequences {y1n

0 }n ⊂ V 2, {y2n
0 }n ⊂ V , and {un}n ⊂ Z

such that

y1n
0 → y1

0 in V,

y2n
0 → y2

0 in L2(0, L),

un → u in L2(0, T ).

Moreover, for any triple (y1n
0 , y2n

0 , un) ∈ V 2×V ×Z, the solution of yn of (3.102) belongs
to the space C1([0, T ];V )∩C0([0, T ];V 2) with ÿn ∈ L2(0, T ;L2(0, L)) (see, e.g., [45, page
69]), and due to (3.104) we have

‖yn − y‖C0([0,T ];V ) + ‖ẏn − ẏ‖C0([0,T ];L2(0,L)) + ‖ÿn − ÿ‖L2(0,T ;V ∗)

≤ c3

(
‖y1n

0 − y1
0‖V + ‖y2n

0 − y2
0‖L2(0,L) + ‖un − u‖L2(0,T )

)
.

For the solution yn of (3.102) with (y1n
0 , y2n

0 , un) ∈ V 2 × V × Z and the solution δy of
(3.122) we have∫ T

0
(ẏn(t), δ̇y(t))L2(0,L)dt =

∫ T

0
〈ẏn(t), δ̇y(t)〉V,V ∗dt =

(ẏn(T ), δy(T ))L2(0,L) −
∫ T

0
〈ÿn(t), δy(t)〉V ∗,V dt.

By passing the limits we obtain∫ T

0
(ẏn(t), δ̇y(t))L2(0,L)dt→

∫ T

0
(ẏ(t), δ̇y(t))L2(0,L)dt,

(ẏn(T ), δy(T ))L2(0,L) → (ẏ(T ), δy(T ))L2(0,L) = 〈ẏ(T ), δy(T )〉V ∗,V ,∫ T

0
〈ÿn(t), δy(t)〉V ∗,V dt→

∫ T

0
〈ÿ(t), δy(t)〉V ∗,V dt,
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and, as a consequence, we are finished with the justification of (3.123). Now due to
(3.121) and (3.123), the first order optimality condition is equivalent to the following
equality∫ T

0
〈−ÿ(t)− yxx(t), δy(t)〉V ∗,V dt+ 〈ẏ(T ), δy(T )〉V ∗,V + β

∫ T

0
δu(t)u(t) dt = 0. (3.124)

Moreover, due to Lemma 3.4.1, and using equality (3.112) for equation (3.122), we have

−
∫ T

0
〈g(t), δy(t)〉V ∗,V dt− (p1

T , δ̇y(T ))L2(0,L) + 〈p2
T , δy(T )〉V ∗,V +

∫ T

0
δu(t)p(t, L) dt = 0,

(3.125)
for a given (g, p1

T , p
2
T ) ∈ L2(0, T ;V ∗) × L2(0, L) × V ∗ and its corresponding very weak

solution p ∈ C1([0, T ];V ∗) ∩ C0([0, T ];L2(0, L)) to (3.111). By comparing (3.124) with
(3.125), and since δu ∈ L2(0, T ) is arbitrary, we infer that

βu = p(·, L) in L2(0, T ),

p1
T = 0 in L2(0, L),

p2
T = ẏ(T ) in V ∗,

g = ÿ + yxx in L2(0, T ;V ∗).

3.4.4 Stabilizability

To specify the required observability conditions, for any given (φ1
0, φ

2
0) ∈ H3, we denote

by φ the weak solution of the following system
φ̈− φxx = 0 (t, x) ∈ (0, T )× (0, L),

φ(t, 0) = 0 t ∈ (0, T ),

φx(t, L) = 0 t ∈ (0, T ),

φ(0, x) = φ1
0, φ̇(0, x) = φ2

0 x ∈ (0, L).

(3.126)

Then we have the following observability inequalities:

OB5. There exists Tob3 > 0 such that for every T ≥ Tob3, the weak solution φ to (3.126)
with (φ, φ̇) ∈ C0([0, T ];H3) satisfies the inequality

cob3‖(φ1
0, φ

2
0)‖2H3

≤
∫ T

0
|φ̇(t, L)|2dt for every (φ1

0, φ
2
0) ∈ H3,

where the positive constant cob3 depends only on T and L.
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OB6. There exists Tob4 > 0 such that for every T ≥ Tob4, the weak solution φ to (3.126)
with (φ, φ̇) ∈ C0([0, T ];H3) satisfies the inequality

cob4‖(φ1
0, φ

2
0)‖2H3

≤
∫ T

0

∫
ω
|φ̇|2dxdt for every (φ1

0, φ
2
0) ∈ H3,

where the positive constant cob4 depends only on T and ω ⊂ (0, L).

The proof of the following equivalence can be found in, e.g., [130]. Nevertheless, we
provide here a proof for completeness.

Theorem 3.4.4 (Global stabilizability). Suppose that (y1
0, y

2
0) ∈ H3 is given. Then the

solution of the controlled system (3.99) with the feedback law u(t) := −ẏ(t, L) converges
exponentially to zero with respect to H3, i.e.

E(t, y) ≤Me−αtE(0, y) = Me−αt‖(y1
0, y

2
0)‖2H3

(3.127)

for positive constants M and α independent of (y1
0, y

2
0), if and only if the observability

condition OB5 holds.

Proof. First assume that OB5 holds. We show the exponential decay inequality (3.127).
Let (y1

0, y
2
0) ∈ H3 be given. Setting u(t) := −ẏ(t, L) in (3.99), we obtain a closed-loop

system which is well-posed in the space H3 and the unique weak solution y of this system
belongs to the space

C0([0,∞);V ) ∩ C1([0,∞);L2(0, L)),

and we have ẏ(·, L) ∈ L2(0,∞), see, e.g., [133]. Now, for an arbitrary T > 0, consider
the following controlled system

ÿ − yxx = 0 (t, x) ∈ (0, T )× (0, L),

y(t, 0) = 0 t ∈ (0, T ),

yx(t, L) = −ẏ(t, L) t ∈ (0, T ),

y(0, x) = y1
0, ẏ(0, x) = y2

0 x ∈ (0, L).

(3.128)

Suppose that the solution y of (3.128) is smooth enough. By taking L2-inner product
of (3.128) with ẏ, formally, and integrating over [0, T ], we obtain

‖(y(T ), ẏ(T ))‖2H3
− ‖(y(0), ẏ(0))‖2H3

= −2

∫ T

0
|ẏ(t, L)|2dt. (3.129)

We can approximate the pair (y1
0, y

2
0) ∈ H3 by a sequence of pairs (y1n

0 , y2n
0 ) ∈

(H2(0, L)∩V )×V for which, by using the standard semi group theory, the corresponding
solutions {yn}n of (3.128) belong to the space C0([0, T ];H2(0, L) ∩ V ) ∩ C1([0, T ];V )
and converge to y in the space C0([0, T ];V )∩C1([0, T ];L2(0, L)), as n tends to infinity.
Then by passing to the limits, it can be shown that equality (3.129) is also true for the
initial pair (y1

0, y
2
0) ∈ H3 and its corresponding solution y.
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Further, the solution y of (3.128) can be rewritten as y = φ + ψ, where φ is the
solution of (3.126) with the initial pair (y1

0, y
2
0) in place of (φ1

0, φ
2
0) and ψ is the solution

of the following problem
ψ̈ − ψxx = 0 (t, x) ∈ (0, T )× (0, L),

ψ(t, 0) = 0 t ∈ (0, T ),

ψx(t, L) = −ẏ(t, L) t ∈ (0, T ),

ψ(0, x) = 0 ψ̇(0, x) = 0 x ∈ (0, L).

(3.130)

Using the observability condition OB5 for (3.126) with the initial pair (y1
0, y

2
0), and

estimate (3.105) for ψ with u = −ẏ(·, L), we obtain

‖(y1
0, y

2
0)‖2H3

≤ 1

cob3

∫ Tob3

0
|φ̇(t, L)|2dt

≤ 1

cob3

(∫ Tob3

0
|ẏ(t, L)|2dt+

∫ Tob3

0
|ψ̇(t, L)|2dt

)
≤ 1 + c2

4

cob3

∫ Tob3

0
|ẏ(t, L)|2dt,

(3.131)

for a Tob3 depending on L. Combining (3.129) and (3.131), we have

‖(y(Tob3), ẏ(Tob3))‖2H3
− ‖(y(0), ẏ(0))‖2H3

= −2

∫ Tob3

0
|ẏ(t, L)|2dt

≤ −2cob3
1 + c2

4

‖(y(0), ẏ(0))‖2H3

≤ −2cob3
1 + c2

4

‖(y(Tob3), ẏ(Tob3))‖2H3
.

As a result, we have

E(t, y) ≤Me−αtE(0, y) for every t > 0,

where α :=
ln(1+

2cob3
1+c24

)

Tob3
and M := (1 + 2cob3

1+c24
).

Next we show that the stabilizability property (3.127) implies the observability con-
dition OB5 for (3.126) with an arbitrary initial pair (y1

0, y
2
0) ∈ H3.

Let inequality (3.127) holds for the pair (y1
0, y

2
0) ∈ H3. Then by using (3.127) and

(3.129), there exists a T ′ > 0 such that∫ T ′

0
|ẏ(t, L)|2dt ≥ 1

4
E(0, y). (3.132)

Moreover, the solution φ to (3.126) with the initial pair (y1
0, y

2
0) can be rewritten as

φ := y−ψ, where y is the weak solution to (3.128) and ψ is the weak solution to (3.130)
for T ′ instead of T .
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Now, by taking L2-inner product of (3.130) with ψ̇, formally, and integrating over
[0, T ′], we obtain

0 ≤ 1

2

(
‖ψ̇(T ′)‖2L2(0,L) + ‖ψ(T ′)‖2V

)
=

∫ T ′

0
−ẏ(t, L)ψ̇(t, L)dt

=

∫ T ′

0
−(ψ̇(t, L) + φ̇(t, L))ψ̇(t, L)dt,

(3.133)

Note that for u ∈ Z with Z := {q ∈ C3([0, T ′]) : u(0) = u̇(0) = 0} as the inhomogeneous
Neumann part in (3.130), instead of −ẏ(t, L) ∈ L2(0, T ′), the solution of (3.130) belongs
to the space C0([0, T ′];V 2)∩C1([0, T ′];V ) (see, e.g., [45, page 69]). Therefore, by using
a density argument and the fact that Z is dense L2(0, T ′), it can be shown that the
inequality (3.133) is also true for the weak solution of (3.130) with −ẏ(·, L) ∈ L2(0, T ′)
as the inhomogeneous Neumann boundary condition. Moreover, (3.133) implies that∫ T ′

0
|ψ̇(t, L)|2dt ≤

∫ T ′

0
|φ̇(t, L)|2dt. (3.134)

Using (3.132), (3.134), and the following inequality∫ T ′

0
|φ̇(t, L)|2dt ≥

∫ T ′

0
|ẏ(t, L)|2dt−

∫ T ′

0
|ψ̇(t, L)|2dt,

we complete the proof with ∫ T ′

0
|φ̇(t, L)|2dt ≥ 1

8
E(0, y).

3.4.5 Stability of RHC

From this point on, we denote (y(t), ẏ(t)) by Y(t).

Definition 3.4.3 (Value function). for every pair (y1
0, y

2
0) =: Y0 ∈ H3, the infinite

horizon value function V∞ : H3 → R+ is defined as

V∞(Y0) := min
u∈L2(0,∞)

{J∞(u,Y0) subject to (3.99)}.

Similarly, the finite horizon value function VT : H3 → R+ is defined by

VT (Y0) := min
u∈L2(0,T )

{JT (u,Y0) subject to (3.102)}. (3.135)
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3.4 Neumann Boundary Control

Lemma 3.4.2. Suppose that the observability conditions OB5-OB6 hold. For every
T > 0, there exists a control û ∈ L2(0, T ) for (3.102) such that

VT (Y0) ≤ JT (û;Y0) ≤ γ2(T )‖Y0‖2H3
(3.136)

for every initial pair (y1
0, y

2
0) = Y0 ∈ H3, where γ2 : R+ → R+ is a nondecreasing, con-

tinuous, and bounded function. Moreover, there exists a constant γ1(T ) > 0 depending
on T such that

VT (Y0) ≥ γ1(T )‖Y0‖2H3
(3.137)

for all (y1
0, y

2
0) = Y0 ∈ H3.

Proof. Let an initial pair (y1
0, y

2
0) ∈ H3 be given. By setting u(t) := −ẏ(t, L) in the

controlled system (3.102), and using Theorem 3.4.4 we obtain

‖(y(t), ẏ(t))‖2H3
≤Me−αt‖(y(0), ẏ(0))‖2H3

for all t ∈ [0, T ],

where the constants M and α were defined in Theorem 3.4.4. By integrating from 0 to
T we have ∫ T

0
‖(y(t), ẏ(t))‖2H3

dt ≤ M

α
(1− e−αT )‖(y(0), ẏ(0))‖2H3

.

Moreover, by (3.127) and (3.129) we have∫ T

0
|u(t)|2dt =

∫ T

0
|ẏ(t, L)|2dt

≤1

2
(E(0, y) + E(T, y)) ≤ (1 +M)

2
‖(y1

0, y
2
0)‖2H3

.

(3.138)

By (3.100), (3.138), and the definition of value function VT , we have

VT (y1
0, y

2
0) ≤

∫ T

0

(
1

2
‖(y(t), ẏ(t))‖2H3

+
β

2
|ẏ(t, L)|2

)
dt

≤
(
M

2α
(1− e−αT ) +

β(1 +M)

4

)
‖(y1

0, y
2
0)‖2H3

= γ2(T )‖(y1
0, y

2
0)‖2H3

.

Now to verify (3.137), we use the superposition argument for (3.102) with an arbitrary
control u ∈ L2(0, T ). We rewrite the solution of (3.102) as y = φ + ψ where φ is the
solution to (3.126) with the initial pair (y1

0, y
2
0), and ψ is the solution to the following

problem 
ψ̈ − ψxx = 0 (t, x) ∈ (0, T )× (0, L),

ψ(t, 0) = 0 t ∈ (0, T ),

ψx(t, L) = u(t) t ∈ (0, T ),

ψ(0, x) = 0 ψ̇(0, x) = 0 x ∈ (0, L).

(3.139)
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By using the observability condition OB6 for (3.126) with the initial pair (y1
0, y

2
0) and

(0, L) instead of ω, and using estimate (3.104) for (3.139) we obtain

‖(y1
0, y

2
0)‖2H3

≤ 1

cob4

∫ T

0
‖φ̇(t)‖2L2(0,L)dt

≤ 1

cob4

∫ T

0

(
‖ẏ(t)‖2L2(0,L) + ‖ϕ̇(t)‖2L2(0,L)

)
dt

≤ 1

cob4

∫ T

0

(
‖ẏ(t)‖2L2(0,L) + Tc2

3|u(t)|2
)
dt

≤ c′(T )

∫ T

0

(
1

2
‖(y(t), ẏ(t))‖2H3

+
β

2
|u(t)|2

)
dt

= c′(T )

∫ T

0
`(Y(t), u(t))dt.

Since u ∈ L2(0, T ) is arbitrary, we obtain (3.137) for a constant c′(T ) independent of u
and (y1

0, y
2
0).

Remark 3.4.2. The property (3.137) is equivalent the injectivity of the differential Re-
catti operator corresponding to (OPNT ) which in turn is equivalent to the observability
condition OB6, see, [57, Theorem 3.3].

Remark 3.4.3. Note that, as it has been shown in Lemma 3.4.2, the observability
condition OB5 is equivalent to the stabilizability condition (3.136). The stabilizability
condition (3.136) and well-posedness (Proposition 3.4.1) of open-loop problems in the
form (OPNT ) are equivalent to the conditions (A2) and (A1) in Chapter 2, respectively.
Moreover, since the stabilizability condition (3.136) holds globally, the condition (A3) is
no longer needed and we can use the receding horizon framework introduced in Chapter
2. In addition, by using the uniform positiveness of the value function VT which has
been established in (3.137) based on the observability condition OB6, we shall verify the
exponential stability of RHC.

Theorem 3.4.5 (Suboptimality and exponential decay). Suppose that the observability
conditions OB5-OB6 hold and let a sampling time δ > 0 be given. Then there exist
numbers T ∗ > δ and α ∈ (0, 1), such that for every fixed prediction horizon T ≥ T ∗

and every Y0 ∈ H3, the receding horizon control urh obtained from Algorithm 3.1 for the
stabilization of (3.99) satisfies the suboptimality inequality

αV∞(Y0) ≤ αJ∞(urh,Y0) ≤ VT (Y0) ≤ V∞(Y0),

and exponential stability

‖Yrh(t)‖2H3
≤ c′e−ζt‖Y0‖2H3

,

where the positive numbers ζ, c′ depend on α, δ, and T , but are independent of Y0.

Proof. The proof is similar to that of Theorem 3.3.4.
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3.5 Numerical Experiments

3.5 Numerical Experiments

This section is devoted to numerical simulations. In order to justify our theoretical
results for the receding horizon Algorithms 3.1, we give numerical results for all the cases:
Distributed control, Dirichlet boundary control, and Neumann boundary control. We
give also a short description about the descretization of control and state, optimization
algorithm, and the implementation of Algorithm 3.1.

3.5.1 Discretization

To study the finite elements method for the wave equation we can mention the works
[13, 14, 17, 18, 80, 81]. We follow the finite element framework which was investigated
for the wave equation by [18] and applied for optimal control problems governed by
the linear wave equations [85]. In this framework, the open-loop problems discretized
temporally and spatially by appropriate finite elements frameworks, for which the ap-
proaches optimize-discretize and discretize-optimize are identical; see, e.g., [22, 109]. In
all cases, for the discretization of the state we write the equation as a system of first order
equations in time. The spatial discretization was done by a conforming linear finite ele-
ment scheme using the continuous piecewise linear basis functions over a uniform mesh.
This uniform mesh was generated by triangulation. For the temporal discretization of
the state equation, a Petrov-Galerkin scheme based on continuous piecewise linear basis
functions for the trial space and piecewise constant test function employed. By doing so,
the resulting discretized system is equivalent to the space-discretized system to which
the Crank-Nicolson time stepping method has been applied. Since the temporal test
functions have been chosen to be piecewise constant, it is natural to discretize the ad-
joint equation and also control by these functions. This implies that the approximated
gradient is consistent with both continuous functional and the discrete functional. In the
case of the Dirichlet boundary control, the inhomogeneous Dirichlet condition y|Γc = u
was treated by interpreting u as the trace of sufficiently smooth function ŷ and solving
the equation for v = y− ŷ instead of y with homogeneous Dirichlet boundary conditions,
see, e.g., [53, page 376] for more detail.

3.5.2 Optimization

Every discretized open-loop problem was first formulated in the reduced problem. This
unconstrained optimization problem consists of minimizing a reduced objective function
which depends only on the control variable u. Then these reduced problems were solved
by applying the Barzilai-Borwein (BB) method [20, 118] equipped with a nonmonotone
line search [48]. Moreover, the optimization algorithm was terminated as the L2(0, T ;U)-
norm of the gradient for the reduced objective function was less than the tolerance 10−6.

3.5.3 Implementation of RHC

Turning to our numerical experiment, we considered three examples corresponding to
the cases: distributed control (3.2), Dirichlet boundary control (3.3), and Neumann
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On the global Stabilizability of the Wave Equation via RHC

boundary control (3.4). We applied Algorithm 3.2 which is based on Algorithm 3.1. For

Algorithm 3.2 RHC(Y0, T∞)

Input: Let a final computational time horizon T∞, and an initial state Y0 :=
(y1

0, y
2
0) ∈ H be given.

1: Choose a prediction horizon T < T∞ and a sampling time δ ∈ (0, T ].
2: Consider a grid 0 = t0 < t1 < · · · < tr = T∞ on the interval [0, T∞] where ti = iδ for
i = 0, . . . , r.

3: for i = 0, . . . , r − 1 do
Solve the open-loop subproblem on [ti, ti + T ]

min
1

2

∫ ti+T

ti

‖Y(t)‖2Hdt+
β

2

∫ ti+T

ti

‖u(t)‖2Udt

subject to {
Ẏ = AY + Bu t ∈ (tk, tk + T ),

Y(ti) = Y∗T (ti) if i ≥ 1 or Y(ti) = (y1
0, y

2
0) if i = 0,

where Y∗T (·) is the solution to the previous subproblem on [ti−1, ti−1 + T ].

4: The receding horizon pair (Y∗rh(·), u∗rh(·)) is the concatenation of the optimal pairs
(Y∗T (·), u∗T (·)) on the finite horizon intervals [ti, ti+1] with i = 0, . . . , r − 1.

a given initial pair (y1
0, y

2
0) =: Y0 ∈ H and a constant T∞ defined as the final computation

time, we ran Algorithm 3.2 for all the above mentioned cases. For every example, the
receding horizon control urh was computed for the fixed sampling time δ = 0.25 and
different values of the prediction horizon T . In each example, the performance of the
computed receding horizon controls for different prediction horizons are compared with
each other. Moreover, in order to get more intuition about the stabilization problem,
the results related to uncontrolled problem are also reported. As performance criteria
for our comparison, we considered the following quantities:

1. JT∞(urh,Y0) := 1
2

∫ T∞
0 ‖Yrh(t)‖2Hdt+ β

2

∫ T∞
0 ‖urh(t)‖2Udt,

2. ‖Yrh‖L2(0,T∞;H),

3. ‖Yrh(T∞)‖H,

4. iter : the total number of iterations (BB-gradient steps) that the optimizer needs
for all open-loop problems on the intervals (ti, ti + T ) for i = 0, . . . , r − 1.

3.5.4 Numerical examples

For the cases distributed control (3.2) and Dirichlet control (3.3), we considered the unit
square (0, 1)2 ⊂ R2 as the spatial domain Ω. This spatial domain was discretized by
using N = 4225 cells as it has been explained above. Moreover for the case of Neumann
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control (3.4), the string equation is defined on the interval (0, 1). In this case, the spatial
discretization was also done by the standard Galerkin method based on piecewise linear
and continuous basis functions with the mesh-size h = 0.0125 and the time discretization
was proceeded as it has been described in the subsection 3.5.1. For all examples, the
step-size ∆t = 0.0025 was chosen for time discretization. The numerical simulations
were carried out on the MATLAB platform.

Example 3.5.1 (Distributed control). In this example we applied Algorithm 3.2 to the
infinite horizon problem (3.1)-(3.2) with ` defined by (3.8). We set U := L2(ω), β = 0.1,
T∞ = 15, and

y1
0(x) := 5e−20((x1−0.5)2+(x2−0.5)2), y2

0(x) = 0,

where x := (x1, x2) ∈ Ω. Before applying Algorithm 3.2, we investigate the uncontrolled
system. For this case we obtained the following quantities:

‖Y‖L2(0,T∞;H1) = 1.17× 103, ‖Y(T∞)‖H1 = 78.57.

In fact, for this system H1-energy is conserved in time, i.e.,

‖Y(t)‖H1 = ‖(y1
0, y

2
0)‖H1 = 78.57 for all t ∈ [0, T∞],

where H1 = H1
0 (Ω) × L2(Ω). As it is depicted by Figure 3.1, a single wave propagates

and moves from the center of the domain to the boundaries. While moving to the
boundaries, it decomposes into several small waves. After hitting the boundaries, the
resulting small waves propagate and join together to form a single wave at the center
of domain. This process repeats constantly, as time progresses. We employed RHC
computed by Algorithm 3.2 for different choices of the prediction horizon T and the
fixed sampling time δ = 0.25. The control domain is described in Figure 3.2 and the
corresponding results are gathered in Table 3.1. Moreover, Figure 3.4 demonstrates the
evolution of the H1-energy of the receding horizon states for the different choices of T
and fixed δ = 0.25. The evolution of the L2(ω)-norm of the corresponding RHCs are
plotted in Figure 3.3. Figure 3.5 shows the receding horizon state at different time points
for the choice of T = 1.5.

Prediction horizon JT∞ ‖Yrh‖L2(0,T∞;H1) ‖Yrh(T∞)‖H1 iter

T = 1.5 8.20× 102 40.19 2.62× 10−8 1515

T = 1 1.13× 103 47.40 3.03× 10−6 847

T = 0.5 3.13× 103 79.10 2.00× 10−3 550

T = 0.25 1.94× 104 197.43 3.79× 10−1 373

Table 3.1: Numerical results for Example 3.5.1

Example 3.5.2 (Dirichlet control). Here we considered the stabilization of the wave
equation (3.3) by Dirichlet boundary control. We set U := L2(Γc), T∞ = 10, β = 1, and

67



On the global Stabilizability of the Wave Equation via RHC

(a) t = 0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3

(e) t = 0.5 (f) t = 0.7 (g) t = 1 (h) t = 1.5

(i) t = 2.5 (j) t = 5 (k) t = 10 (l) t = 15

Figure 3.1: Several snapshots of the uncontrolled state corresponding to Example 3.5.1
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Figure 3.2: Control domain for Example 3.5.1
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Figure 3.3: Evolution of L2(ω)-norm for RHC corresponding to Example 3.5.1 with different
prediction horizons T

0 5 10 15

0

20

40

60

80

t

E
n
e
rg

y

 

 

T = 1.5

T = 1

T = 0.5

T = 0.25

Uncontrolled

Figure 3.4: Evolution of ‖Yrh(t)‖H1
corresponding to Example 3.5.1 for different choices of T
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(a) t = 0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.7 (g) t = 1 (h) t = 1.5

(i) t = 2.5 (j) t = 5 (k) t = 10 (l) t = 15

Figure 3.5: Several snapshots of receding horizon state for the choice of T = 1.5 corresponding
to Example 3.5.1
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chose the same initial pair (y1
0, y

2
0) as in the previous example. For this example, the

stabilization task was done with respect to the energy H2 = L2(Ω) ×H−1(Ω) which is
different from one in the previous example. For the uncontrolled state, the H2-energy is
conserved over the time. More precisely, we have

‖Y(t)‖H2 = 1.96 for all t ∈ [0, T∞],

and also ‖Y‖L2(0,T∞;H2) = 19.60. The receding horizon Dirichlet control is active on a
subset Γc ⊂ ∂Ω as it is illustrated in Figure 3.6. Similar to the previous example, we

0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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1

x1

x
2

Ω

Γc

Figure 3.6: Control domain for Example 3.5.2

implemented Algorithm 3.2 for different values of the prediction horizon T and the fixed
sampling time δ = 0.25. The corresponding results are summarized in Table 3.2, Figure
3.7, and Figure 3.8. Figure 3.9 shows the receding horizon state at different time points

Prediction horizon JT∞ ‖Yrh‖L2(0,T∞;H2) ‖Yrh(T∞)‖H2 iter

T = 1.5 2.20 1.93 2.11× 10−6 715

T = 1 2.75 2.23 3.42× 10−5 599

T = 0.5 6.77 3.64 6.00× 10−3 445

T = 0.25 33.75 8.20 2.36× 10−1 359

Table 3.2: Numerical results for Example 3.5.2

for the choice of T = 1.5 and δ = 0.25.

Example 3.5.3 (Neumann control). In this example, we deal with the controlled sys-
tem (3.4) governed by the one-dimensional wave equation on the interval (0, 1), with a
homogeneous Dirichlet boundary condition at zero, and a Neumann boundary control
action at one. We chose U := R, β = 15, T∞ = 15, and

y1
0(x) := 5e−20(x−0.5)2 , y2

0(x) = 0,

as the initial data. In the uncontrolled case, we have a vibrating string which is fixed at
one end of the boundary, but whose other end keeps moving up and down in a periodic
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Figure 3.7: Evolution of ‖Yrh(t)‖H2 corresponding to Example 3.5.2 for different choices of T
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(b) T = 1
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(c) T = 0.5
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Figure 3.8: Evolution of L2(Γc)-norm for RHC corresponding to Example 3.5.2 for different
choices of T
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3.5 Numerical Experiments

(a) t = 0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.7 (g) t = 1 (h) t = 1.5

(i) t = 2.5 (j) t = 4 (k) t = 5 (l) t = 10

Figure 3.9: Several snapshots of receding horizon state for the choice of T = 1.5 corresponding
to Example 3.5.2
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On the global Stabilizability of the Wave Equation via RHC

fashion. Similar to the previous example for the uncontrolled system, the H3-energy
with H3 = V × L2(0, 1) is conserved for all times. Further we have

‖Y‖L2(0,T∞;H3) = 2.10× 103, ‖Y(T∞)‖H3 = 140.13.

The uncontrolled solution can be seen from Figure 3.10. The numerical results of RHC

Figure 3.10: Uncontrolled solution for Example 3.5.3

computed by Algorithm 3.2 for the different choices of the prediction horizon T and the
fixed sampling time δ = 0.25, are revealed by Table 3.3, and Figures 3.11 and 3.12.

Prediction horizon JT∞ ‖Yrh‖L2(0,T∞;H3) ‖Yrh(T∞)‖H3 iter

T = 1.5 1.30× 104 161.47 3.85× 10−6 5348

T = 1 1.67× 104 182.97 7.08× 10−5 3303

T = 0.5 3.92× 104 280.22 4.91× 10−2 1507

T = 0.25 2.41× 105 694.40 9.26 823

Table 3.3: Numerical results for Example 3.5.3

Figure 3.13 shows the receding horizon state and control for the choice of T = 1.5.

By observing Tables 3.1-3.3 and Figures 3.4, 3.7, and 3.11, we can assert that the
results corresponding to the performance criteria are reasonable. Except for the case
that δ = T , for all prediction horizons T > δ the underlying system was successfully
stabilized as the theory in the previous sections suggests. Moreover, apparently the
prediction horizon T plays an important role. As expected, increasing the prediction
horizon T leads to a decrease of the stabilization indicators and more importantly the
value of objective function JT∞ . Moreover as it can been seen from Figures 3.3, 3.8, and
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Figure 3.11: Evolution of ‖Yrh(t)‖H3 corresponding to Example 3.5.3 for different choices of T
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Figure 3.12: Evolution of |urh(t)| corresponding to Example 3.5.3 for different choices of T

75



On the global Stabilizability of the Wave Equation via RHC

(a) RH state
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Figure 3.13: Receding horizon trajectories corresponding to Example 3.5.3 for the choice of
T = 1.5

3.12, the corresponding RHCs are more regular, if the ratio of prediction horizon T to
sampling time δ is large. On the other hand, the shorter prediction horizon T (i.e. the
closer to the sampling time δ) is chosen, the fewer overall iterations and computational
efforts are required.
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Chapter 4

On the Stabilizability of the
Burgers Equation by RHC

4.1 Introduction

In this chapter, the applicability of our theoretical work proposed in Chapter 2 will be
demonstrated for the Burgers equation

d

dt
y − µyxx + yyx = 0,

where µ > 0 and y = y(t, x) is a real valued function of real variables t and x. This is a
nonlinear partial differential equation (PDE) that combines both nonlinear propagation
and diffusion effects. It shares some important features with the Navier-Stokes equation.
The Burgers equation has the origin as a steady state. It is asymptotically stable in
the case of homogeneous Dirichlet boundary conditions. For homogeneous Neumann
boundary conditions and periodic boundary conditions the origin is not asymptotically
stable. Control theory for the Burgers equation has been investigated, both theoretically
and numerically, by many authors. From among them we mention only [8, 9, 16, 32, 33,
34, 36, 74, 86, 89, 101, 135].

To be more precise, we apply Algorithm 2.1 of Chapter 2 for the stabilization of the
viscous Burgers equation with periodic and homogeneous Neumann boundary conditions,
For these boundary conditions the origin of the uncontrolled system is stable but not
asymptotically stable.

The remainder of the chapter is structured as follows. In Sections 4.2 and 4.3 we
investigate Assumptions (A1)-(A3) in Chapter 2 for the case of periodic boundary condi-
tions and the case of homogeneous Neumann boundary conditions. We show that in the
case of periodic boundary conditions Algorithm 2.1 provides globally stabilizing controls,
while for Neumann boundary conditions we obtain locally stabilizing controls. Section
4.4 contains numerical experiments which highlight the effect of the ratio T

δ on the sta-
bilizing effect of the RHC strategy. Moreover, comparisons are carried out comparing
the effect of RHC with and without a terminal control penalty.
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On the Stabilizability of the Burgers Equation by RHC

4.2 Burgers Equation with Periodic Boundary Conditions

For an arbitrary finite horizon T > 0 we consider the controlled Burgers equation with
periodic boundary conditions of the form

d
dty(t) = µyxx(t)− y(t)yx(t) +Bu(t) in (0, T )× (0, 1),

y(t, 0) = y(t, 1), yx(t, 0) = yx(t, 1) on (0, T ),

y(0, ·) = y0 in (0, 1).

(4.1)

Throughout, µ > 0 and y0 ∈ L2(0, 1) are fixed, and the control operator B is the
extension-by-zero operator given by

(Bu)(x) =

{
u(x) x ∈ Ω̂,

0 x ∈ (0, 1)\Ω̂,

where the control domain Ω̂ is a nonempty open subset of (0, 1).
For the function space setting of (4.1) we introduce the spaces

V := {y ∈ H1(0, 1) | y(0) = y(1)}, H := L2(0, 1),

and

W (0, T ) :=

{
φ : φ ∈ L2(0, T ;V ),

d

dt
φ ∈ L2(0, T ;V ∗)

}
,

where V ∗ is the adjoint space of V . The spaces H and V are endowed with the usual
norms ‖·‖H := ‖·‖L2(0,1) and ‖·‖V := ‖·‖H1(0,1). Further 〈·, ·〉H and 〈·, ·〉V ∗,V denote the
inner product in H and the duality pairing between V and V ∗. We recall that W (0, T ) is
continuously embedded into C([0, T ];H); see, e.g., [131]. It will be convenient to define
the continuous trilinear form b : V × V × V → R by

b(ϕ,ψ, φ) =

∫ 1

0
ϕψxφdx.

We shall frequently use the property that

b(y, y, y) =

∫ 1

0
yxy

2dx =
1

3
(y3(1)− y3(0)) = 0 for all y ∈ V. (4.2)

It is well known that for every control u ∈ L2(0, T ;L2(Ω̂)), equation (4.1) admits a
unique weak solution y ∈ W (0, T ), i.e. y satisfies y(0) = y0 in H, and for almost every
t ∈ (0, T ),

d

dt
〈y(t), ϕ〉V ∗,V + µ〈y(t), ϕ〉V − µ〈y(t), ϕ〉H + b(y(t), y(t), ϕ) = 〈Bu(t), ϕ〉H (4.3)

holds for all ϕ ∈ V . Using (4.2) and Gronwall’s lemma it can easily be shown that there
exists a constant CT such that

|y(·; y0, u)|W (0,T ) ≤ CT
(
|y0|H + |u|L(0,T ;L2(Ω̂))

)
, (4.4)
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4.2 Burgers Equation with Periodic Boundary Conditions

where y(·; y0, u) indicates the dependence of the solution on y0 and u. The running cost
will be taken of the form

`(y, u) :=
1

2
‖y‖2H +

β

2
‖u‖2

L2(Ω̂)
, (4.5)

where β > 0.
We have now specified all items of the finite horizon problem of the form (PT ) which

was defined in Chapter 2. Using (4.4) it follows from standard subsequential limit
arguments that (PT ) with the control system given by (4.1) admits a solution for each
y0 ∈ H. In particular (A1) holds with N0 = H. In the following lemma we show that
Assumption (A2) holds as well.

Lemma 4.2.1 (Global stabilizability). For each T > 0 and initial state y0 ∈ H there
exists a control û(·; y0) ∈ L2(0, T ;L2(Ω̂)) such that

VT (y0) ≤ JT (û, y0) ≤ γ(T )‖y0‖2H , (4.6)

for a continuous, nondecreasing and bounded function γ : R+ → R+.

Proof. Set û(t) := −y(t)|Ω̂ and consider
d
dty(t) = µyxx(t)− y(t)yx(t)−By(t)|Ω̂ in (0, T )× (0, 1),

y(t, 0) = y(t, 1), yx(t, 0) = yx(t, 1) on (0, T ),

y(0, ·) = y0 in (0, 1).

(4.7)

Taking the inner product of the first equation of (4.7) with y(t), we have for almost
every t ∈ (0, T )

1

2

d

dt
‖y(t)‖2H + µ(‖yx(t)‖2H − yx(t, 1)y(t, 1) + yx(t, 0)y(t, 0))

+ b(y(t), y(t), y(t)) + ‖y(t)‖2
L2(Ω̂)

= 0.
(4.8)

Taking into account the boundary conditions and (4.2), one can express (4.8) as

1

2

d

dt
‖y(t)‖2H + µ‖yx(t)‖2H + ‖y(t)‖2

L2(Ω̂)
= 0.

One can easily show that ‖y‖21 := ‖yx‖2H + 1
µ‖y‖

2
L2(Ω̂)

is a norm which is equivalent to

the H1-norm [107, p. 26]. Thus there exist positive constants c2 > c1 > 0 such that

c1‖y‖2V ≤ ‖y‖21 ≤ c2‖y‖2V for all y ∈ V,

and consequently
1

2

d

dt
‖y(t)‖2H + µc1‖y(t)‖2V ≤ 0,

and therefore,
d

dt
‖y(t)‖2H + 2µc1‖y(t)‖2H ≤ 0 for all t ∈ [0, T ].

79



On the Stabilizability of the Burgers Equation by RHC

Multiplying both sides of the above equation by e2µc1t and integrating from 0 to t we
obtain

‖y(t)‖2H ≤ ‖y0‖2He−2µc1t for all t ∈ [0, T ].

By integrating the above inequality over the interval [0, T ], we obtain∫ T

0
‖y(t)‖2Hdt ≤

1

2µc1
(1− e−2µc1T )‖y0‖2H . (4.9)

By the definition of the value function VT (·) and (4.9) we have

VT (y0) ≤
∫ T

0

(
1

2
‖y(t)‖2H +

β

2
‖ − y(t)‖2

L2(Ω̂)

)
dt ≤ 1 + β

4µc1
(1− e−2µc1T )‖y0‖2H ,

and (A2) follows with γ(T ) := 1+β
4µc1

(1− e−2µc1T ), and N0 = H.

From Lemma 4.2.1, we infer that Assumption (A2) holds globally. Thus by Remark
2.2.1 we can directly apply Theorem 2.2.1 without addressing (A3) and conclude that,
for any arbitrary sampling time δ, there exists a positive T ∗ such that for every T ≥ T ∗
the RHC urh is globally suboptimal (within H) with suboptimality factor α > 0, and
we have

αV∞(y0) ≤ αJ∞(urh, y0) ≤ VT (y0) ≤ V∞(y0) (4.10)

for every y0 ∈ H. Now it remains for us to show that the RHC urh computed by
Algorithm 2.1 is globally stabilizing. This property will be verified by means of the
following theorem.

Theorem 4.2.1. Let y0 ∈ H and δ > 0 be arbitrary, and apply Algorithm 2.1 for the
stabilization of the Burgers equation (4.1) with a prediction horizon T ≥ T ∗, where T ∗

is introduced by Proposition 2.2.1. Then the receding horizon trajectory yrh satisfies
limt→∞ ‖yrh(t)‖H = 0.

Proof. First, we show that

‖yrh‖L∞(0,∞;H) ≤ ν‖y0‖H (4.11)

for a constant ν > 0.
Due to (4.5), (4.6), and (4.10), we have

αmin{1, β}
2

∫ ∞
0

(
‖yrh(t)‖2H + ‖urh(t)‖2

L2(Ω̂)

)
dt

≤ αJ∞(urh(·), y0) ≤ VT (y0) ≤ γ(T )‖y0‖2H .

Therefore by choosing σ1 := 2γ(T )
αmin{1,β} , we obtain∫ ∞

0
‖yrh(t)‖2H + ‖urh(t)‖2

L2(Ω̂)
dt ≤ σ1‖y0‖2H . (4.12)
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4.2 Burgers Equation with Periodic Boundary Conditions

Moreover, the receding horizon state given by Algorithm 2.1 satisfies yrh ∈ C([0,∞);H);
for every k ∈ N we have

yrh |(tk,tk+1)∈ L2(tk, tk+1;V ),
d

dt
yrh |(tk,tk+1)∈ L2(tk, tk+1;V ∗); (4.13)

and yrh is the solution of
d
dty(t) = µyxx(t)− y(t)yx(t) +Burh(t) in (tk, tk+1)× (0, 1),

y(t, 0) = y(t, 1), yx(t, 0) = yx(t, 1) on (tk, tk+1),

y(tk, ·) = yrh(tk) for k > 0, and y(0, ·) = y0 for k = 0 in (0, 1).

By multiplying the above equation by yrh(·) and integrating over the interval (0, 1), we
have

1

2

d

dt
‖yrh(t)‖2H + µ‖(yrh)x(t)‖2H = 〈Burh(t), yrh(t)〉H for almost every t ∈ (tk, tk+1).

From the Cauchy-Schwarz and Young inequalities we infer that

d

dt
‖yrh(t)‖2H+2µ‖(yrh)x(t)‖2H ≤ ‖urh(t)‖2

L2(Ω̂)
+‖yrh(t)‖2H for almost every t ∈ (tk, tk+1).

Integrating from tk to t, for every t ∈ (tk, tk+1) we have

‖yrh(t)‖2H

≤ ‖yrh(tk)‖2H +

∫ t

tk

‖urh(s)‖2
L2(Ω̂)

ds+

∫ t

tk

‖yrh(s)‖2H ds for all t ∈ (tk, tk+1).

By the same estimate as above for the interval (tk−1, tk) we have

‖yrh(tk)‖2H ≤ ‖yrh(tk−1)‖2H +

∫ tk

tk−1

‖urh(s)‖2
L2(Ω̂)

ds+

∫ tk

tk−1

‖yrh(s)‖2H ds. (4.14)

Moreover, by the above two estimates we have

‖yrh(t)‖2H ≤ ‖yrh(tk−1)‖2H +

∫ t

tk−1

‖urh(s)‖2
L2(Ω̂)

ds+

∫ t

tk−1

‖yrh(s)‖2H ds.

By repeating the above argument for k − 2, k − 3, . . . , 0, one can show that

‖yrh(t)‖2H ≤‖yrh(tk)‖2H +

∫ t

tk

‖urh(s)‖2
L2(Ω̂)

ds+

∫ t

tk

‖yrh(s)‖2H ds

≤‖y0‖2H +

∫ t

0
‖urh(s)‖2

L2(Ω̂)
ds+

∫ t

0
‖yrh(s)‖2H ds

≤‖y0‖2H +

∫ ∞
0
‖urh(s)‖2

L2(Ω̂)
ds+

∫ ∞
0
‖yrh(s)‖2H ds

≤(1 + σ1)‖y0‖2H ,
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On the Stabilizability of the Burgers Equation by RHC

where in the last line (4.12) has been used. Choosing ν :=
√

1 + σ1, we obtain (4.11).
Next we are in the position to prove

lim
t→∞
‖yrh(t)‖2H = 0.

For every t′′ ≥ t′ we have

‖yrh(t′′)‖2H−‖yrh(t′)‖2H =

∫ t′′

t′

d

dt
‖yrh(t)‖2H dt

= 2

∫ t′′

t′
〈yrh(t), µ(yrh)xx(t)− (yrh)x(t)yrh(t) +Burh(t)〉V,V ∗ dt

= −2µ

∫ t′′

t′
‖(yrh)x(t)‖2Hdt+ 2

∫ t′′

t′
〈Burh(t), yrh(t)〉H dt

≤ 2

∫ t′′

t′
‖urh(t)‖L2(Ω̂)‖yrh(t)‖H dt

≤ 2
( ∫ t′′

t′
‖urh(t)‖2

L2(Ω̂)
dt
) 1

2
( ∫ t′′

t′
‖yrh(t)‖2Hdt

) 1
2 ,

and thus
‖yrh(t′′)‖2H − ‖yrh(t′)‖2H ≤ 2

√
σ1ν‖y0‖2H(t′′ − t′)

1
2 . (4.15)

For the last inequality, (4.11) and (4.12) have been used. Moreover, from (4.5), (4.6)
and (4.10) we have

α

2

∫ ∞
0
‖yrh(t)‖2

L2(Ω̂)
≤ αJ∞(urh, y0) ≤ VT (y0) ≤ γ(T )‖y0‖2H <∞.

This estimate implies that

lim
t→∞

∫ t

t−L
‖yrh(s)‖2Hds = 0 (4.16)

for all L > 0. Suppose to the contrary that

lim
t→∞
‖yrh(t)‖2H 6= 0.

Then there exists an ε > 0 and a sequence {tn}∞n=1 with tn > 0 and limn→∞ tn =∞ for
which

‖yrh(tn)‖2H > ε for all n = 1, 2, . . . . (4.17)

It follows from (4.15) and (4.17) that for every L > 0 and n = 1, 2, . . .∫ tn

tn−L
‖yrh(t)‖2Hdt

=

∫ tn

tn−L
‖yrh(tn)‖2Hdt−

∫ tn

tn−L

(
‖yrh(tn)‖2H − ‖yrh(t)‖2H

)
dt,

> Lε− 2
√
σ1ν‖y0‖2H

∫ tn

tn−L
(tn − t)

1
2dt = Lε− 4

3

√
σ1ν‖y0‖2HL

3
2 .

(4.18)
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4.3 Burgers Equation with Homogeneous Neumann Boundary Conditions

Setting ω := 4
3

√
σ1ν‖y0‖2H , and choosing L := ( ε

2ω )2, we obtain∫ tn

tn−L
‖yrh(t)‖2Hdt >

Lε

2
for all n = 1, 2, . . . .

This contradicts (4.16). Hence limt→∞ ‖yrh(t)‖2H = 0, and the proof is complete.

4.3 Burgers Equation with Homogeneous Neumann Bound-
ary Conditions

Here we consider the controlled Burgers equation with homogenous Neumann boundary
conditions of the form

d
dty(t) = µyxx(t)− y(t)yx(t) +Bu(t) in (0, T )× (0, 1),

yx(t, 0) = yx(t, 1) = 0 on (0, T ),

y(0, ·) = y0 in (0, 1).

(4.19)

We can utilize the same notation as in Section 4.2, except for the energy space which is
now chosen to be

V := {y ∈ H1(0, 1) | yx(0) = yx(1) = 0}.
Again V ⊂ H ⊂ V ∗ is a Gelfand triple and W (0, T ) is continuously embedded in
C([0, T ];H).

The significant difference between (4.19) and (4.1) is given by the fact that in the
case of periodic boundary conditions the nonlinearity is conservative; i.e., we have that
b(φ, φ, φ) = 0 for all φ ∈ V , which is not the case for Neumann boundary conditions. As
a consequence we have to rely on the local version of the results of Chapter 2.

Again we use the weak or variational solution concept of (4.3). Due to the fact
that the nonlinearity is not conservative, the verification of a global weak solution is not
trivial. We have the following result.

Lemma 4.3.1. For every T > 0, every y0 ∈ H, and u ∈ L2(0, T ;L2(Ω̂)) there exists
a unique solution y(·; y0, u) ∈ W (0, T ) to (4.19). Moreover, there exists a constant CT
such that

|y(·; y0, u)|W (0,T ) ≤ CT
(

1 + |y0|H + |u|L(0,T ;L2(Ω̂))

)
,

for all y0 ∈ H, and u ∈ L2(0, T ;L2(Ω̂)).

For the proof we refer to [137]. For the step that the local solution can be extended
to a global one we prefer the argument given in [60], for which it is useful to recall that
for a measurable function, which will be u in our case, the function E →

∫
E |u(t)|L2(Ω̂) dt,

with E a measurable subset of (0, T ), is absolutely continuous.
The running cost will again be taken to be of the form (4.5). It is now standard to

argue the existence of a solution to (PT ) with the control system given by (4.19). In
particular, (A1) holds with N0 = H. In the following lemmas we show that Assumptions
(A2) and (A3) holds as well.
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On the Stabilizability of the Burgers Equation by RHC

Lemma 4.3.2 (Local stabilizability). There exists a neighborhood Bδ1(0) ⊂ H such that
for every T > 0 and every y0 ∈ Bδ1(0) there exists a control û(·, y0) ∈ L2(0, T ;L2(Ω̂))
with

VT (y0) ≤ JT (û, y0) ≤ γ(T )‖y0‖2H ,

where γ : R+ → R+ is a continuous, nondecreasing, and bounded function.

Proof. Setting û(t) := −y(t)|Ω̂ in the first equation of (4.19), multiplying y(t), and
taking the L2-scalar product, we obtain

1

2

d

dt
‖y(t)‖2H + µ‖yx(t)‖2H + b(y(t), y(t), y(t)) + ‖y(t)‖2

L2(Ω̂)
= 0. (4.20)

As in the case of periodic boundary conditions, one can argue that ‖y‖21 := ‖yx‖2H +
1
µ‖y‖

2
L2(Ω̂)

is a norm equivalent to the H1-norm (see, e.g., [107, p. 26]), and hence there

exist positive constants c2 > c1 > 0 such that c1‖y‖2V ≤ ‖y‖21 ≤ c2‖y‖2V for all y ∈ V.
The nonlinearity satisfies the following equality:

b(y, y, y) =

∫ 1

0
yxy

2dx ≤ ‖y‖L∞(0,1)‖yx‖H‖y‖H ≤ ca‖y‖21‖y‖H for all y ∈ V,

where ca, depends on the embedding constant of V into L∞(0, 1) and c1. From (4.20)
we therefore deduce that

1

2

d

dt
‖y(t)‖2H + µ‖yx(t)‖2H + ‖y(t)‖2

L2(Ω̂)
≤ ca‖y(t)‖21‖y(t)‖H ,

and consequently

1

2

d

dt
‖y(t)‖2H + µ‖y(t)‖21 ≤ ca‖y(t)‖21‖y(t)‖H .

Now let us choose ‖y0‖H sufficiently small, say ‖y0‖H ≤ µ
4ca

. Then by continuity of the
solution for a short interval of time [0, T ∗], we have ‖y(t)‖H ≤ µ

2ca
for all t ∈ [0, T ∗] and

further
d

dt
‖y(t)‖2H + µc1‖y(t)‖2H ≤ 0 for all t ∈ [0, T ∗].

Multiplying both sides of the above equation by eµc1t and integrating from 0 to t, we
obtain

‖y(t)‖2H ≤ ‖y0‖2He−µc1t ≤
(
µ

4ca

)2

for all t ∈ [0, T ∗]. (4.21)

Repeating the above argument implies that ‖y(t)‖H ≤ µ
4ca

will remain small for all
t ∈ [0, T ] and, moreover, we have

‖y(t)‖2H ≤ ‖y0‖2He−µc1t for all t ∈ [0, T ].

Integration over [0, T ] implies that∫ T

0
‖y(t)‖2Hdt ≤

1

µc1
(1− e−µc1T )‖y0‖2H . (4.22)
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4.3 Burgers Equation with Homogeneous Neumann Boundary Conditions

By the definition of the value function VT (·) and (4.22) we have

VT (y0) ≤
∫ T

0

(
1

2
‖y(t)‖2H +

β

2
‖y(t)‖2

L2(Ω̂)

)
dt ≤ 1 + β

2µc1
(1− e−µc1T )‖y0‖2H ,

where γ(T ) := 1+β
2µc1

(1 − e−µc1T ) is a nondecreasing, continuous, and bounded function,

as desired, and δ1 := µ
4ca

.

Lemma 4.3.3. Assumption (A3) holds for (4.19) with N0 = Bδ1(0) defined in Lemma
4.3.2.

Proof. For every y0 ∈ Bδ1(0) we have from (4.19) that

1

2

d

dt
‖y(t)‖2H + µ‖y(t)‖2V
≤ µ‖y(t)‖2H + |b(y(t), y(t), y(t))|+ |〈y(t), Bu(t)〉H | for almost every t ∈ [0, T ].

(4.23)

From Agmon’s inequality we recall that there exists a constant cA such that

‖φ‖L∞(0,1) ≤ cA‖φ‖
1
2
H‖φ‖

1
2
V for all φ ∈ V,

and consequently there exists a constant cI such that

b(φ, φ, φ) ≤ ‖φ‖L∞(0,1)‖φ‖H‖φ‖V ≤ cA‖φ‖
3
2
H‖φ‖

3
2
V ≤ µ‖φ‖

2
V + cI‖φ‖6H for all φ ∈ V.

Utilizing the above inequality and (4.23), we obtain

d

dt
‖y(t)‖2H ≤ 2µ‖y(t)‖2H+2cI‖y(t)‖6H+2‖y(t)‖H‖u(t)‖L2(Ω̂) for almost every t ∈ [0, T ].

Upon integration we obtain

‖y(t)‖2H ≤ ‖y(0)‖2H + (2µ+ 1 + 2cI‖y‖4C([0,T ];H))

∫ t

0
‖y(s)‖2H ds+

∫ t

0
‖u(s)‖2

L2(Ω̂)
ds.

By Lemma 4.3.1 the family{
‖y(·; y0, u)‖C([0,T ];H)| y0 ∈ Bδ1(0), ‖u‖L2(0,T ;L2(Ω̂)) ≤

√
2γ(T )/min{1, β} ‖y0‖H

}
is bounded, and hence the desired estimate follows.

Now we are in the position that we can apply Theorem 2.2.1, and it remains for us
to show that the receding horizon control urh computed by Algorithm 2.1 is stabilizing.
This will be accomplished in the following theorem, which uses the quantifier d2(T ) for
the size of the neighborhood of the initial data. Recall that d2(T ) depends on γ(T ),
which was given explicitly in the proof of Lemma 4.3.2, and on cT , the existence of
which was provided in the proof of Lemma 4.3.3.
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On the Stabilizability of the Burgers Equation by RHC

Theorem 4.3.1. Let a sampling time δ > 0 be given, and apply Algorithm 2.1 for the
stabilization of the Burgers equation (4.19) with a prediction horizon T ≥ T ∗, where T ∗

is introduced by Proposition 2.2.1. Then we have limt→∞ ‖yrh(t)‖H = 0, provided that
|y0|H ≤ d2(T ).

Proof. We recall that δ1 = µ
4ca

depends on embedding constants and was introduced in
the proof of Lemma 4.3.2. Furthermore, we have d2(T ) ≤ d1(T ) ≤ δ1. To verify the
claim we can follow for the most part the proof of Theorem 4.2.1. Again we first show
that there exists some ν > 0 such that

‖yrh‖L∞(0,∞;H) ≤ ν‖y0‖H , (4.24)

for each y0 ∈ Bd2(0). By construction we have that yrh ∈ C([0,∞), H), that (4.13)
holds, and that ∫ ∞

0
‖yrh(t)‖2H + ‖urh(t)‖2

L2(Ω̂)
dt ≤ σ1‖y0‖2H , (4.25)

where σ1 := 2γ(T )
αmin{1,β} . For any k = 0, 1, . . . we have

d

2dt
‖yrh(t)‖2H + µ‖(yrh)x(t)‖2H+b(yrh(t), yrh(t), yrh(t))

= 〈Burh(t), yrh(t)〉H for almost every t ∈ (tk, tk + 1).

Furthermore, d2 in Theorem 2.2.1 has been chosen in such way that for every t > 0 the
receding horizon trajectory yrh(t) stays in the neighborhood Bδ1(0). In other words, we
have

‖yrh(t)‖H ≤ δ1 =
µ

4ca
<

µ

2ca
for all t > 0, (4.26)

where ca is defined in Lemma 4.3.2. Now by the Cauchy-Schwarz and Young’s inequali-
ties, by (4.26), and the definition of ‖ · ‖1, we infer that

b(yrh(t),yrh(t), yrh(t))

≤ ‖yrh(t)‖L∞(0,1)‖yrh(t)‖H‖(yrh)x(t)‖H
≤ ca‖yrh(t)‖H‖yrh(t)‖21

≤ µ

2
‖yrh(t)‖21 ≤

µ

2
‖(yrh)x(t)‖2H +

1

2
‖yrh(t)‖2H for almost every t ∈ (tk, tk+1).

Thus for every k ∈ N we have

d

dt
‖yrh(t)‖2H+µ‖(yrh)x(t)‖2H ≤ ‖urh(t)‖2

L2(Ω̂)
+2‖yrh(t)‖2H for almost every t ∈ (tk, tk+1),

and therefore for t ∈ (tk, tk+1)

‖yrh(t)‖2H+µ

∫ t

tk

‖(yrh)x(s)‖2Hds

≤ ‖yrh(tk)‖2H +

∫ t

tk

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ t

tk

‖yrh(s)‖2Hds.
(4.27)
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4.3 Burgers Equation with Homogeneous Neumann Boundary Conditions

By the same estimate as above for the interval (tk−1, tk), we have

‖yrh(tk)‖2H+µ

∫ tk

tk−1

‖(yrh)x(s)‖2Hds

≤ ‖yrh(tk−1)‖2H +

∫ tk

tk−1

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ tk

tk−1

‖yrh(s)‖2Hds.
(4.28)

By summing (4.27) and (4.28), we have

‖yrh(t)‖2H+µ

∫ t

tk−1

‖(yrh)x(s)‖2Hds

≤ ‖yrh(tk−1)‖2H +

∫ t

tk−1

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ t

tk−1

‖yrh(s)‖2Hds.

Repeating the above argument for k − 2, k − 3, . . . , 0, it follows that

‖yrh(t)‖2H ≤‖yrh(tk)‖2H +

∫ t

tk

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ t

tk

‖yrh(s)‖2Hds

≤‖y0‖2H +

∫ ∞
0
‖urh(s)‖2

L2(Ω̂)
ds+ 2

∫ ∞
0
‖yrh(s)‖2Hds

≤(1 + 2σ1)‖y0‖2H ,

where for the last inequality (4.25) has been used. Choosing ν :=
√

1 + 2σ1, we obtain
(4.24).

Now we are in the position to prove

lim
t→∞
‖yrh(t)‖2H = 0.
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On the Stabilizability of the Burgers Equation by RHC

For every t′′ ≥ t′ we have

‖yrh(t′′)‖2H − ‖yrh(t′)‖2H =

∫ t′′

t′

d

dt
‖yrh(t)‖2Hdt

= 2

∫ t′′

t′
〈yrh(t), µ(yrh)xx(t)− (yrh)x(t)yrh(t) +Burh(t)〉V,V ∗dt

≤ −2µ

∫ t′′

t′
‖(yrh)x(t)‖2Hdt+ 2

∫ t′′

t′
ca‖yrh(t)‖H‖yrh(t)‖21dt

+ 2

∫ t′′

t′
〈Burh(t), yrh(t)〉Hdt

≤ −µ
∫ t′′

t′
‖(yrh)x(t)‖2Hdt+

∫ t′′

t′
‖yrh(t)‖2Hdt+ 2

∫ t′′

t′
〈Burh(t), yrh(t)〉Hdt

≤ 2

∫ t′′

t′
‖urh(t)‖L2(Ω̂)‖yrh(t)‖Hdt+

∫ t′′

t′
‖yrh(t)‖2Hdt

≤ 2
( ∫ t′′

t′
‖urh(t)‖2

L2(Ω̂)
dt
) 1

2
( ∫ t′′

t′
‖yrh(t)‖2Hdt

) 1
2

+
( ∫ t′′

t′
‖yrh(t)‖2Hdt

) 1
2
( ∫ t′′

t′
‖yrh(t)‖2Hdt

) 1
2

≤ 3
√
σ1ν‖y0‖2H(t′′ − t′)

1
2 ,

where (4.24) and (4.25) were used to obtain the last inequality. Now the proof can be
completed following that for Theorem 4.2.1, except that the factor 2 in (4.18) has to be
replaced by the factor 3 which appeared in the last estimate.

4.4 Numerical Results

We present numerical results to illustrate the theoretical findings of the previous sections.
For the Burgers equation with periodic or homogeneous Neumann boundary conditions,
every constant function is a steady state of the uncontrolled equation. Hence the origin
is stable, but it is not asymptotically stable. Consequently it is of interest to force the
state of these equations to the steady state by an external control which is computed on
the basis of the RHC.

Our numerical experiments will also include a comparison of the performance of the
RHC scheme with and without terminal penalty term. The latter case was investigated
in the previous section, the former in [75], where it was shown that the quadratic penalty
term G(y) = 1

2‖y‖
2
L2(Ω) can be used as a control Lyapunov function for the Navier-Stokes

eqaution.
Our numerical tests utilize the following Algorithm 4.1, where G is chosen as one of

the two cost functionals

Zero: G(y) = 0, or Quadratic: G(y) =
1

2
‖y‖2L2(0,1). (4.29)
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4.4 Numerical Results

For G(y) = 0, Algorithm 4.1 essentially coincides with Algorithm 2.1, except for the fact
that we need to terminate our computations at some T∞ <∞.

Algorithm 4.1

Input: Let a final computational time horizon T∞, and an initial state y0 ∈ L2(0, 1) be

given.

1: Choose a prediction horizon T < T∞, and a sampling time δ ∈ (0, T ].

2: Consider a grid 0 = t0 < t1 · · · < tr = T∞ on the interval [0, T∞], where ti := iδ for

i = 0, . . . , r.

3: Solve successively the open-loop subproblem on [ti, ti + T ]:

min
1

2

∫ ti+T

ti

‖y(t)‖2L2(0,1)dt+
β

2

∫ ti+T

ti

‖u(t)‖2
L2(Ω̂)

dt+G(y(ti + T )), (4.30)

subject to Burgers equations (4.19) (or (4.1)) for the initial condition

y(ti) = y∗T (ti) if i ≥ 1 and y(ti) = y0 if i = 0,

where y∗T (·) is the solution to the preceding subproblem on [ti−1, ti−1 + T ].

4: The receding horizon pair (yrh(·), urh(·)) is obtained by concatenation of the optimal

pairs (y∗T (t), u∗T (t)) of the finite horizon subproblems on [ti, ti+1] for i = 0, . . . , r− 1.

The numerical simulations were carried out on the MATLAB platform. Throughout,
the spatial discretization was done by the standard Galerkin method based on piecewise
linear and continuous basis functions with mesh-size h = 0.0125. The ordinary differ-
ential equations resulting after spatial discretization were solved by the implicit Euler
method with step-size ∆t = 0.0125, where the nonlinear systems of equations within the
implicit Euler method were solved by Newton’s method. Every open-loop problem was
solved by applying the Barzilai-Borwein (BB) gradient steps [21] with a nonmonotone
line search [49] on the reduced problem in the “first optimize, then discretize” manner.
For every open-loop problem, the optimization algorithm was terminated when L2-norm
of the gradient for the reduced objective function was less than the tolerance 10−6.
Furthermore in all examples, we set δ = 0.25 and β = 10−3.

For every example, we implemented the receding horizon strategy for different choices
of the prediction horizon T and the two terminal costs G in (4.29). Furthermore, in order
to have a measure for the performance of the receding horizon strategy, we consider

1. JT∞(urh, y0) := 1
2

∫ T∞
0 ‖yrh(t)‖2L2(0,1)dt+ β

2

∫ T∞
0 ‖urh(t)‖2

L2(Ω̂)
dt,

2. ‖yrh‖L2(Q) with Q := (0, T∞)× (0, 1),

3. ‖yrh(T∞)‖L2(0,1),
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On the Stabilizability of the Burgers Equation by RHC

4. iter : the total number of iterations (BB-gradient steps) that the optimizer needs
for all open-loop problems on the intervals (ti, ti + T ) for i = 0, . . . , r − 1.

Example 4.4.1. We considered the Burgers equation (4.1) with periodic boundary
conditions. We chose y0(x) = exp(−20(x− 0.5)2) as the initial function, µ = 10−3 as a
viscosity parameter, and T∞ = 15. Further, the RHC acts only on the set

Ω̂ = (0.1, 0.2) ∪ (0.4, 0.6) ∪ (0.8, 0.9) ⊂ (0, 1).

Figures 4.1(a) and 4.1(b) depict, respectively, the solution and the evolution of the
L2(0, 1)-norm for the state of the uncontrolled Burgers equation (4.1). For the uncon-
trolled solution yu we have

‖yu‖L2(Q) = 1.5768, ‖yu(T∞)‖L2(0,1) = 0.3958.
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(b) Evolution of L2(0, 1)-norm of state

Figure 4.1: Uncontrolled solution for Example 4.4.1

The results of Algorithm 4.1 for different choices of T and G and the fixed sampling
time δ = 0.25 are summarized in Table 4.1. Figure 4.2 shows the results for the receding
horizon pairs (yrh, urh) if G = 0 and T = 1.

G Prediction horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(0,1) iter

Quadratic

T = 1 0.021891 0.1799 2.62× 10−5 11861

T = 0.5 0.023196 0.1820 3.95× 10−5 8352

T = 0.25 0.027547 0.1828 1.32× 10−4 6041

Zero

T = 1 0.021886 0.1805 8.41× 10−5 6220

T = 0.5 0.021893 0.1818 2.10× 10−4 3139

T = 0.25 0.021943 0.1856 4.26× 10−4 1467

Table 4.1: Numerical results for Example 4.4.1

As expected, increasing the prediction horizon T results in a decrease of the stabi-
lization measures ‖yrh‖L2(Q) and ‖yrh(T∞)‖L2(0,1), for both quadratic and zero terminal
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(a) RHS
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(c) RHC
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(d) L2(Ω̂)-norm of RHC

Figure 4.2: Receding horizon trajectories for Example 4.4.1
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penalties. The quadratic terminal penalty term results in smaller values of the stabiliza-
tion measures, with the difference in the ‖yrh‖L2(Q)-norm less pronounced than in the
‖yrh(T∞)‖L2(0,1)-norm. Using a nontrivial terminal penalty results in higher iteration
numbers for the optimizer. In view of the fact that the choice of T has only little effect
on the stabilization measures, but significant effect on the number of iterations in the
optimization algorithm, small T is preferable for this class of problems. It should also
be of interest to search for methods which adaptively tune the prediction horizon.

Example 4.4.2. Here we considered the stabilization of the Burgers equation (4.19)
with homogeneous Neumann boundary conditions. We set y0(x) = cos(πx) as the initial
function and chose T∞ = 10. The spatial support for the controls is

Ω̂ = (0, 0.15) ∪ (0.85, 1) ⊂ (0, 1).

Furthermore, µ = 0.01. Note that for this small viscosity parameter and the above
antisymmetric initial function, the uncontrolled numerical solution of (4.19) approaches
a nonconstant, time independent steady state; see [31]. The uncontrolled solution yu is
illustrated in Figure 4.3, and we have

‖yu‖L2(Q) = 3.08, ‖yu(T∞)‖L2(0,1) = 0.9791.
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(b) Evolution of L2(0, 1)-norm of state

Figure 4.3: Uncontrolled solution for Example 4.4.2

Table 4.2 reveals the numerical results of Algorithm 4.1 for different choices of the
prediction horizon T and the terminal cost G. Figure 4.4 shows the results for the
receding horizon pairs (yrh, urh) in the case that zero terminal cost and T = 1 were
chosen.

Concerning the effect of different choices of T and G, the same observations as in
Example 4.4.1 apply.

Example 4.4.3. In this example, we dealt with the stabilization of a noisy Burg-
ers equation with homogeneous Neumann boundary conditions. We chose y0(x) =
exp(−20(x − 0.5)2) as the initial function, µ = 0.01 as a viscosity parameter, and
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(a) RH State
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(b) L2(0, 1)-norm of RHS

(c) RH Control
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(d) L2(Ω̂)-norm of RHC

Figure 4.4: Receding horizon trajectories for Example 4.4.2

G Prediction horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(0,1) iter

Quadratic

T = 1 0.053394 0.2820 3.38× 10−6 5890

T = 0.5 0.056004 0.2792 9.99× 10−6 3957

T = 0.25 0.060580 0.2788 9.74× 10−6 3285

Zero

T = 1 0.053058 0.2835 7.23× 10−6 3382

T = 0.5 0.052961 0.2873 1.46× 10−5 1698

T = 0.25 0.053717 0.2977 4.00× 10−5 903

Table 4.2: Numerical results for Example 4.4.2.
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T∞ = 10. Furthermore, the noise was simulated by generating uniformly distributed
random numbers within the range [−4, 4]; it was added to the right-hand side of (4.19)
at the spatial-temporal grid points. The results corresponding to uncontrolled solutions
are reported in Table 4.3.

Problem types ‖yu‖L2(Q) ‖yu(T∞)‖L2(0,1)

Uncontrolled state without noise 0.6291 0.0829

Uncontrolled state with noise 0.7945 0.1436

Table 4.3: Uncontrolled solutions for Example 4.4.3

In Figure 4.5, we show the results for uncontrolled solutions with noise and without
noise. The control acts only on the set

Ω̂ = (0.1, 0.3) ∪ (0.7, 0.9) ⊂ (0, 1).

In implementations of Algorithm 4.1 on every interval [ti, ti + T ], first an open-loop
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(b) L2(0, 1)-norm of the state

(c) Noisy state
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(d) L2(0, 1)-norm of the noisy state

Figure 4.5: Uncontrolled solutions for Example 4.4.3

optimal control u∗T was computed for every subproblem without noise. Then the optimal
control u∗T is used to steer the noisy Burgers equation. This process was repeated for
every interval [ti, ti + T ] with i = 0, . . . , r − 1. Table 4.4 (resp., Table 4.5) represents
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the results of Algorithm 4.1 applied on the Burgers equation (4.19) with noise (resp.,
without noise) for different choices of the prediction horizon T and the terminal cost G.
In Figures 4.6 and 4.7, we show the results for the receding horizon pairs (yrh, urh) in

G Prediction horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(0,1) iter

Quadratic

T = 1 0.049456 0.2996 0.0426 4327

T = 0.5 0.052292 0.3031 0.0418 3489

T = 0.25 0.060291 0.3063 0.0441 2739

Zero

T = 1 0.049545 0.3009 0.0438 2463

T = 0.5 0.050112 0.3046 0.0462 1479

T = 0.25 0.053008 0.3163 0.0512 880

Table 4.4: Numerical results corresponding to the noisy equation for Example 4.4.3

G Prediction horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(0,1) iter

Quadratic

T = 1 0.044212 0.2828 2.56× 10−6 4215

T = 0.5 0.046700 0.2855 9.70× 10−6 3346

T = 0.25 0.054818 0.2892 5.58× 10−6 2636

Zero

T = 1 0.044212 0.2839 9.26× 10−6 2532

T = 0.5 0.044626 0.2870 2.79× 10−5 1450

T = 0.25 0.047149 0.2983 1.51× 10−4 835

Table 4.5: Numerical results corresponding to the equation without noise for Example 4.4.3

the case that zero terminal cost and T = 1 were chosen.
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(a) RH State
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(b) L2(0, 1)-norm of RHS

(c) RH Control
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Figure 4.6: Receding horizon trajectories for Example 4.4.3 without noise
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(a) RH State

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

t

L
2
 n

o
rm

 s
ta

te

(b) L2(0, 1)-norm of RHS

(c) RH Control

0 2 4 6 8 10
0

1

2

3

4

5

t

L
2
 n

o
rm

 c
o
n
tr

o
l

(d) L2(Ω̂)-norm of RHC

Figure 4.7: Receding horizon trajectories for Example 4.4.3 with presence of noise

From Tables 4.4 and 4.5 we note that the stabilization quantifiers for the quadratic
and zero terminal penalties differ less in the case with noise than without noise. Com-
paring Figures 4.6(d) and 4.7(d) we note the effect on the required control action due to
noise in the equation.

Consistently over all numerical results it can be observed that a longer prediction
horizon leads to smaller values of JT∞ . Concerning the total number of iterations, it can
be seen that, for the problems under consideration, Algorithm 4.1 with zero terminal
cost requires significantly fewer iterations than in the case with quadratic terminal cost.
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Chapter 5

On the semi-global Stabilizability
of the KdV Equation via RHC

5.1 Introduction

This chapter is devoted to applicability of RHC poposed in Chapter 2 in the context of
stabilization of the nonlinear Korteweg-de Vries equation

∂ty + ∂xy + y∂xy + ∂3
xy = 0, (KdV)

where y = y(t, x) is a real valued function of real variables t and x. The KdV equation
was first derived by Boussinesq [28] and rediscovered by Korteweg and de Vries [82]
as a model for the propagation of water waves along a channel. This equation serves
also as a very useful approximation in studies aiming to include and balance a weak
nonlinearity and weak dispersive effects. Particularly, the equation is now commonly
used as a mathematical model for the unidirectional propagation of small amplitude
long waves in nonlinear dispersive systems. In the past decades, many authors studied
the KdV equation from various aspects of mathematics, including the well-posedness,
existence and stability of solitary waves, the long-time behavior, stabilization, and the
controllability. Among all of them we can point out the works [25, 26, 43, 54, 55, 73, 84]
for well-posedness and [37, 39, 46, 59, 79, 96, 105, 114, 116, 122, 123, 124, 125, 143] for
stabilization and control theory.

Here we consider the following optimal control problem which consists in minimizing
the performance index

J∞(u, y0) :=

∫ ∞
0

`(y(t), u(t))dt (5.1)

subject to the Korteweg-de Vries (KdV) equation posed on the space-time cylinder
(0, L)× [0,∞) 

∂ty + ∂xy + y∂xy + ∂3
xy = Bu x ∈ (0, L), t > 0,

y(t, 0) = y(t, L) = ∂xy(t, L) = 0 t > 0,

y(0, ·) = y0 x ∈ (0, L),

(5.2)
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5.2 Well-posedness of the KdV equation

where the external control u(t) = u(t, x) is real valued function, and y0 ∈ L2(0, L). The
control operator B is the extension-by-zero operator given by

(Bu)(x) =

{
u(x) x ∈ Ω̂,

0 x ∈ (0, L)\Ω̂,

where the control domain Ω̂ is a nonempty open subset of (0, L). Further, the incremental
function ` : L2(0, L)× L2(Ω̂)→ R+ is defined by

`(y, u) :=
1

2
‖y‖2L2(0,L) +

β

2
‖u‖2

L2(Ω̂)
. (5.3)

In this chapter we continue our study on the analysis of the unconstrained receding
horizon strategy for infinite-dimensional controlled systems. Based on the semi-global
stabilizability result from [114] we first show that RHC for (5.2) is suboptimal. Then by
an observability type estimate, we prove that the resulting receding horizon controlled
system is semi-globally exponentially stable. This requires techniques which differ from
those which were employed in Chapters 2, 3, and 4. For the sake of consistency in
presentation, we reformulate Algorithm 2.1 for the problem (5.1)-(5.2) and summarize
the corresponding steps in Algorithm 5.1.

The remainder of this chapter is organized as follows: Section 5.2 deals with the
global well-posedness of the nonlinear KdV equation in the weak sense. In Section 5.3,
existence of the finite horizon optimal control is investigated. Section 5.4 analyzes the
suboptimality and semi-global exponential stability of RHC obtained by Algorithm 5.1.
Finally, Section 5.5 is devoted to numerical simulations.

5.2 Well-posedness of the KdV equation

In this section we deal with the existence of global solution of the nonlinear KdV equation
∂ty + ∂xy + ∂3

xy + y∂xy = f x ∈ (0, L), t ∈ (0, T ),

y(t, 0) = y(t, L) = ∂xy(t, L) = 0 t ∈ (0, T ),

y(0, ·) = y0 x ∈ (0, L),

(5.4)

with an arbitrary finite time horizon T , forcing function f ∈ L2(0, T ;L2(0, L)), and initial
function y0 ∈ L2(0, L). Throughout we shall refer to the following function spaces:

B0,T := C([0, T ];L2(0, T )) ∩ L2(0, T ;H1
0 (0, L))

equipped with the norm

‖v‖B0,T := sup
t∈[0,T ]

‖v(t)‖L2(0,L) + ‖v‖L2(0,T ;H1
0 (0,L)),

the space in which solutions will be sought

W0,T := L2(0, T ;H1
0 (0, L)) ∩ C([0, T ];L2(0, L)) ∩H1(0, T ;H−2(0, L)),
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On the semi-global Stabilizability of the KdV Equation via RHC

Algorithm 5.1 Receding Horizon Control Algorithm

Input: Let the prediction horizon T , the sampling time δ < T , and the initial state

y0 ∈ L2(0, L) be given.

1: Set k := 0, t0 := 0, and yrh(t0) := y0.

2: Find the optimal pair (y∗T (·; yrh(tk), tk), u
∗
T (·; yrh(tk), tk)) over the time horizon

[tk, tk + T ] by solving the finite horizon open-loop problem

min
u∈L2(tk,tk+T ;L2(Ω̂))

JT (u, yrh(tk)) := min
u∈L2(tk,tk+T ;L2(Ω̂)))

∫ tk+T

tk

`(y(t), u(t))dt,

subject to


∂ty + ∂xy + y∂xy + ∂3

xy = Bu x ∈ (0, L), t ∈ (tk, tk + T ),

y(t, 0) = y(t, L) = ∂xy(t, L) = 0 t ∈ (tk, tk + T ),

y(tk, ·) = yrh(tk) x ∈ (0, L).

3: Set

urh(τ) := u∗T (τ ; yrh(tk), tk) for all τ ∈ [tk, tk + δ),

yrh(τ) := y∗T (τ ; yrh(tk), tk) for all τ ∈ [tk, tk + δ],

tk+1 := tk + δ,

k := k + 1.

4: Go to Step 2.
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5.2 Well-posedness of the KdV equation

and the space of test functions

X := {ω ∈ H2(0, L) | ω(0) = ω(L) = ω′(0) = 0}. (5.5)

First of all we show that, for every forcing function f ∈ L1(0, T ;L2(0, L)) and initial
function y0 ∈ L2(0, L), the linear KdV equation

∂ty + ∂xy + ∂3
xy = f x ∈ (0, L), t ∈ (0, T ),

y(t, 0) = y(t, L) = ∂xy(t, L) = 0 t ∈ (0, T ),

y(0, ·) = y0 x ∈ (0, L),

(5.6)

is well-posed. We give a proof to explicit the dependence of the solution of f . This proof
is largely inspired from [122].

Theorem 5.2.1. Let T , L > 0 be given. For any y0 ∈ L2(0, L) and any f ∈ L1(0, T ;L2(0, L)),
the Cauchy problem (5.6) admits a unique mild solution which belongs to the space B0,T .
Furthermore, for the mild solution y we have the estimate

|y|L2(0,T ;H1
0 (0,T )) + sup

0≤t≤T
|y(t)|L2(0,L) ≤ C(|y0|L2(0,L) + |f |L1(0,T ;L2(0,L))), (5.7)

where the constant C > 0 depends on L and T .

Proof. First, we consider the operator A := −∂x − ∂3
x on the dense domain D(A) ⊂

L2(0, L) which is defined by

D(A) := {φ ∈ H3(0, L) | φ(0) = φ(L) = φ′(L) = 0}.

It has been shown [122] that the operator A and its adjoint A∗ with domain

D(A∗) := {φ ∈ H3(0, L) | φ(0) = φ(L) = φ′(0) = 0}.

are dissipative. Therefore, due to [115, cor. 4.4, Chapter 1, Page 15] the operator
A is the infinitesimal generator of C0-semigroup of contractions {W (t)}t≥0 defined on
L2(0, L) and we have the mild form of the solution to (5.6) given by

y(t) = W (t)y0 +

∫ t

0
W (t− s)f(s)ds for all t ∈ [0, T ].

Moreover the following estimate holds:

‖y‖C([0,T ];L2(0,L)) ≤ ‖y0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)). (5.8)

To show that y ∈ L2(0, T ;H1
0 (0, L)), we first assume that y0 ∈ D(A), f ∈ C1([0, T ], L2(0, L)),

and q ∈ C∞([0, T ] × [0, L]). Under these assumption on y0 and f we have that y ∈
C([0, T ];D(A)) ∩C1([0, T ];L2(0, L)) (see, e.g., [115]). Multiplying (5.6) by qy and inte-
grating over (0, T )× (0, L), we obtain∫ T

0

∫ L

0
qy(∂ty + ∂xy + ∂3

xy − f)dxdt = 0.
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Integrating by parts we have

−
∫ T

0

∫ L

0
(∂tq + ∂xq + ∂3

xq)
y2

2
dxdt+

∫ L

0
(q
y2

2
)(T, x)dx

−
∫ L

0
q(0, x)

y2
0(x)

2
dx+

3

2

∫ T

0

∫ L

0
∂xq(∂xy)2dxdt

+

∫ T

0
(q

(∂xy)2

2
)(t, 0)dt−

∫ T

0

∫ L

0
yqfdxdt = 0.

Choosing q(t, x) = x leads to

−
∫ T

0

∫ L

0
y2dxdt+

∫ L

0
xy(T, x)2dx−

∫ L

0
xy2

0(x)dx

+3

∫ T

0

∫ L

0
(∂xy)2dxdt−

∫ T

0

∫ L

0
xfydxdt = 0.

Now, by using (5.8) we obtain∫ T

0

∫ L

0
(∂xy)2dxdt

≤ 1

3

(∫ T

0

∫ L

0
y2dxdt+ L

∫ L

0
y2

0(x)dx+ L

∫ T

0

∫ L

0
|fy|dxdt

)
≤ 1

3

(
T‖y‖2C([0,T ];L2(0,L)) + L‖y0‖2L2(0,L)

+ L(‖y‖C([0,T ];L2(0,L))‖f‖L1(0,T ;L2(0,L)))
)

≤ 1

3

(
T (‖y0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)))

2

+ L‖y0‖2L2(0,L) + L(‖y0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L)))‖f‖L1(0,T ;L2(0,L)))
)

≤ (T + L)

3

(
‖y0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L))

)2
.

(5.9)

Therefore we have

‖y‖L2(0,T ;H1
0 (0,L)) ≤ C(‖y0‖L2(0,L) + ‖f‖L1(0,T ;L2(0,L))),

where C depends on L and T . By density of D(A) and C1([0, T ];L2(0, L)) in L2(0, L)
and L1(0, T ;L2(0, L)), respectively, we can extend the estimate for the mild solutions
with arbitrary y0 ∈ L2(0, L) and f ∈ L1(0, T ;L2(0, L)).

Lemma 5.2.1. Let T > 0 and y ∈ B0,T . Then y∂xy ∈ L1(0, T ;L2(0, L)). Moreover the
mapping y ∈ B0,T → y∂xy ∈ L1(0, T ;L2(0, L)) is continuous, and for every y, z ∈ B0,T

we have the following estimate
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‖y∂xy − z∂xz‖L1(0,T ;L2(0,L)) = CaT
1
4 (‖y‖B0,T + ‖z‖B0,T )‖y − z‖B0,T , (5.10)

where Ca is a positive constant independent of T .

Proof. Assume that y and z ∈ B0,T are arbitrary. Then we have

‖y∂xy−z∂xz‖L1(0,T ;L2(0,L))

≤ ‖y(∂xy − ∂xz)‖L1(0,T ;L2(0,L)) + ‖∂xz(y − z)‖L1(0,T ;L2(0,L))

≤ (‖y‖L2(0,T ;L∞(0,L))‖∂xy − ∂xz‖L2(0,T ;L2(0,L))

+ ‖∂xz‖L2(0,T ;L2(0,L))‖y − z‖L2(0,T ;L∞(0,L)))

≤ Ca‖y‖
1
2

L2(0,T ;H1
0 (0,L))

‖y‖
1
2

L2(0,T ;L2(0,L))
‖y − z‖L2(0,T ;H1

0 (0,L))

+ Ca‖z‖L2(0,T ;H1
0 (0,L))‖y − z‖

1
2

L2(0,T ;H1
0 (0,L))

‖y − z‖
1
2

L2(0,T ;L2(0,L))

≤ CaT
1
4 ‖y‖

1
2

L2(0,T ;H1
0 (0,L))

‖y‖
1
2

C([0,T ];L2(0,L))
‖y − z‖L2(0,T ;H1

0 (0,L))

+ CaT
1
4 ‖z‖L2(0,T ;H1

0 (0,L))‖y − z‖
1
2

L2(0,T ;H1
0 (0,L))

‖y − z‖
1
2

C([0,T ];L2(0,L))

= CaT
1
4 (‖y‖B0,T + ‖z‖B0,T )‖y − z‖B0,T ,

(5.11)

where the constant Ca stands for the Agmon’s inequality. By taking z = 0 in (5.10), we
see that y∂xy ∈ L1(0, T ;L2(0, L)).

We now turn to the nonlinear equation.

Definition 5.2.1 (Mild solution). Suppose that T > 0 is arbitrary, and we are given
f ∈ L1(0, T ;L2(0, L)) and y0 ∈ L2(0, L). Then y ∈ B0,T is referred to as a mild solution
to (5.4) if the following integral equation is satisfied

y(t) = W (t)y0 −
∫ t

0
W (t− s)(y∂xy)(s)ds+

∫ t

0
W (t− s)f(s)ds for all t ∈ [0, T ],

where the C0-semigroup of contractions {W (t)}t≥0 defined in the proof of Theorem 5.2.1.

Theorem 5.2.2. Let T , L > 0 be given. For any initial function y0 ∈ L2(0, L) and
forcing function f ∈ L1(0, T ;L2(0, L)), there exists a T ∗ ∈ [0, T ] depending on |y0|L2(0,L)

and |f |L1(0,T ;L2(0,L)) such that (5.4) admits a unique solution in the space B0,T ∗.

Proof. We express problem (5.4) as a fixed point equation y = Ψ(y). For this purpose
we write (5.4) in integral form as

y(t) = W (t)y0 −
∫ t

0
W (t− s)(y∂xy)(s)ds+

∫ t

0
W (t− s)f(s)ds.
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For any r > 0 and time horizon θ, we define the ball Sθ,r centered at zero by Sθ,r :=
{x ∈ B0,θ, |x|B0,θ ≤ r}. This is a closed, convex, and bounded subset of B0,θ. We define
the mapping Ψ on Sθ,r by

Ψ(y) := W (t)y0 −
∫ t

0
W (t− s)(y∂xy)(s)ds+

∫ t

0
W (t− s)f(s)ds for y ∈ Sθ,r.

Then by (5.7) and (5.10), we have

|Ψ(y)|B0,θ
≤C
(
|y0|L2(0,L) + |f |L1(0,T ;L2(0,L)) + |y∂xy|L1(0,T ;L2(0,L))

)
≤C
(
|y0|L2(0,L) + |f |L1(0,T ;L2(0,L))

)
+ CCaθ

1
4 |y|2B0,θ

.

Choosing the r and θ such that{
r = 4

3C
(
|y0|L2(0,L) + |f |L1(0,T ;L2(0,L))

)
,

CCaθ
1
4 r ≤ 1

4 .
(5.12)

we obtain
|Ψ(y)|B0,θ

≤ r for all y ∈ Sθ,r,
and

|Ψ(y1)−Ψ(y2)|B0,θ
≤ 1

2
|y1 − y2|B0,θ

for all y1, y2 ∈ Sθ,r.

The existence of a unique solution to the Cauchy problem (5.4) follows by Banach’s fixed
point theorem. Note that by (5.12) we have

T ∗ ≤ 1(
16CaC2

3 (|y0|L2(0,L) + |f |L1(0,T ;L2(0,L)))
)4 .

Therefore for any y0 ∈ L2(0, L) and f ∈ L1(0, T ;L2(0, L)), there exists T ∗ ∈ [0, T ]
depending on |y0|L2(0,L) and |f |L1(0,T ;L2(0,L)) such that (5.4) admits a unique solution in
the space B0,T ∗ .

To show global well-posedness we need an a-priori estimate for solutions of (5.4).
This is attained next.

Lemma 5.2.2. Let T > 0 be arbitrary. Then for every y0 ∈ L2(0, L) and f ∈
L2(0, T ;L2(0, L)), the solution y ∈ B0,T ′ to (5.4) with T ′ ∈ (0, T ] satisfies the following
estimate

|y|B0,T ′ ≤ K1(T, L, y0, f). (5.13)

Moreover, the solution y belongs to the space W0,T ′ and we have that following estimate

|y|B0,T ′ + |∂ty|L2(0,T ′;H−2(0,L)) ≤ K2(T, L, y0, f), (5.14)

where the constants K1 and K2 depend on the quantities T , L, |y0|L2(0,L), and |f |L2(0,T ;L2(0,L)).
Further these constants will grow unboundedly as at least one of the above quantities tends
to infinity.
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Proof. Multiplying (5.4) with y and integrating on (0, L) we have

1

2

d

dt
‖y(t)‖2L2(0,L) +

1

2
(∂xy(t, 0))2 = 〈y(t), f(t)〉L2

≤ ‖y(t)‖L2(0,L)‖f(t)‖L2(0,L) ≤
1

2
‖y(t)‖2L2(0,L) +

1

2
‖f(t)‖2L2(0,L),

(5.15)

where we assume that the solution y is smooth enough to allow the calculations. Inte-
grating on (0, T ′) and using Gronwall’s inequality we have

‖y(t)‖2L2(0,L) ≤ exp(T )(‖y0‖2L2(0,L) + ‖f‖2L2(0,T ;L2(0,L))), for all t ∈ [0, T ′]. (5.16)

Now by a density argument and considering the fact that for y0 ∈ D(A) and f ∈
C1([0, T ];L2(0, L)), the solution y of (5.4) belongs to the space L2(0, T ′;H4(0, L)) ∩
C([0, T ′];H3(0, L)) (see, [55]), we can write

|y|L∞(0,T ′;L2(0,L)) ≤ C1(T, y0, f), (5.17)

with

C1(T, y0, f) :=
(

exp(T )(‖y0‖2L2(0,L) + ‖f‖2L2(0,T ;L2(0,L)))
) 1

2
, (5.18)

for every y0 ∈ L2(0, L) and f ∈ L2(0, T, L2(0, L)).
It remains to find an estimate for the term ‖∂xy‖L2(0,T ;L2(0,T )). As in Lemma 5.2.1

we assume that the solution is smooth enough. Then by multiplying equation (5.4) by
xy and integrating over (0, L), for every t ∈ (0, T ′) we have

d

dt

∫ L

0
|x

1
2 y(t, ·)|2dx+ 3

∫ L

0
(∂xy)2(t, ·)dx+ x(∂xy)2(t, 0)

=

∫ L

0
y2(t, ·)dx+

2

3

∫ L

0
y3(t, ·)dx+ 2

∫ L

0
xfydx.

(5.19)

Moreover, we have for almost every t ∈ (0, T ′)∫ L

0
|y(t, ·)|2dx ≤ ‖y‖2L∞(0,T ′;L2(0,L)), (5.20)

and

2

3

∫ L

0
|y(t, ·)|3dx ≤ 2

3
‖y(t)‖L∞(0,L)‖y‖2L∞(0,T ′;L2(0,L))

≤ 2c′

3
‖∂xy(t)‖L2(0,L)‖y‖2L∞(0,T ′;L2(0,L))

≤ εc′

3
‖∂xy(t)‖2L2(0,L) +

c′

3ε
‖y‖4L∞(0,T ′;L2(0,L)),

(5.21)

where the constant c′ is the embedding constant of H1
0 (0, L) into L∞(0, L), and the

positive number ε will be chosen later. Furthermore, we have

2

∫ L

0
|xfy|dx ≤ L‖f(t)‖2L2(0,L) + L‖y(t)‖2L2(0,L)

≤ L‖f(t)‖2L2(0,L) + L‖y‖2L∞(0,T ′;L2(0,L)).

(5.22)
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Now by choosing ε := 6
c′ , and combining inequalities (5.20), (5.21), and (5.22) with

(5.19), we obtain

d

dt

∫ L

0
|x

1
2 y(t, ·)|2dx+

∫ L

0
(∂xy)2(t, ·)dx

≤ (1 + L)‖y‖2L∞(0,T ′;L2(0,L)) +
c′2

18
‖y‖4L∞(0,T ′;L2(0,L)) + L‖f(t)‖2L2(0,L).

(5.23)

Integration with respect to t over interval (0, T ′) implies that∫ L

0
|x

1
2 y(T ′, ·)|2dx+

∫ T ′

0

∫ L

0
(∂xy)2dxdt

≤ L‖y0‖2L2(0,L) + T (1 + L)‖y‖2L∞(0,T ′;L2(0,L))

+ T
c′2

18
‖y‖4L∞(0,T ′;L2(0,L)) + L‖f‖2L2(0,T ;L2(0,L))

≤ L‖y0‖2L2(0,L) + T (1 + L)C2
1 (T, y0, f)

+ T
c′2

18
C4

1 (T, y0, f) + L‖f‖2L2(0,T ;L2(0,L)),

(5.24)

and as consequence of (5.17) and (5.18), we can conclude that

|y|B0,T ′ ≤ K1(T, L, |y0|L2(0,L), |f |L2(0,T ;L2(0,L))). (5.25)

Turing to inequality (5.14), we obtain from (5.25) that

‖∂ty‖L2(0,T ′;H−2(0,L)) = sup
‖φ‖

L2(0,T ;H2
0(0,L))

=1

∫ T ′

0
〈∂ty, φ〉H−2,H2

0

= sup
‖φ‖

L2(0,T ′;H2
0(0,L)))

=1

∫ L

0

∫ T ′

0
(−∂xyφ− ∂xy∂2

xφ− y∂xyφ+ fφ)dxdt

≤ (2 + c1‖y‖L∞(0,T ′;L2(0,L)))‖y‖L2(0,T ′;H1
0 (0,L)) + ‖f‖L2(0,T ;L2(0,L))

≤ (2 + c1K1(T, L, |y0|L2(0,L), |f |L2(0,T ;L2(0,L)))K1(T, L, |y0|L2(0,L), |f |L2(0,T ;L2(0,L)))

+ ‖f‖L2(0,T ;L2(0,L)),

(5.26)

where c1 stands for the continuous embedding from H2(0, L) to L∞(0, L). Combining
(5.25) and (5.17), we conclude (5.14).

Theorem 5.2.3. Let an arbitrary T > 0 be given. Then for every y0 ∈ L2(0, L) and
f ∈ L2(0, T ;L2(0, L)), there exist a unique mild solution y ∈ W0,T for the nonlinear
KdV equation (5.4).
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Proof. Local existence due to Theorem 5.2.2 together with the a-priori bound (5.13) of
Lemma 5.2.2 imply global existence by the standard continuation argument. Uniqueness
follows from Theorem 5.2.2 as well.

We will later use the following useful lemma from [30, Page. 45].

Lemma 5.2.3. Let E and F be two Banach spaces and A : E ⊃ D(A)→ F be a densely
defined unbounded linear operator, then the adjoint operator A∗ is closed. That is, the
graph of this operator G(A∗) is closed in F ∗ × E∗. Moreover we have

I(G(A∗)) = G(A)⊥,

where the isomorphism I : F ∗ × E∗ → E∗ × F ∗ is defined by

I(X,Y ) = (−Y,X) for all (X,Y ) ∈ F ∗ × E∗.

Definition 5.2.2 (Weak solution). Suppose that T > 0 is arbitrary, and we are given
f ∈ L2(0, T ;L2(0, L)) and y0 ∈ L2(0, L). Then y ∈ W0,T is referred to as a weak solution
to (5.4) if y(0) = y0 in L2(0, L) and the following equality holds

〈∂ty(t), φ〉H−2,H2+〈∂xy(t), φ〉L2+〈y(t)∂xy(t), φ〉L2+〈∂xy(t), ∂2
xφ〉L2 = 〈f(t), φ〉L2 (5.27)

for almost every t ∈ (0, T ) and every φ ∈ X .

Theorem 5.2.4. For every T > 0, f ∈ L2(0, T ;L2(0, L)), and y0 ∈ L2(0, L), problem
(5.4) admits a unique weak solution.

Proof. Inspired by [15, 23], we first show that any mild solution of (5.4) is a weak
solution. Let y ∈ W0,T be a mild solution of (5.4). Then for every t ∈ [0, T ] we have

y(t) = W (t)y0 −
∫ t

0
W (t− s)(y∂xy)(s)ds+

∫ t

0
W (t− s)f(s)ds,

where y ∈ C([0, T ];L2(0, L)) ⊂ L1(0, T ;L2(0, L)). For every φ ∈ D(A∗) and σ ∈ D(0, T ),
the vectorial distributional derivative of y is obtained by

−
∫ T

0
〈y(t), φ〉σ′(t)dt

= −
∫ T

0

[〈
W (t)y0 +

∫ t

0
W (t− s)

(
f(s)− y(s)∂xy(s)ds, φ

〉]
σ′(t) dt

= −
∫ T

0
〈W (t)y0, φ〉σ′(t)dt−

∫ T

0

∫ T

s
〈W (t− s)

(
f(s)− y(s)∂xy(s)

)
, φ〉σ′(t)dtds.

(5.28)

For every ψ ∈ D(A) and φ ∈ D(A∗), we can write for all most every t > 0

d

dt
〈W (t)ψ, φ〉 = 〈AW (t)ψ, φ〉 = 〈W (t)ψ,A∗φ〉. (5.29)
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Since D(A) is dense in L2(0, L), this equality can be extended for every ψ ∈ L2(0, T ).
Moreover, by integrating by parts we have

−
∫ T

0
〈W (t)y0, φ〉σ′(t)dt =

∫ T

0
〈W (t)y0,A∗φ〉σ(t)dt, (5.30)

and,

−
∫ T

s
〈W (t− s)(f(s)− y(s)∂xy(s), φ〉σ′(t)dt

= 〈f(s)− y(s)∂xy(s), φ〉σ(s) +

∫ T

s
〈W (t− s)(f(s)− y(s)∂xy(s)),A∗φ〉σ(t)dt.

(5.31)

Substituting (5.30)-(5.31) into (5.28), we obtain

−
∫ T

0
〈y(t), φ〉σ′(t)dt

=

∫ T

0
〈y(t),A∗φ〉σ(t)dt+

∫ T

0
〈f(t)− y(t)∂xy(s), φ〉σ(t)dt.

(5.32)

Due to Lemma 5.2.1, we have y∂xy ∈ L1(0, T ;L2(0, L)). Furthermore, y ∈ C([0, T ];L2(0, L)) ⊂
L1(0, T ;L2(0, L)), and f ∈ L2(0, T ;L2(0, L)). Therefore 〈y(·), φ〉 ∈W 1,1(0, T ;R) and for
almost every t ∈ [0, T ] we have by (5.32)

d

dt
〈y(t), φ〉 = 〈y(t),A∗φ〉 − 〈y(t)∂xy(t), φ〉+ 〈f(t), φ〉 for all φ ∈ D(A∗). (5.33)

By Lemma 5.2.2, we recall that y ∈ W0,T . Hence, we can rewrite (5.33) as

d

dt
〈y(t), φ〉H−2,H2 + 〈∂xy(t), φ〉L2 + 〈y(t)∂xy(t), φ〉L2 + 〈∂xy(t), ∂2

xφ〉L2 = 〈f(t), φ〉L2 .

Since D(A∗) is dense in X , the above equality holds for every φ ∈ X , and hence y is a
weak solution.

Now we show that every weak solution (5.27) is a mild solution of (5.4). By using
the fact that D(A∗) ⊂ X and integrating by parts in (5.27), we have for almost every
t ∈ [0, T ]

d

dt
〈y(t), φ〉 = 〈y(t),A∗φ〉 − 〈y(t)∂xy(t), φ〉+ 〈f(t), φ〉 for all φ ∈ D(A∗).

Integrating on (0, t) for an arbitrary t ∈ [0, T ], we obtain

〈y(t)− y0 +

∫ t

0

(
y(s)∂xy(s)− f(s)

)
ds, φ〉 = 〈

∫ t

0
y(s)ds,A∗φ〉 for all φ ∈ D(A∗).

This equality implies that( ∫ t

0
y(s)ds, y(t)− y0 +

∫ t

0

(
y(s)∂xy(s)− f(s)

)
ds
)
∈ (I(G(A∗))⊥ for all t ∈ [0, T ].

108



5.2 Well-posedness of the KdV equation

By Lemma 5.2.3, we can conclude that

(I(G(A∗))⊥ =
(
(G(A))⊥

)⊥
= G(A) = G(A).

Therefore, for all t ∈ [0, T ] we have
∫ t

0 y(s)ds ∈ D(A), and

A
∫ t

0
y(s)ds = y(t)− y0 +

∫ t

0

(
y(s)∂xy(s)− f(s)

)
ds.

Now by defining z(t) :=
∫ t

0 y(s)ds for all t ∈ [0, T ], we have{
ż(t) = Az(t) + y0 −

∫ t
0

(
y(s)∂xy(s)− f(s)

)
ds,

z(0) = 0.
(5.34)

We set Aλ = λA(λI −A)−1 for λ > 0 as the Yosida approximations of the operator A.
Then by (5.34) we can write

d

dt

(
e−Aλtz(t)

)
= e−Aλtż(t)−Aλe−Aλtz(t)

= (A−Aλ)e−Aλtz(t) + e−Aλt
[
y0 −

∫ t

0

(
y(s)∂xy(s)− f(s)

)
ds
]
.

It follows that

z(t) = eAλt
∫ t

0

(
(A−Aλ)e−Aλsz(s) + e−Aλs

[
y0 −

∫ s

0

(
y(r)∂xy(r)− f(r)

)
dr
])
ds

=

∫ t

0
(A−Aλ)eAλ(t−s)z(s)ds+

∫ t

0
eAλ(t−s)[y0 −

∫ s

0

(
y(r)∂xy(r)− f(r)

)
dr
]
ds.

(5.35)

For every λ > 0 and s ∈ [0, T ], by using (5.34) and Lemma 5.2.1 we have that

‖Az(s)‖L2(0,L) ≤ ‖y(s)‖L2(0,L) + ‖y0‖L2(0,L) + T
1
2 ‖f‖L2(0,T ;L2(0,L))

+ ‖y∂xy‖L1(0,T ;L2(0,L) ≤ C,
‖Aλz(s)‖L2(0,L) ≤ ‖λ(λI −A)−1‖L(L2(0,L))‖Az(s)‖L2(0,L)

≤ ‖Az(s)‖L2(0,L) ≤ C,

(5.36)

where, using that y ∈ W0,T , the constant C is independent of s ∈ [0, T ]. In addition,{
limλ→∞(A−Aλ)z(s) = 0 for all s ∈ [0, T ],

limλ→∞ e
Aλty = W (t)y for all y ∈ L2(0, L), t ∈ [0, T ].

Now by using the dominated convergence theorem and (5.36), we obtain from (5.35) for
λ→∞

z(t) =

∫ t

0
W (t− s)

[
y0 +

∫ s

0

(
− y(r)∂xy(r) + f(r)

)
dr
]
ds

=

∫ t

0
W (s)y0ds+

∫ t

0
W (s)

[ ∫ t−s

0

(
− y(r)∂xy(r) + f(r)

)
dr
]
ds.
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Therefore,

y(t) = ż(t) = W (t)y0 +

∫ t

0
W (t− s)(−y(s)∂xy(s) + f(s))ds,

and thus y is a mild solution. Finally uniqueness of the weak solution follows from the
uniqueness of the mild solution.

5.3 Existence of an optimal control

In Step 2 of any iteration of Algorithm 5.1, we need to solve a finite horizon optimal
control problem consisting in minimizing

JT (u, y0) :=

∫ T

0
`(y(t), u(t))dt,

over all u ∈ L2(0, T ;L2(Ω̂)) subject to the nonlinear KdV equation
∂ty + ∂xy + y∂xy + ∂3

xy = Bu x ∈ (0, L), t ∈ (0, T ),

y(t, 0) = y(t, L) = ∂xy(t, L) = 0 t ∈ (0, T ),

y(0, ·) = y0 x ∈ (0, L),

(5.37)

where y0 ∈ L2(0, L). Therefore we need to verify that the above optimal control problem
has a solution. This question will be addressed by the following theorem. We denote
the above optimal control problem by (OP) and write it as

min{JT (u, y0) | (y, u) satisfies (5.37), u ∈ L2(0, T ;L2(Ω̂))}. (OP)

Theorem 5.3.1. For every finite horizon T > 0 and y0 ∈ L2(0, L), the optimal control
problem (OP) admits a solution.

Proof. According to Theorem 5.2.4, for every control u ∈ L2(0, T ;L2(Ω̂)) there exist a
unique weak solution y ∈ W0,T to (5.37). As a result, the set of admissible controls is
nonempty and by (5.3) we have

JT (u, y0) ≥ β

2
‖u‖2

L2(0,T ;L2(Ω̂))
. (5.38)

Let (yn, un) ∈ W0,T × L2(0, T ;L2(Ω̂)) be a minimizing sequence such that

lim
n→∞

JT (un, y0) = σ.

By (5.14), (5.38), and due to the structure of `, the set {(yn, un)}n is bounded inW0,T ×
L2(0, T ;L2(Ω̂)). Therefore there exist subsequences yn and un such that

yn ⇀∗ y∗ in L2(0, T ;H1
0 (0, L)) ∩ L∞(0, T ;L2(0, L)) ∩H1(0, T ;H−2(0, L)),

un ⇀ u∗ in L2(0, T ;L2(Ω̂)),
(5.39)
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where

y∗ ∈ L2(0, T ;H1
0 (0, L)) ∩ L∞(0, T ;L2(0, L)) ∩H1(0, T ;H−2(0, L)),

u∗ ∈ L2(0, T ;L2(Ω̂)).

It remains to show that y∗ is the weak solution to (5.37) corresponding to control u∗.
By definition of weak convergence we have∫ T

0
〈∂tyn − ∂ty∗, φ〉H−2,H2 dt→ 0 for every φ ∈ L2(0, T ;X ).

By the compact embedding [128] of the space L2(0, T ;H1
0 (0, L)) ∩ H1(0, T ;H−2(0, L))

into the space L2(0, T ;L2(0, L)), we obtain for every φ ∈ L2(0, T ;X )∫ T

0

∫ L

0
(yn∂xy

n − y∗∂xy∗)φdxdt = −1

2

∫ T

0

∫ L

0
((yn)2 − (y∗)2)∂xφdxdt

≤ 1

2

∫ T

0
(‖yn(t)‖L2(0,L)

+ ‖y∗(t)‖L2(0,L))‖yn(t)− y∗(t)‖L2(0,L)‖∂xφ(t)‖L∞(0,L) dt

≤ 1

2
c5(‖yn‖C([0,T ];L2(0,L))

+ ‖y∗‖C([0,T ];L2(0,L)))‖yn − y∗‖L2(0,T ;L2(0,L))‖φ‖L2(0,T,H2(0,T )) → 0,

(5.40)

where the constant c5 stands for the continuous embedding of H2(0, L) into W 1,∞(0, L).
By (5.39) we obtain∫ T

0
〈Bun −Bu∗, φ〉 dt→ 0 for all φ ∈ L2(0, T ;X ). (5.41)

Due to the fact that y∗(0) ∈ L2(0, L) and using (5.40), (5.41), and (5.27) with f = Bu,
we conclude that y∗ ∈ W0,T is the weak solution to (5.37) corresponding to u∗. Since

yn → y∗ strongly in L2(0, T ;L2(0, L)) and un → u∗ weakly in L2(0, T ;L2(Ω̂)) we have

0 ≤ JT (u∗, y0) ≤ lim inf
n→∞

JT (un, y0) = σ,

and as a consequence the pair (y∗, u∗) is optimal.

5.4 Semi-global stabilizability of KdV

In this section, we review some results about the stablizability of the nonlinear KdV
equation by feedback. We consider

∂ty + ∂xy + ∂3
xy + y∂xy = F (y) x ∈ (0, L), t ∈ (0, T ),

y(t, 0) = y(t, L) = ∂xy(t, L) = 0 t ∈ (0, T ),

y(0, ·) = y0 x ∈ (0, L),

(5.42)

111



On the semi-global Stabilizability of the KdV Equation via RHC

where F is a linear feedback control which acts only on a subdomain of [0, L]. Our
objective is to find a control which dissipates enough energy to force the decay of the
solution with respect to the L2-norm. The control is of the form F (y) = −ωy, where ω
is defined by {

ω ∈ L∞(0, L) and ω(x) ≥ ω0 > 0 for a.e. in Ω̂,

where Ω̂ is any nonempty open subset of [0, L].
(5.43)

In [122] Rosier studied the controllability of the linear KdV equation and he found the
set of critical points which given by

Υ :=
{

2π

√
k2 + kl + l2

3
| k, l ∈ N

}
.

Moreover, he discovered that, if the length L of the spatial domain belongs to set Υ,
the uncontrolled (ω = 0) linear KdV equation has solutions for which the L2-norm stays
constant as t→∞. In this case, i.e., L ∈ Υ, one can show that the linear KdV equation
is globally exponentially stabilizable by a linear feedback law of the form F (y) = −ωy
acting on an open subset Ω̂ of [0, L], see, e.g., [116].

For the nonlinear KdV equation, the situation is more delicate and it is not clear
whether the solutions goes to zero. In [116] by using a perturbation argument it has been
shown that the nonlinear KdV equation is locally stabilizable for small initial functions.
Alternative approaches [114, 116] are directly dealing with the semi-global stabilizability
of the nonlinear KdV equation.

Theorem 5.4.1 (see [114]). Let L > 0 and ω = ω(x) be defined by (5.43). Then by
setting F (y) = −ωy as a feedback control in (5.42), the resulting closed loop system is
semi-globally exponentially stable. That is, for every r > 0 there exist c = c(r) and
µ = µ(r) such that

‖y(t)‖2L2(0,L) ≤ c‖y0‖2L2(0,L)e
−µt

holds for all t > 0 and any initial function y0 ∈ L2(0, L) with ‖y0‖L2(0,L) ≤ r.

The following estimates will be used later.

Lemma 5.4.1. Consider the controlled system (5.2). Then for every control u ∈
L2(0, T ;L2(Ω̂)) and y0 ∈ L2(0, L) we have the following estimate

‖y(t)‖2L2(0,L) ≤ ‖y0‖2L2(0,L)

+

∫ t

0
‖y(s)‖2L2(0,L)ds+

∫ t

0
‖u(s)‖2

L2(Ω̂)
ds for all t ∈ [0, T ].

(5.44)

Moreover for every δ ∈ (0, T ] we have

‖y(δ)‖2L2(0,L) ≤ cδ
∫ δ

0

(
‖y(s)‖2L2(0,L) + ‖u(s)‖2

L2(Ω̂)

)
ds, (5.45)

where the constant cδ depends only on δ.
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Proof. Assume that q ∈ C∞([0, T ] × [0, L]) and that the solution y of (5.2) is regular
enough to justify the following computations. Multiplying both sides of the equation by
yq and integrating over (0, t)× (0, L) for an arbitrary t ∈ [0, T ] we obtain∫ t

0

∫ L

0
qy(∂ty + ∂xy + ∂3

xy + y∂xy −Bu)dxds = 0.

Integration by parts and use of the boundary conditions implies that

−
∫ t

0

∫ L

0
(∂tq + ∂xq + ∂3

xq)
y2

2
dxds− 1

3

∫ t

0

∫ L

0
y3∂xq dxds+

∫ L

0
(q
y2

2
)(t, x) dx

−
∫ L

0
q(0, x)

y2
0(x)

2
dx+

3

2

∫ t

0

∫ L

0
∂xq(∂xy)2 dxds+

∫ t

0
(q

(∂xy)2

2
)(s, 0) ds

−
∫ t

0

∫ L

0
yqBudxds = 0.

(5.46)

For the choice q := 1, we obtain

‖y(t)‖2L2(0,L)+

∫ t

0
(∂xy)2(s, 0) ds

= ‖y0‖2L2(0,L) + 2

∫ t

0
〈y(s), u(s)〉L2(0,L) ds

≤ ‖y0‖2L2(0,L) + 2

∫ t

0
‖y(t)‖L2(0,L)‖u(t)‖L2(Ω̂) ds

≤ ‖y0‖2L2(0,L) +

∫ t

0
‖y(s)‖2L2(0,L) ds+

∫ t

0
‖u(s)‖2

L2(Ω̂)
ds.

(5.47)

By a density argument we obtain (5.44).
Turning to inequality (5.45), by choosing t = δ, q := δ − s with s ∈ (0, δ) for a fixed

δ ∈ (0, T ] in (5.46) we obtain

1

2
δ‖y0‖2L2(0,L)

=
1

2

∫ δ

0
‖y(s)‖2L2(0,L) ds+

1

2

∫ δ

0
(δ − s)(∂xy)2(s, 0) ds−

∫ δ

0

∫ L

0
(δ − s)yBudxds

≤ 1

2

∫ δ

0
‖y(s)‖2L2(0,L) ds+

δ

2

∫ δ

0
(∂xy)2(s, 0) ds+ δ

∫ δ

0
|〈y(s), Bu(s)〉L2 | ds

≤ 1

2

∫ δ

0
‖y(s)‖2L2(0,L) ds+

δ

2

∫ δ

0
(∂xy)2(s, 0) ds

+
δ

2

∫ δ

0

(
‖y(s)‖2L2(0,L) + ‖u(s)‖2

L2(Ω̂)

)
ds

≤ δ

2

∫ δ

0
(∂xy)2(s, 0) ds+

δ + 1

2

∫ δ

0

(
‖y(s)‖2L2(0,L) + ‖u(s)‖2

L2(Ω̂)

)
ds,
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and as consequence we can write

−
∫ δ

0
(∂xy(s, 0))2 ds

≤ −‖y0‖2L2(0,L) +
δ + 1

δ

∫ δ

0

(
‖y(s)‖2L2(0,L) + ‖u(s)‖2

L2(Ω̂)

)
ds.

(5.48)

Moreover, by using (5.47) for t = δ we infer that

‖y(δ)‖2L2(0,L) ≤ ‖y0‖2L2(0,L) −
∫ δ

0
(∂xy(s, 0))2 ds

+

∫ δ

0

(
‖y(s)‖2L2(0,L) ds+ ‖u(s)‖2

L2(Ω̂)

)
ds.

(5.49)

By combining (5.48) and (5.49), we have

‖y(δ)‖2L2(0,L) ≤
2δ + 1

δ

∫ δ

0

(
‖y(s)‖2L2(0,L) + ‖u(s)‖2

L2(Ω̂)

)
ds,

and with cδ := 2δ+1
δ , we conclude the proof.

Definition 5.4.1. For any y0 ∈ L2(0, L) the infinite horizon value function V∞(·) is
defined as the extended real valued function

V∞(y0) := inf
u∈L2(0,∞;L2(Ω̂))

{J∞(u, y0) subject to (5.2)}.

Similarly, the finite horizon value function VT (·) is defined by

VT (y0) := min
u∈L2(0,T ;L2(Ω̂))

{JT (u, y0) subject to (5.2)}.

From this point forward, Br(0) denotes a ball in L2(0, L) centered at 0 with radius r

and we define α` := min{β,1}
2 . Furthermore, the pair (y∗T (·; y0, t0), u∗T (·; y0, t0)) stands for

an optimal solution to the problem (OP) with finite time horizon T , and initial function
y0 at initial time t0. In the following the function

γ(T, r) :=
(1 + β)c(r)

2µ(r)
(1− e−µ(r)T )

with c(r) and µ(r) from Theorem 5.4.1 will be of significance. For every r > 0, it is
nondecreasing, continuous, and bounded function in the variable T .

Lemma 5.4.2. Let a positive number r be given. Then for every y0 ∈ Br(0) ⊂ L2(0, L)
and T > 0, there exists a control û(·; y0) ∈ L2(0, T ;L2(Ω̂)) such that

VT (y0) ≤ JT (û, y0) ≤ γ(T, r)‖y0‖2L2(0,L). (5.50)
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Proof. Assume that positive numbers r, T, and y0 ∈ Br(0) are given. By setting u(t) :=
−y(t)|Ω̂ in the controlled system (5.2), and using Theorem 5.4.1 for the choice

ω(x) :=

{
1 x ∈ Ω̂,

0 otherwise.

we obtain
‖y(t)‖2L2(0,L) ≤ c(r)‖y0‖2L2(0,L)e

−µ(r)t for all t ∈ [0, T ].

Here the constants c(r) and µ(r) were defined in Theorem 5.4.1. By integrating from 0
to T we have ∫ T

0
‖y(t)‖2L2(0,L)dt ≤

c(r)

µ(r)
(1− e−µ(r)T )‖y0‖2L2(0,L). (5.51)

By the definition of value function VT (·) and (5.3) we have

VT (y0) ≤
∫ T

0

1

2
‖y(t)‖2L2(0,L) +

β

2
‖y(t)‖2

L2(Ω̂)
dt

≤ (1 + β)c(r)

2µ(r)
(1− e−µ(r)T )‖y0‖2L2(0,L)

= γ(T, r)‖y0‖2L2(0,L).

Lemma 5.4.3. Let r0 > 0, δ > 0, and T > δ be given. Then there exists a radius d1

depending on r0 such that for every r ≥ d1(r0) and y0 ∈ Br0(0) the following inequities
are satisfied

VT (y∗T (δ; y0, 0)) ≤
∫ t̃

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

+ γ(T + δ − t̃, r)‖y∗T (t̃; y0, 0)‖2L2(0,L) for all t̃ ∈ [δ, T ],

(5.52)

and∫ T

t̃
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T − t̃, r)‖y∗T (t̃; y0, 0)‖2L2(0,L) for all t̃ ∈ [0, T ].

(5.53)

Proof. For every y0 ∈ L2(0, L) and t̃ ∈ [0, T ], due to (5.3) and Bellman’s optimality
principle we have

α`

∫ t̃

0
(‖y∗T (t; y0, 0)‖2L2(0,L)+‖u

∗
T (t; y0, 0)‖2

L2(Ω̂)
)dt

≤
∫ t̃

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

= VT (y0)− VT−t̃(y
∗
T (t̃; y0, 0)).
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Now by (5.44), (5.50) and the above inequality we have for y0 ∈ Br0(0)

‖y∗T (t̃; y0, 0)‖2L2(0,L) ≤ ‖y0‖2L2(0,L) +

∫ t̃

0
‖y∗T (t; y0, 0)‖2L2(0,L)dt+

∫ t̃

0
‖u∗T (t; y0, 0)‖2

L2(Ω̂)
dt

≤ ‖y0‖2L2(0,L) +
1

α`
(VT (y0)− VT−t̃(y

∗
T (t̃; y0, 0))

≤ ‖y0‖2L2(0,L) +
1

α`
VT (y0) ≤

(
1 +

γ(T, r0)

α`

)
r2

0

≤
(
1 +

(1 + β)c(r0)

2α`µ(r0)

)
r2

0 =: d2
1(r0).

Hence for the radius d1 defined in the above inequality, we have

y∗T (t̃; y0, 0) ∈ Bd1(0) for all t̃ ∈ [0, T ].

We turn to the verification of (5.52). For simplicity of notation, we denote y∗T (δ; y0, 0)
by y∗(δ). Then for every fixed r ≥ d1 we have y0 ∈ Br(0). Due to Bellman’s optimality
principle, we have for every t̃ ∈ [δ, T ]

VT (y∗(δ)) =

∫ T+δ

δ
`(y∗T (t; y∗(δ), δ), u∗T (t; y∗(δ), δ))dt

=

∫ t̃

δ
`(y∗T (t; y∗(δ), δ), u∗T (t; y∗(δ), δ))dt+ VT+δ−t̃(y

∗
T (t̃; y∗(δ), δ)).

By optimality of y∗T (·; y∗(δ), δ) as a solution on [δ, T + δ] with initial state y∗(δ) ∈
Bd1(0) ⊆ Br(0) at t = δ we obtain

VT (y∗(δ)) ≤
∫ t̃

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ VT+δ−t̃(y

∗
T (t̃; y0, 0))

≤
∫ t̃

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T + δ − t̃, r)‖y∗T (t̃; y0, 0)‖2L2(0,L),

where for the last inequality we used (5.50).

To prove the second inequality, let t̃ ∈ [0, T ] be arbitrary. By Bellman’s principle
and (5.50), we have

VT (y0)

=

∫ t̃

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+

∫ T

t̃
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

=

∫ t̃

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ VT−t̃(y

∗
T (t̃; y0, 0))

≤
∫ t̃

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T − t̃, r)‖y∗T (t̃; y0, 0)‖2L2(0,L).

(5.54)
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Therefore,∫ T

t̃
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T − t̃, r)‖y∗T (t̃; y0, 0)‖2L2(0,L) for all t̃ ∈ [0, T ],

as desired.

Lemma 5.4.4. Suppose that r0 > 0, δ > 0, and T > δ are given. Then for every
r ≥ d1(r0) with d1 defined in Lemma 5.4.3, and the choices

θ1(δ, T, r) := 1 +
γ(T, r)

α`(T − δ)
, θ2(δ, T, r) :=

γ(T, r)

α`δ
,

the estimates

VT (y∗T (δ; y0, 0)) ≤ θ1

∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt, (5.55)

and ∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ θ2

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt (5.56)

hold for every y0 ∈ Br0(0).

Proof. According to Lemma 5.4.3, the estimates (5.52) and (5.53) are satisfied for every
y0 ∈ Br0(0) and r ≥ d1(r0).

We first verify inequality (5.55) for arbitrary initial function y0 ∈ Br0(0) and r ≥
d1(r0). Recall that for the solution of the KdV equation we have y∗T (·; y0, 0) ∈ C([0, T ];L2(0, L)).
Hence there is a t̄ ∈ [δ, T ] such that

t̄ = arg min
t∈[δ,T ]

‖y∗T (t; y0, 0)‖2L2(0,L).

By (5.52) we have

VT (y∗T (δ; y0, 0))

≤
∫ t̄

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T + δ − t̄, r)‖y∗T (t̄; y0, 0)‖2L2(0,L)

≤
∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T, r)‖y∗T (t̄; y0, 0)‖2L2(0,L)

≤
∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+

γ(T, r)

T − δ

∫ T

δ
‖y∗T (t; y0, 0)‖2L2(0,L)dt.

(5.57)

Furthermore, by (5.3)∫ T

δ
‖y∗T (t; y0, 0)‖2L2(0,L)dt ≤

1

α`

∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt. (5.58)
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By (5.57) and (5.58) we have

VT (y∗T (δ; y0, 0)) ≤ (1 +
γ(T, r)

α`(T − δ)
)

∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.

Turning to (5.56) we define

t̂ = arg min
t∈[0,δ]

‖y∗T (t; y0, 0)‖2L2(0,L).

Then by (5.53) we have∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤
∫ T

t̂
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T − t̂, r)‖y∗T (t̂; y0, 0)‖2L2(0,L)

≤γ(T, r)‖y∗T (t̂; y0, 0)‖2L2(0,L) ≤
γ(T, r)

δ

∫ δ

0
‖y∗T (t; y0, 0)‖2L2(0,L)dt,

(5.59)

and further

γ(T, r)

δ

∫ δ

0
‖y∗T (t; y0, 0)‖2L2(0,L)dt ≤

γ(T, r)

α`δ

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt. (5.60)

By (5.59) and (5.60) we obtain the desired estimate∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T, r)

α`δ

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.

Proposition 5.4.1. Suppose that r0 > 0 and δ > 0 are given. Then for every r ≥ d1(r0)
with d1 defined in Lemma 5.4.3, there exist positive numbers T ∗ = T ∗(r, δ) > δ, and
α = α(r, δ) ∈ (0, 1) such that

VT (y∗T (δ; y0, 0)) ≤ VT (y0)− α
∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt, (5.61)

for every T ≥ T ∗ and y0 ∈ Br0(0).

Proof. From the definition of VT (y0) and Lemma 5.4.4, we have for every r ≥ d1

VT (y∗T (δ; y0, 0))− VT (y0) = VT (y∗T (δ; y0, 0))−
∫ T

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤(θ1 − 1)

∫ T

δ
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt−

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤(θ2(θ1 − 1)− 1)

∫ δ

0
`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt,
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where θ1 and θ2 are defined in Lemma 5.4.4. Since

1− θ2(θ1 − 1) = 1− γ2(T, r)

α2
`δ(T − δ)

,

and
γ2(T, r)

α2
`δ(T − δ)

→ 0 as T →∞,

there exist T ∗ > δ and α ∈ (0, 1) such that 1 − θ2(θ1 − 1) ≥ α for all T ≥ T ∗. This
implies (5.61).

Theorem 5.4.2 (Suboptimality). Let y0 ∈ L2(0, L) and a sampling time δ > 0 be given.
Then there exist numbers, T ∗ = T ∗(‖y0‖L2(0,L), δ) > δ, and α = α(‖y0‖L2(0,L), δ) ∈ (0, 1),
such that for every fixed prediction horizon T ≥ T ∗, the Receding horizon control urh
obtained from Algorithm 5.1 satisfies

αV∞(y0) ≤ αJ∞(urh, y0) ≤ VT (y0) ≤ V∞(y0). (5.62)

Proof. The right and left inequalities are obvious, therefore we only need to verify the
middle one.

First we show that VT (y0) is bounded by a constant ry0 independent of T . We
reconsider the proof of Lemma 5.4.2 to find

VT (y0) ≤ γ(T, ‖y0‖L2(0,L))‖y0‖2L2(0,L)
≤

(1 + β)c(‖y0‖L2(0,L))

2α`µ(‖y0‖L2(0,L))
‖y0‖2L2(0,L)

=: r2
y0 . (5.63)

Next we define the radius

r0 := max{‖y0‖L2(0,L),

√
cδ
α`
r2
y0}, (5.64)

where the constant cδ, defined in Lemma 5.4.1, depends only on δ.
For d1(r0) defined as in Lemma 5.4.3, due to Proposition 5.4.1, there exist positive

numbers T ∗ = T ∗(d1, δ) > δ, and α = α(d1, δ) ∈ (0, 1) such that the inequality (5.61)
holds for every T ≥ T ∗ and y0 ∈ Br0(0). Therefore, in order to use the dissipative
inequality (5.61) for every optimal solution pair (y∗T (·; yrh(tk), tk), u

∗
T (·; yrh(tk), tk)) of

Algorithm 5.1, we need to be sure, a priori, that

yrh(tk) ∈ Br0(0) for every k ∈ N0. (5.65)

We proceed by induction with respect to the sampling index k. For every k ∈ N0 we
will show that the inequality

VT (yrh(tk)) ≤ VT (y0)− α
∫ tk

0
`(yrh(t), urh(t))dt,

and condition (5.65) hold true.
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First, since ‖y0‖L2(0,L) ≤ r0, by Proposition 5.4.1 for every fixed T ≥ T ∗(d1, δ) we
have

VT (yrh(t1)) ≤ VT (y0)− α
∫ t1

0
`(yrh(t), urh(t))dt, (5.66)

with an α = α(d1, δ) ∈ (0, 1). Moreover by using estimate (5.45) we can infer that

‖yrh(t1)‖2L2(0,L)

(5.45)

≤ cδ(

∫ t1

0
‖yrh(t)‖2L2(0,L) + ‖urh(t)‖2L2(Ω)) dt

(5.3)

≤ cδ
α`

∫ t1

0
`(yrh(t), urh(t)) dt ≤ cδ

α`
VT (y0)

(5.63)

≤ cδ
α`
r2
y0

(5.64)

≤ r2
0.

(5.67)

Now to carry out the induction step, we assume that

yrh(tk) ∈ Br0(0) for all k = 0, . . . , k′, (5.68)

and that

VT (yrh(tk′)) ≤ VT (y0)− α
∫ tk′

0
`(yrh(t), urh(t))dt (5.69)

for k′ ∈ N.
Since yrh(tk′) ∈ Br0(0), by Proposition 5.4.1 we have

VT (yrh(tk′+1)) ≤ VT (yrh(tk′))− α
∫ tk′+1

tk′

`(yrh(t), urh(t))dt.

Combined with (5.69) this gives

VT (yrh(tk′+1)) ≤ VT (y0)− α
∫ tk′+1

0
`(yrh(t), urh(t))dt.

Moreover, by the same argument as in (5.67) we obtain

‖yrh(tk′+1)‖2L2(0,L)

(5.45)

≤ cδ

∫ tk′+1

tk′

(‖yrh(t)‖2L2(0,L) + ‖urh(t)‖2
L2(Ω̂)

)dt

(5.3)

≤ cδ
α`

∫ tk′+1

tk′

`(yrh(t), urh(t))dt

≤ cδ
α`
VT (yrh(tk′))

(5.69)

≤ cδ
α`
VT (y0) ≤ cδ

α`
r2
y0 ≤ r

2
0.

Hence yrh(tk′+1) ∈ Br0(0), which concludes the induction step. Taking the limit k′ →∞
we find

αJ∞(urh(·), y0) = α

∫ ∞
0

`(yrh(t), urh(t))dt ≤ VT (y0),

which concludes the proof. Note that the constants α and T ∗ depend only on δ and
‖y0‖L2(0,L).
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Theorem 5.4.3 (Exponential decay). Suppose that y0 ∈ L2(0, L) and let a sampling
time δ > 0 be given. Then there exist numbers T ∗(‖y0‖L2(0,L), δ) > δ, α(‖y0‖L2(0,L), δ) ∈
(0, 1) such that for every prediction horizon T ≥ T ∗, the receding horizon trajectory yrh(·)
satisfies

VT (yrh(tk)) ≤ e−ζtkVT (y0), (5.70)

where ζ is a positive number depending on y0, δ, and T . Moreover, for every positive t
we have

‖yrh(t)‖2L2(0,L) ≤ ce
−ζt‖y0‖2L2(0,L) (5.71)

with a positive constant c depending on y0, δ, and T .

Proof. Let y0 ∈ L2(0, L) and δ > 0 be given. Then according to Theorem 5.4.2, there
exist positive numbers T ∗(‖y0‖L2(0,L), δ) and α(‖y0‖L2(0,L), δ) such that for every T ≥ T ∗,
we have

yrh(tk) ∈ Br0(0) for all k ∈ N0,

where r0(‖y0‖L2(0,L)) has been defined in Theorem 5.4.2 by (5.64), and

VT (yrh(tk+1))− VT (yrh(tk)) ≤ −α
∫ tk+1

tk

`(yrh(t), urh(t))dt for every k ∈ N. (5.72)

By using (5.55) and (5.56) we have

VT (yrh(tk+1)) ≤θ1

∫ tk+T

tk+1

`(y∗T (t; yrh(tk), tk), u
∗
T (t; yrh(tk), tk)) dt

≤θ1θ2

∫ tk+1

tk

`(y∗T (t; yrh(tk), tk), u
∗
T (t; yrh(tk), tk)) dt

=θ1θ2

∫ tk+1

tk

`(yrh(t), urh(t)) dt,

(5.73)

where θ1 = θ1(δ, T, d1(r0)) > 0 and θ2 = θ2(δ, T, d1(r0)) > 0 are defined in the statement
of Lemma 5.4.4 and d1 = d1(r0) is introduced by Lemma 5.4.3. Now by combining (5.72)
and (5.73) we obtain

VT (yrh(tk+1))− VT (yrh(tk)) ≤
−α
θ1θ2

VT (yrh(tk+1)) for every k ∈ N.

Therefore, by defining η := (1 + α
θ1θ2

)−1 for every k ∈ N we can write

VT (yrh(tk)) ≤ ηVT (yrh(tk−1)) ≤ η2VT (yrh(tk−2)) ≤ · · · ≤ ηkVT (y0). (5.74)

Defining ζ := |ln η|
δ , we obtain inequality (5.70).

Turning to inequality (5.71), let t > 0 be arbitrary. Then there exists an index k
such that t ∈ [tk, tk+1]. By using estimate (5.44) for the initial function yrh(tk), we have
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for t ∈ [tk, tk+1]

‖yrh(t)‖2L2(0,L) ≤ ‖yrh(tk)‖2L2(0,L) +

∫ t

tk

(
‖yrh(s)‖2L2(0,L) + ‖urh(s)‖2

L2(Ω̂)

)
ds

≤ ‖yrh(tk)‖2L2(0,L) +
1

α`

∫ t

tk

`(yrh(s), urh(s)) ds

≤ ‖yrh(tk)‖2L2(0,L) +
1

α`
VT (yrh(tk)).

(5.75)

Moreover, by using estimate (5.45) we infer that

‖yrh(tk)‖2L2(0,L) ≤ cδ
∫ tk

tk−1

(‖yrh(t)‖2L2(0,L) + ‖urh(t)‖2
L2(Ω̂)

)dt

≤ cδ
α`

∫ tk

tk−1

`(yrh(t), urh(t))dt ≤ cδ
α`
VT (yrh(tk−1)).

(5.76)

By using (5.74), (5.75) and (5.76) we obtain for t ∈ [tk, tk+1]

‖yrh(t)‖2L2(0,L) ≤ ‖yrh(tk)‖2L2(0,L) +
1

α`
VT (yrh(tk)) ≤

1 + cδ
α`

VT (yrh(tk−1))

≤ (1 + cδ)η
k+1

α`η2
VT (y0) ≤ 1 + cδ

α`η2
e−ζtk+1VT (y0)

≤ 1 + cδ
α`η2

e−ζtVT (y0) ≤
(1 + cδ)γ(T, ‖y0‖L2(0,L))

α`η2
e−ζt‖y0‖2L2(0,L)

.

Setting c :=
(1+cδ)γ(T,‖y0‖L2(0,L)

)

α`η2
, we conclude the proof.

5.5 Discretization and numerical results

This section is devoted to illustrating the receding horizon technique for stabilizing the
KdV equaiton. We describe the discretization of the optimization problem (5.1)-(5.2),
as well as the numerical optimization process we use. In the case of bounded domains
numerous schemes for solving the nonlinear KdV equation are available including finite
differences [51, 141], finite elements [6, 138], finite volumes [52], discontinuous Galerkin
schemes [24, 140], or polynomial spectral methods [102, 103, 127]. Spectral discretiza-
tions present interesting advantages regarding precision and simulation speed compared
to any finite difference or finite element method [29].

5.5.1 Discretization

One of the most recent and efficient numerical methods for solving the Korteweg-de
Vries equation with Dirichlet boundary conditions is proposed in [102]. The linear term is
treated by a Petrov-Galerkin method based on Legendre polynomials, while the nonlinear
term is treated pseudospectrally on the Chebyschev collocation points. Shortly after,
Shen [127] proposed an improvement of this Petrov-Galerkin method with nearly optimal
computational complexity. This will be our method of choice and we briefly recall it here.
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The dual Petrov-Galerkin method

The test and trial function bases are chosen as a compact combination of Legendre
polynomials in such a way that the trial functions satisfy the underlying boundary
conditions of the primal equation and the test functions satisfy the boundary conditions
as defined in (5.5). As a consequence, all matrices involved in the resolution of the
problem are sparse [127]. We present the method for the reference domain Ω := (−1, 1),
but it can be extended to any other domain of the type (a, b) by scaling the Legendre
polynomials and the integrals. We denote by PN the space of polynomials of degree ≤ N
and set

VN = {y ∈ PN : y(1) = y(−1) = ∂xy(1) = 0} ,

V ∗N = {y ∈ PN : y(1) = y(−1) = ∂xy(−1) = 0} .

Then for T > 0, we consider the semi-discrete problem: find

yN : [0, T ]→ VN , t 7→ yN (t, ·),

such that for almost every t ∈ [0, T ]

〈∂tyN , ϕN 〉+ (∂xyN , ϕN ) + (∂xyN , ∂xxϕN )−
(
y2
N

2
, ∂xϕN

)
=
(
χΩ̂u, ϕN

)
∀vN ∈ V ∗N ,

(5.77)
where (·, ·) denotes the usual L2(Ω) spatial inner product, 〈·, ·〉 is the spatial duality pair-
ing between H−2(Ω) and H2

0 (Ω), and Ω̂ ⊆ Ω is the control domain, as in the continuous
case.

Denoting by Lk the kth Legendre polynomial, the basis functions are defined as
follows (see Figure 5.1)

φk(x) = Lk(x)− 2k + 3

2k + 5
Lk+1(x)− Lk+2(x) +

2k + 3

2k + 5
Lk+3(x),

ψk(x) = Lk(x) +
2k + 3

2k + 5
Lk+1(x)− Lk+2(x)− 2k + 3

2k + 5
Lk+3(x).

Thus for N ≥ 3, we have

VN = span {φ0, φ1, . . . , φN−3} , V ∗N = span {ψ0, ψ1, . . . , ψN−3} .

The semi-discrete state variable yN (t, ·) on the spectral space is given in vector repre-
sentation as

yN (t, ·) =

N−3∑
k=0

ŷk(t)φk(·), y(t) = (ŷ0(t), ŷ1(t), . . . , ŷN−3(t))T .

Analogously the vector representation of the control is given by:

u(t) = ((uN (t, ·), ψ0(·)) , (uN (t, ·), ψ1(·)) , . . . , (uN (t, ·), ψN−3(·)))T , (5.78)
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Figure 5.1: First test and trial functions.

where the expression for the semi-discrete control uN (t, ·) is given in Section 5.5.1. Af-
terwards, one builds the matrices M, P, and S of size (N −2)× (N −2) with coefficients
mij , pij , qij , and sij defined as follows:

mij = (φj , ψi), pij = (∂xφj , ψi), sij = (∂xφj , ∂xxψi). (5.79)

The variational formulation (5.77) thus yields

M
dy

dt
+ (P + S) y + F (y) = Bu, (5.80)

where B is the matrix representing the characteristic function χΩ̂ in (5.77) and F (y)
represents the nonlinear term. It is approximated as suggested in [127] using the pseu-
dospectral approach. Thus the nonlinearity is evaluated at the chosen Chebyshev-Gauss-
Lobatto (CGL) points in the spatial domain and then it is transformed back to the
Legendre spectral space in the efficient manner.

Discretization of the control

The control is discretized in space with piecewise linear, continuous finite elements on
a grid whose nodes are the Chebyschev-Gauss-Lobatto points (xn), n = 0, . . . , N as
previously mentioned. The various norms involved in the optimization problem are
computed using the trapezoidal rule for the evaluation of the spatial integrals for each
cell. Thus, uN =

∑NT
j=1 χIj

∑N
n=0 ûjnen, where Ij = (δtj−1, δ

t
j ] is the jth time interval

corresponding to the grids 0 = δt0 < δt1 < · · · < δtNT = T . Moreover en is the basis vector
for piecewise linear, continuous finite elements centered at the grid point xn. Then for
uN it holds that

‖uN‖2L2(0,T ;L2(Ω̂))
=

NT∑
j=1

∆t

(
N∑
n=0

dnû
2
nj

)
, (uN , ψ) =

NT∑
j=1

χIj

N∑
n=0

dnûjnψn (5.81)

for all spectral basis test functions ψ where we have denoted ψn = ψ(xn), and dn =∫
Ω̂ en dx.
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Time-stepping scheme

Following the idea in [27, 102, 103, 127], we use the multistep Crank-Nicolson Leap Frog
scheme. In this setting, the third derivative is treated implicitely and the nonlinear term
is treated explicitely. This allows to circumvent possible step size restrictions due to the
third order derivative. In addtion, since the nonlinear term is treated explicitly, there is
no need to solve a nonlinear system of equations at every time step. A proper derivation
of the discrete adjoint and gradient is available in [27].

5.5.2 Numerical examples

In this section we present numerical experiments. They are based on Algorithm 5.2 that
takes as initial input the time horizon T∞ and an initial condition y0 ∈ L2(Ω).

Algorithm 5.2 Receding Horizon Control(y0, T∞)

1: Choose a prediction horizon T < T∞ and a sampling time δ ∈ (0, T ].
2: Consider a grid 0 = t0 < t1 < · · · < tr = T∞ on the interval [0, T∞] where ti = iδ for
i = 0, . . . , r.

3: for i = 0, . . . , r − 1 do
Solve the open-loop subproblem on [ti, ti + T ]

min
1

2

∫ ti+T

ti

‖y(t)‖2L2(Ω)dt+
β

2

∫ ti+T

ti

‖u(t)‖2
L2(Ω̂)

dt

subject to the Korteweg-de Vries equation (5.2) for the initial condition

y(ti) = y∗T (ti) if i ≥ 1 or y(ti) = y0 if i = 0,

where y∗T (·) is the solution to previous subproblem on [ti−1, ti−1 + T ].

4: The receding horizon pair (y∗rh(·), u∗rh(·)) is the concatenation of the optimal pairs
(y∗T (·), u∗T (·)) on the finite horizon intervals [ti, ti+1] with i = 0, . . . , r − 1.

Each open-loop problem is solved with the help of Barzilai-Browein gradient steps
[21] improved by a nonmonotonous line-search method [49]. Moreover we consider the
following quantities in order to interpret the results of the stabilization problem for
different settings:

1. JT∞(urh, y0) := 1
2

∫ T∞
0 ‖yrh(t)‖2L2(Ω)dt+ β

2

∫ T∞
0 ‖urh(t)‖2

L2(Ω̂)
dt,

2. ‖yrh‖L2(Q) with Q := (0, T∞)× Ω,

3. ‖yrh(T∞)‖L2(Ω),

4. iter : the total number of iterations (BB-gradient steps) that the optimizer needs
for all open-loop problems on the intervals (ti, ti + T ) for i = 0, . . . , r − 1.
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Turning to the description of the numerical experiment that we carried out, we first
recall that it is not known whether the system can be stabilized to zero without control,
due to the fact that ∂xy(t, 0) might be zero for a domain of the critical length [46, 122].

Here, we propose a situation where a soliton starts travelling at time t = 0 (its initial
shape is given in Figure 5.2(c)). On an infinite domain, a soliton is a solitary wave that
travels at constant speed without losing its shape. This phenomenon is a result of the
balance between nonlinearity and dispersion which typically occurs for the Korteweg-
de Vries equation [44, 83]. In our case though, the initial soliton encounters the right
boundary. Then its balance is broken and due to the dispersive effect, it is decomposed
into several smaller reflected waves. See Figure 5.2(a). One of them evolves almost
into a stationary one, while the other one travels at constant speed without hitting the
boundaries. This is depicted in Figure 5.2(b) over a long period of time. In this case,
i.e. without any control, the objective functional has the value JT∞ = 3152.8, whilst
‖y‖L2(Q) = 79.4 and more importantly at the final time, ‖y(T∞)‖L2(Ω) = 4.9.
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(c) State at t = 0

Figure 5.2: Uncontrolled solution

As a very large time horizon is considered, this would be prohibitive to apply the
classical open-loop control on problem (5.1)-(5.2). Hence, the use of RHC is key for
stabilization. Our simulations are carried out with the choice of: Ω = (−10π, 10π),
N = 256, β = 10−1, δ = 1, T∞ = 200, and various prediction horizons T = 1, 1.5, 2,
y0 = 12κ2 sech2(κ(x − x0)) with κ = 0.7, and x0 = 0.0. Finally, the control domain
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consists of two components and is given by

Ω̂ := (−15.24,−8.00) ∪ (7.74, 15.14).

The results are gathered in Table 5.1 and Figure 5.3 - 5.6. In all three cases, the
stabilizing measures are satisfying. As expected, the prediction horizon T plays an
important role. The smaller it is (i.e. the closer to the sampling time δ), the fewer
iterations are required (1098 for T = 1 versus 1598 for T = 2). However, one can
observe from Figure 5.3 and Figure 5.4 - Figure 5.6, and it is verified by Table 5.1, that
a smaller time horizon leads to a less efficient, and slower stabilization.

Prediction Horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(Ω) iter

T = 1.0 1366 52.2 1.4× 10−5 1098

T = 1.5 1051 45.7 6.4× 10−6 1386

T = 2.0 728 37.8 4.1× 10−6 1598

Table 5.1: Various indicators of the efficiency of the receding horizon control process for different
prediction horizons.

(a) T = 1 (b) T = 1.5

(c) T = 2

Figure 5.3: Evolution of the state during the receding horizon control process for the prediction
horizons (from left to right): T = 1, 1.5, 2.
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(b) T = 1.5
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Figure 5.4: Evolution of the L2-norm of the state during the receding horizon control process
for the prediction horizons: T = 1, 1.5, 2.
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(a) T = 1 (b) T = 1.5

(c) T = 2

Figure 5.5: Evolution of the control during the receding horizon control process for the predic-
tion horizons: T = 1, 1.5, 2.
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Figure 5.6: Evolution of the L2-norm of the control during the receding horizon control process
for the prediction horizons: T = 1, 1.5, 2.

130



Chapter 6

Conclusion and Future Work

In this thesis, we dealt with the stabilization of a class of continuous-time infinite-
dimensional controlled systems within the scope of the Receding Horizon Control (RHC)
framework. The proposed framework does not need any terminal cost and terminal con-
straint to ensure the stability of RHC. The stability of RHC is rather obtained by gener-
ating an appropriate sequence of overlapping temporal intervals and applying a suitable
concatenation scheme. The applicability of this framework relies on the well-posedness
of the finite horizon open-loop problems and the stabilizability of the controlled sys-
tem. Based on these conditions the suboptimality and asymptotic stability of RHC were
investigated. Later this framework was applied and analysed for the stabilization of
controlled systems governed by partial differential equations including the linear wave
equation, the viscous Burgers equation, and the nonlinear KdV. For each partial dif-
ferential equation, depending to the regularity of the solution and the structure of the
equation, the stability and suboptimality of RHC were investigated. In addition, for each
case, we reported numerical experiments which confirm the theoretical results presented
in the thesis.

Although the receding horizon framework for finite-dimensional controlled systems
has been studied extensively over the last decades and there is a rich literatures on the
theoretical and computational aspects of this frameworks, there is very little research
dealing with infinite-dimensional controlled systems.

As topics for future research, we can name the stabilization of time-delay controlled
systems governed by partial differential equations. These problems have a wide range of
applications. Therefore it is really demanding to design robust stabilizing RHC laws to
deal with these problems. For the case of ordinary differential equations, the stability
of RHC for delay-time nonlinear systems has been studied by many researchers. For
instance, see, e.g., [119, 121] and the references therein. Another interesting topic would
be to study the stability and performance of RHC subject to state and control constraints
for infinite-dimensional controlled systems. These problems are theoretically, and also
computationally very challenging.

RHC is obtained by solving a sequence of finite horizon open-loop problems. In the
case of infinite-dimensional controlled system, the discretization of these open-loop prob-
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lems leads to very large scale optimization problems. Therefore solving these problems
and as consequence, computing RHC, require considerably computational effort. This
computational effort can be reduced significantly, by studying the following question:

1. Whether we need to solve each open-loop problem exactly or an approximation of
its solution is enough to ensure the stability and suboptimality of RHC.

2. How to efficiently compute the solution of an open-loop problem on an interval by
utilizing the information of open-loop problems defined on the previous intervals.

3. How to estimate the prediction horizon T > δ adaptively at every step of the
receding horizon algorithm in order to reduce the overall computational effort and
to gain a better performance.

Another important point in the context of PDE-constrained optimization is to anal-
yse the structural properties of the resulting finite-dimensional systems with respect to
commutativity of discretizing before or after optimizing, and with respect to uniform
closed-loop dissipativity.

In this thesis, we addressed only the stabilization problem around a steady state.
It would be interesting to also consider other control objective within the scope of the
receding horizon framework. Recently, there has been a widespread interest in the so
called economic receding horizon frameworks. In these frameworks, the control objective
is to minimize of some performance index function which is not necessary related to the
stabilization any particular steady state. Here the trajectory controlled by economic
RHC can have more complex behaviour, for instance, periodic behaviour. The turnpike
property [38, 108, 142] is essential condition for the stability of economic RHC. For the
case of finite-dimensional controlled systems, we can mention the works [50, 56, 63, 64,
65, 67, 111] and the references therein. But as far as we know, there are only very few
results concerning the stability of the economic RHC for infinite-dimensional controlled
system. As a research outlook, we suggest to study these receding horizon frameworks
for controlled systems governed by partial differential equations. The first step in this
directions, is to study the turnpike property, qualitative and theoretically, for infinite-
dimensional systems.
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[65] L. Grüne, J. Pannek, M. Seehafer, and K. Worthmann, Analysis of un-
constrained nonlinear MPC schemes with time varying control horizon, SIAM J.
Control Optim., 48 (2010), pp. 4938–4962.

137



BIBLIOGRAPHY
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[119] M. Reble and F. Allgöwer, Design of terminal cost functionals and terminal
regions for model predictive control of nonlinear time-delay systems, in Time de-
lay systems: methods, applications and new trends, vol. 423 of Lecture Notes in
Control and Inform. Sci., Springer, Berlin, 2012, pp. 355–366.

[120] , Unconstrained model predictive control and suboptimality estimates for non-
linear continuous-time systems, Automatica, 48 (2012), pp. 1812–1817.

[121] M. Reble, R. Mahboobi Esfanjani, S. K. Y. Nikravesh, and
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