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Aiming at optimization problems governed by partial differential equations (PDE), local R-linear conver-
gence of the Barzilai and Borwein (BB) method for a class of twice continuously Fréchet-differentiable
functions is proven. Relying on this result, the mesh-independent principle for the BB-method is in-
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1. Introduction

Since the pioneering work by Barzilai & Borwein (1988), the attention of many researchers has been
turned again to gradient methods. In that work, by incorporating the quasi-Newton property, Barzilai and
Borwein introduced new step-sizes for the negative gradient search direction, which leads to a significant
acceleration over the steepest descent method. These step-sizes are obtained through approximating the
Hessian matrix by a scalar times the identity which satisfies the secant condition in the sense of least
squares. Later, global convergence and the R-linear convergence rate of the BB-method for finite-
dimensional, strictly convex, and quadratic problems were established by Raydan (1993) and Dai &
Liao (2002), respectively. Thereafter, Dai & Fletcher (2005a) provided a deep analysis concerning the
asymptotic behaviour of the BB-method and the surprising computational efficiency of this algorithm
in relation to its nonmonotonicity. In Fletcher (2005), several cases were discussed for which the BB-
method is comparable, or can even be considered as an effective alternative to the conjugate gradient
methods.

Due to their simplicity, efficiency and low memory requirements, the BB step-sizes have been widely
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used in various fields of mathematical optimization and applications. Recently, some researchers have
employed the BB-method for optimal control problems with PDEs (see e.g., Azmi & Kunisch, 2020;
Lemoine et al., 2019; Dunst et al., 2015; Peralta & Kunisch, 2020; Azmi et al., 2018). In all of these
works the BB-method appears to be very efficient and, competitive with the conjugate gradient method
(Azmi & Kunisch, 2020; Lemoine et al., 2019).

As suggested by Fletcher (2005), the BB-method can be advantageous in cases where the objective
function consists of a quadratic function plus a small non-quadratic term (near quadratic), or if the gradi-
ent involves numerical error. To some degree these observations apply in PDE-constrained optimization
as well. Indeed. due to numerical discretization, numerical error is inevitable. Moreover, optimal con-
trol problems with quadratic cost functionals subject to semi-linear PDEs lead to infinite-dimensional
“near-quadratic” unconstrained optimization problems when considered in their reduced form.

In view of the above discussion, we are motivated to study the BB-method for unconstrained prob-
lems posed in infinite-dimensional Hilbert spaces. Here we focus on the following unconstrained opti-
mization problem

min
u∈H

F (u), (1.1)

where F : H →R is a twice continuously Fréchet differentiable function defined on an abstract Hilbert
space H endowed with the inner product (·, ·) and its associated norm ‖ · ‖. The Barzilai-Borwein
iterations for solving (1.1) are defined by

uk+1 = uk−
1

αk
Gk, (1.2)

where Gk := G (uk) and G : H →H stands for the gradient of F . This gradient is defined by G :=R ◦
F ′, where F ′ : H →H ′ is the first derivative of F , and R : H ′→H is the Riesz isomorphism, with
H ′ denoting the dual space of H . Therefore, for every δu ∈H , we obtain F ′(u)δu = (G (u),δu).
Furthermore, the step-size αk > 0 is chosen according to either

α
BB1
k :=

(Sk−1,Yk−1)

(Sk−1,Sk−1)
or α

BB2
k :=

(Yk−1,Yk−1)

(Sk−1,Yk−1)
, (1.3)

where Sk−1 := uk−uk−1 and Yk−1 := Gk−Gk−1. With these specifications we are prepared to specify
Algorithm 1 which will be investigated in this paper.

Algorithm 1 BB-method
Require: Let initial iterates u−1,u0 ∈H with u−1 6= u0 be given.

1: Set k = 0.
2: If ‖Gk‖= 0 stop.
3: Choose αk equal to either αBB1

k or αBB2
k .

4: Set uk+1 = uk− 1
αk

Gk, k = k+1, and go to Step 2.

In this work, we continue our investigation initiated in Azmi & Kunisch (2020) on the BB-method
for optimization problems governed by partial differential equations. First, we establish the local R-
linear convergence of Algorithm 1 for twice continuously Fréchet differentiable functions. Subsequently
we analyse the mesh independence principle (MIP) for Algorithm 1. This important property states that
the algorithm roughly requires the same number of iterations to reach the termination requirement for the
infinite-dimensional problem as well as for the finite-dimensional approximations. This concept of MIP
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was initially introduced by Allgower et al. (1986) for Newton’s method. Since then, MIP was studied
for many different optimization algorithms and problem formulations. From these, we can mention
generalized equations (Alt, 2001; Argyros, 1990, 1992), Newton methods (Karátson, 2012; Weiser et al.,
2005), SQP methods (Volkwein, 2000), shape design problems (Laumen, 1999), constrained Gauss-
Newton methods (Heinkenschloss, 1993), gradient projection methods (Kelley & Sachs, 1992), quasi-
Newton methods (Kelley & Sachs, 1987, 1990, 1991), and semi-smooth Newton methods (Hintermüller
et al., 2008; Hintermüller & Ulbrich, 2004). The convergence analysis of Algorithm 1 will show that,
depending on the spectrum of the Hessian, the sequence {‖Gk‖}k can be nonmonotone. This is different
from the situation for quasi-Newton methods for which mesh-independence was analyzed in Kelley &
Sachs (1987, 1990, 1991).

Our theoretical framework is supported by two optimizations problems with partial differential equa-
tions as constraints. The corresponding numerical experiments support the theoretical results, and illus-
trate the qualitative influence of the spectral condition number of the Hessian on the convergence, and
the MIP property of Algorithm 1.

The rest of paper is organized as follows: In Section 2, we prove the local R-linear convergence
of Algorithm 1 for a class of twice continuously Fréchet-differentiable functions. Section 3 is devoted
to developing the mesh-independent principle for Algorithm 1. In Section 4, PDE-constrained optimal
control problems are investigated. Finally, Section 5 presents the numerical experiments.

2. Convergence Analysis

In this section, we will prove the local R-linear convergence of Algorithm 1 for twice continuously
Fréchet-differentiable functions with Lipschitz continuous second derivatives. This proof is based the
global R-linear convergence of Algorithm 1 for the quadratic model around the strong minima, and
comparing the sequences generated by Algorithm 1 applied to the original problem and the quadratic
model. Beforehand, we recall the following convergence result from Azmi & Kunisch (2020) for strictly
convex quadratic problems:

PROPOSITION 2.1 Assume that the objective function F is a strictly convex quadratic function, that is

min
u∈H

F (u) :=
1
2
(A u,u)− (b,u), (QP)

where A : H →H is a bounded, self-adjoint, and uniformly positive operator and b ∈H . Moreover,
let {uk}k be the sequence generated by Algorithm 1 for (QP). Then there exists a positive integer m
depending on the spectrum of A such that we have

‖Gk+m‖6
1
2
‖Gk‖ for all k > 0, (2.1)

or equivalently,

‖uk+m−u∗‖6 1
2
‖uk−u∗‖ for all k > 0, (2.2)

for all initial iterates u−1,u0 ∈H with u−1 6= u0. Here Gk = G (uk) := A uk− b and u∗ stands for the
global minimum u∗ of (QP).

Based on the convergence results and the discussion concerning the influence of the spectrum σ(A )
of A in Azmi & Kunisch (2020, Theorem 3.1, Remark 3.2), we can formulate the following remark:
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REMARK 2.1 For strictly convex and quadratic functions of the from (QP), we have the following cases
depending on the value of the spectral condition number κ(A ) := ‖A ‖‖A −1‖:

1. κ(A )< 2 : In this case, Algorithm 1 is Q-linearly convergent with a rate γA < 1. In other words,
the sequence {‖Gk‖}k is monotone decreasing with

‖Gk+1‖6 γA ‖Gk‖ for all k > 0. (2.3)

Moreover, as κ(A ) is getting smaller, γA becomes smaller and, as consequence, the convergence
is getting faster.

2. κ(A )> 2 : In this case, there is a potential nonmonotonic behaviour of the sequence {‖Gk‖}k. As
κ(A ) is getting larger, the nonmonotonic behaviour in the sequence {‖Gk‖}k becomes stronger.

Now we are in the position to investigate the convergence of Algorithm 1 for a more general class
of problems. Let u∗ ∈H be a local minimum of F : H →R, where F is twice continuously Fréchet-
differentiable at u∗ with Lipschitz continuous second derivative F ′′ in a neighbourhood of u∗. If we
identify the first derivative F ′ by its corresponding representation G , we have the following first-order
optimality condition

G (u∗) = 0 in H . (EP)

Due to the continuity of the bilinear map F ′′(u∗), there exists a positive constant δsup such that

F ′′(u∗)(v,u)6 δsup‖v‖‖u‖ for all u,v ∈H . (2.4)

Moreover, we assume that the continuous bilinear map F ′′(u∗) is uniformly positive, that is

δinf‖v‖2 6F ′′(u∗)(v,v)6 δsup‖v‖2 for all v ∈H , (2.5)

where δsup > δinf > 0. Then, due to the Riesz representation theorem, there exists a unique self-adjoint
bounded operator A F

u∗ (see Conway, 1990, Theorem. 2.2, p. 31) such that

F ′′(u∗)(v,u) = (A F
u∗ v,u) for all v,u ∈H .

Similarly to the analysis of Dai et al. (2006) and Liu & Dai (2001), the R-linearly convergence result
is proven by comparing the sequences {uk}k and {ûk}k which are generated by Algorithm 1 applied to,
respectively, F and its second-order Taylor approximation F̂ defined by

F̂ (u) = F (u∗)+
1
2
(A F

u∗ (u−u∗),u−u∗). (2.6)

Throughout this section, all notations with the accent “ ˆ ” are related to the quadratic approximation
(2.6). For instance with Ĝ (·) and α̂k, we denote the gradient and the step-sizes of Algorithm 1 applied
to F̂ , respectively.

Since F ′′ : H →L (H ,L (H ,R)) is locally Lipschitz continuous and F ′′(u∗) : H ×H → R
is continuous and uniformly positive definite, there exist a ball Bτ(u∗) centred at u∗ with radius τ > 0,
constants αsup > αinf > 0 depending on τ , and L such that

‖G (u)−A F
u∗ (u−u∗)‖6 L‖u−u∗‖2 for all u ∈Bτ(u∗), (L1)
F ′′(u)(v,w)6 αsup‖v‖‖w‖ for all v,w ∈H and u ∈Bτ(u∗), (L2)



5 of 30

and
αinf‖v‖2 6F ′′(u)(v,v)6 αsup‖v‖2 for all v ∈H and u ∈Bτ(u∗). (L3)

With these specifications, we show in the following lemma that all step-sizes αBB1
k and αBB2

k with k> 0
lie in the interval [αinf,αsup].

LEMMA 2.1 Assume that for a twice continuously Fréchet-differentiable F in Bτ(u∗) properties L2
and L3 hold. Then we have

αinf 6 α
BB1
k ,αBB2

k 6 αsup for all uk,uk−1 ∈Bτ(u∗). (2.7)

Proof. First we show that for arbitrary given u1,u2 ∈Bτ(u∗) it holds

αinf‖u1−u2‖2 6 (G (u1)−G (u2),u1−u2)6 αsup‖u1−u2‖2. (2.8)

Since u1,u2 ∈Bτ(u∗), by defining s(t) := u1 + t(u2− u1), we have s(t) ∈Bτ(u∗) for every t ∈ [0,1].
Therefore, due to L3, we obtain

αinf‖u1−u2‖2 6
∫ 1

0
F ′′(s(t))(u1−u2,u1−u2)dt = (G (u1)−G (u2),u1−u2)

6 αsup‖u1−u2‖2,

(2.9)

and this completes the verification of (2.8). Now, using (2.8) for u1 = uk and u2 = uk−1 and a short
computation, it follows that αinf 6 αBB1

k 6 αsup.
Next we deal with αBB2

k . Due to L3 and L2, the mapping F is convex on Bτ(u∗) and its gradient
is Lipschitz continuous with constant αsup, respectively. Therefore, using Baillon-Haddad Theorem
(Bauschke & Combettes, 2017, Cor. 18.17, p. 323), we conclude that the gradient of F is cocoercive
with constant 1

αsup
and thus

(Yk−1,Sk−1)>
1

αsup
‖Yk−1‖2. (2.10)

Further using (2.8) we obtain that αinf‖Sk−1‖2 6 (Yk−1,Sk−1)6 ‖Sk−1‖‖Yk−1‖ and, thus, we have

(Yk−1,Sk−1)6 ‖Sk−1‖‖Yk−1‖6
1

αinf
‖Yk−1‖2. (2.11)

From (2.10), (2.11), and the definition of αBB2
k it follows that αinf 6 αBB2

k 6 αsup and, thus (2.7) holds.
�

As a consequence of Lemma 2.1, if the iterations of Algorithm 1 applied to F̂ lie in Bτ(u∗), we
have

αinf 6 δinf 6 α̂
BB1
k , α̂BB2

k 6 δsup 6 αsup. (2.12)

where the fact that α̂BB1
k , α̂BB2

k ∈ [δinf,δsup] for k > 0 is justified as in Azmi & Kunisch (2020, p. 4).
Further, using the fundamental theorem of calculus (see (2.9)), L2, and L3, we infer that

αinf‖u−u∗‖6 ‖G (u)‖= ‖G (u)−G (u∗)‖6 αsup‖u−u∗‖ for all u ∈Bτ(u∗). (2.13)

In the next lemma we study the distance of the sequences {uk}k and {ûk}k.
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LEMMA 2.2 Let u∗ be a local minimizer of F with F ∈ C2(H ,R) and assume that L1-L3 hold for
a radius τ and constants αinf and αsup, and for the bilinear form F ′′(u∗) estimate (2.5) holds with the
constants δsup and δinf. Further, let {u j} j be a sequence generated by Algorithm 1 applied to F , and
{ûk

j} j be the sequence generated by Algorithm 1 applied to the quadratic approximation (2.6) of F at
u∗ with initial iterates ûk

0 = uk and ûk
−1 = uk−1 for k > 0. Then for any fixed positive integer m, there

exist positive constants η 6 τ and λ such that the following property holds:
If uk−1 ∈Bτ(u∗), uk ∈Bη(u∗), and if for some ` ∈ {0, . . . ,m}, the following condition holds

‖ûk
j−u∗‖> 1

2
‖uk−u∗‖ for all j ∈ {0, . . . ,max{0, `−1}}, (2.14)

then we have
uk+ j ∈Bτ(u∗) and ‖uk+ j− ûk

j‖6 λ‖uk−u∗‖2 (2.15)

for all j ∈ {0, . . . , `}.

Proof. The proof is given in Appendix A. �
In the next theorem, we present the main result of this section which is the local R-linearly con-

vergence of Algorithm 1 applied to twice continuously Fréchet differentiable objective functions. The
proof is inspired by the one given in Dai et al. (2006, Theorem. 2.3) for the finite-dimensional case. But,
since some of its arguments are used later, and for the sake of completeness, we provide it here.

THEOREM 2.2 Let u∗ be a local minimizer of a twice continuously Fréchet differentiable function
F , with a locally Lipschitz continuous second-derivative. Further suppose that the bilinear mapping
F ′′(u∗) satisfies estimate (2.5) for constants δsup and δinf. Then there exist positive constants ζ , λ1, λ2,
and θ < 1 such that the sequence {uk}k, generated by Algorithm 1, satisfies

‖uk−u∗‖6 λ1θ
k‖u0−u∗‖ for all k > 0, (2.16)

and
‖Gk‖6 λ2θ

k‖G0‖ for all k > 0, (2.17)

for all initial iterates u−1,u0 ∈Bζ (u∗) ∈H with u−1 6= u0.

Proof. The assumptions on F imply that L1-L3 are satisfied for a radius τ and constants αinf and αsup.
The proof relies on Proposition 2.1 and Lemma 2.2 in an essential manner. Due to Proposition 2.1, there
exists an integer m depending on σ(A F

u∗ ) such that for every pair of initial iterates (ûk
−1, û

k
0)= (uk−1,uk),

we have for the sequences {ûk
j} j that

∃s ∈ {1, . . . ,m} such that ‖ûk
s −u∗‖6 1

2
‖uk−u∗‖. (2.18)

Given the constants η 6 τ and λ from Lemma 2.2 we define ζ := min{η ,τ1}, where τ1 is chosen
such that c2 := 1

2 +λτ1 < 1. Then, due to Lemma 2.2, for the fixed integer m, if ûk
0 = uk ∈Bζ (u∗),

ûk
−1 = uk−1 ∈Bτ(u∗), and if

‖ûk
j−u∗‖> 1

2
‖uk−u∗‖ for all j ∈ {0, . . . ,max{0, `−1}} with `6 m, (2.19)

then we have

uk+ j ∈Bτ(u∗) and ‖uk+ j− ûk
j‖6 λ‖uk−u∗‖2 for all j ∈ {0,1, . . . , `}. (2.20)
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Next we show by induction that there exists a subsequence of indices {ki}i with k0 = 0, for which we
have

ki+1− ki 6 m and ‖uki+1 −u∗‖6 c2‖uki −u∗‖, (2.21)

for all i = 0,1, . . . .
Due to Proposition 2.1 and (2.18), there exists a smallest integer j0 6 m such that

‖ûk0
j0
−u∗‖6 1

2
‖ûk0

0 −u∗‖= 1
2
‖uk0 −u∗‖. (2.22)

Defining k1 := k0 + j0 > k0, and using (2.20) and (2.22), we have

‖uk1 −u∗‖= ‖uk0+ j0 −u∗‖6 ‖uk0+ j0 − ûk0
j0
‖+‖ûk0

j0
−u∗‖

6 λ‖uk0 −u∗‖2 +
1
2
‖ûk0

0 −u∗‖6 λτ1‖uk0 −u∗‖+ 1
2
‖uk0 −u∗‖6 c2‖uk0 −u∗‖,

(2.23)

and hence (2.21) follows for i = 0. By (2.23) and the fact that uk0 = u0 ∈ Bζ (u∗), it follows that
uk1 ∈ Bζ (u∗) ⊂ Bτ(u∗). Together with the inclusion in (2.20) we obtain that uk ∈ Bτ(u∗) for all
k ∈ {0,1, . . . ,k1}.

To carry out the induction step we assume that for an index ki we have uki ∈Bζ (u∗) and, uk ∈Bτ(u∗)
for all k ∈ {0,1, . . . ,ki}. We will show that there exists an index ki+1 > ki with ki+1− ki 6 m such
that uki+1 ∈ Bζ (u∗), uk ∈ Bτ(u∗) for all k ∈ {0,1, . . . ,ki+1}, and (2.21) holds. Using the fact that
uki ,uki−1 ∈Bτ(u∗) and (2.18), there is an integer ji 6 m with the property that

‖ûki
ji −u∗‖6 1

2
‖ûki

0 −u∗‖= 1
2
‖uki −u∗‖.

Due to (2.20), by defining ki+1 = ki + ji > ki and using the similar argument as in (2.23), we can show
that (2.21) holds and, consequently, we have uki+1 ∈Bζ (u∗), and uk ∈Bτ(u∗) for all k∈ {0,1, . . . ,ki+1}.

Now, due to (A.11), there is a positive constant c1 such that

‖uk+ j−u∗‖6 c1‖uk−u∗‖ for all j ∈ {1, . . . ,m}, (2.24)

where c1 depends only on m and the constants αsup and αinf which have been defined in L3. Further, for
every k > 0, there exists an integer i> 0 such that ki 6 k < ki+1 with ki+1 6 m(i+1). Therefore, i> k

m
and also by (2.24), we obtain

‖uk−u∗‖6 c1‖uki −u∗‖6 c1(c2)
i‖uk0 −u∗‖6 c1(c2)

k
m ‖uk0 −u∗‖.

By setting θ := (c2)
1
m < 1, and λ1 := c1, we can conclude (2.16).

We turn to verification of (2.17). By using the fact that for every k > 0 the sequence {uk}k lies in
Bτ(u∗), the property (2.13), and (2.16), we obtain

‖Gk‖6 αsup‖uk−u∗‖6 αsupλ1θ
k‖u0−u∗‖6

αsupλ1

αinf
θ

k‖G0‖.

By setting λ2 := αsupλ1
αinf

we complete the proof. �



8 of 30 B. AZMI AND K. KUNISCH

3. Mesh Independence Principle

In this section, we investigate finite-dimensional approximations of Algorithm 1. More specifically we
investigate the dependence of the iteration count of the algorithm to achieve a desired accuracy of the
residue under finite-dimensional approximations. We note that our objective here is not to estimate the
error between the solutions of the discretized problem and continuous one.

Thus let {H h}h be a family of finite-dimensional Hilbert spaces indexed by some real number h> 0,
and endowed with inner products and their associated norms denoted by (·, ·)h and ‖ · ‖h, respectively.
Let G h : H h →H h denote continuous nonlinear mappings which will be required to approximate G
in a sense to be made precise in Assumption A2 below. We then consider the family of problems:

Find u∗h ∈H h such that G h(u∗h) = 0. (EPh)

Throughout this section we pose the following assumption:

A0: The assumptions of Theorem 2.2 in Section 2 hold and we denote by {uk}k the sequence generated
by Algorithm 1 which enjoys the properties asserted in Theorem 2.2.

In particular, it is assumed that ‖u−1−u∗‖ and ‖u0−u∗‖ are sufficiently small (< ζ with ζ defined in
Theorem 2.2) unless F is a strictly convex quadratic function. For the case of strictly convex quadratic
functions, u−1 and u0 can be chosen from the whole of H .

To describe the family of approximating sequences, we choose uh
−1,u

h
0 ∈H h, and update uh

k for
k > 0 by

uh
k+1 = uh

k−
1

αh
k
G h

k , (3.1)

where G h
k := G h(uh

k) and the step-size αh
k is chosen according to either

α
BB1,h
k :=

(S h
k−1,Y

h
k−1)h

(S h
k−1,S

h
k−1)h

, or α
BB2,h
k :=

(Y h
k−1,Y

h
k−1)h

(S h
k−1,Y

h
k−1)h

. (3.2)

Here we have set S h
k−1 := uh

k−uh
k−1 and Y h

k−1 := G h
k −G h

k−1. We should point out that the inner product
on H h will typically reflect the norm on H . It should not be thought of as the canonical inner product
in RN(h).

Let us now formulate some additional notation and assumptions that we require for the main result
of this section. Suppose that {Ph}h is a family of linear “prolongation” operators

Ph : H h→H .

We use the following notion of convergence in the space H . A sequence uh ∈H h is H -convergent to
u ∈H if

lim
h↓0
‖Phuh−u‖= 0.

We have to assume that the discrete inner products approximate the original one in the following sense:

A1: If uh H→ u and zh H→ z for u,z ∈H , then

lim
h↓0

(uh,zh)h = (u,z). (3.3)
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Moreover we need the following approximation property of G by the family G h.

A2: Suppose that G (u∗) = 0. Then, if uh H→ u with u in a neighborhood of u∗, then

G h(uh)
H→ G (u). (3.4)

REMARK 3.1 In applications it can occur that the convergence specified in (3.4) requires additional
regularity of u and G (u). In this case one assumes the existence of a subspace W in H of more regular
functions, and one needs to assure that the limit of the iterations remains in W . In this case Assumption
A2 is replaced by A2’ below. For details we refer to Kelley & Sachs (1987), for instance.

A2’: There exists u∗ ∈W with G (u∗) = 0, such that G is well-defined for all u ∈W sufficiently near u∗

with respect to the H -norm. Moreover, if u ∈W with ‖u−u∗‖ sufficiently small and uh H→ u,
then G (u) ∈W and

G h(uh)
H→ G (u).

THEOREM 3.1 Suppose that Assumptions A0-A2 hold. Moreover, let uh
i

H→ ui for i =−1,0 with u−1 6=
u0 and uh

−1 6= uh
0. Then for any k′ > 0, we have

lim
h↓0

max
06k6k′

‖Phuh
k−uk‖= 0. (3.5)

Proof. Using (3.1) and the triangle inequality we obtain

‖Phuh
k+1−uk+1‖6 ‖Phuh

k−uk‖+

∣∣∣∣∣ 1
αh

k
− 1

αk

∣∣∣∣∣‖PhG h
k ‖+

∣∣∣∣ 1
αk

∣∣∣∣‖PhG h
k −Gk‖, (3.6)

for every k > 0. Then, proceeding by induction, using (3.3) and (3.4), and passing the limit in (3.2) and
(3.6), it can be shown that (3.5) is true for every k′ > 0. �

The termination condition for EPh is based on the norm of the gradients for the approximated and
the original problem. Thus for ε > 0 the iteration is terminated according to

‖G h
k ‖h < ε, and ‖Gk‖< ε, (3.7)

where ε is a sufficiently small positive number. In order to investigate the behaviour of convergence of
the approximated problem with respect to the original problem, we consider the following quantities:

k∗(ε) := min{k ∈ N : ‖Gk‖< ε}, k∗h(ε) := min{k ∈ N : ‖G h
k ‖h < ε},

where k∗(ε) and k∗h(ε) are the smallest iteration numbers for which the norm of corresponding gradients
is less than ε . In the following we study the relation between k∗(ε) and k∗h(ε).

THEOREM 3.2 Suppose that Assumptions A0-A2 hold. Further, let uh
i

H→ ui for i =−1,0 with u−1 6= u0
and uh

−1 6= uh
0. Then for each ε > 0 and δ > 0, there exists a number hδ ,ε > 0 such that

k∗(ε +δ )6 k∗h(ε)6 k∗(ε) (3.8)

for every h ∈ (0,hδ ,ε ].
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Proof. Due to (3.5) and A2, we have for every k that

G h
k

H→ Gk (3.9)

and by A1, we obtain
lim
h↓0
‖G h

k ‖h = ‖Gk‖. (3.10)

Now, we show that ‖G h
k ‖h < ε for a sufficiently small h > 0, provided that ‖Gk‖< ε holds for an iterate

k. Since ‖Gk∗(ε)‖ < ε , there exists a positive number ζ := ζ (ε) such that ‖Gk∗(ε)‖+ζ < ε . Moreover,
due to (3.10), there exists a positive number hε > 0 such that for every h ∈ (0,hε ] we have∣∣∣‖G h

k∗(ε)‖h−‖Gk∗(ε)‖
∣∣∣6 ζ . (3.11)

Hence, for every h ∈ (0,hε ], we obtain

‖G h
k∗(ε)‖h = ‖Gk∗(ε)‖+‖G h

k∗(ε)‖h−‖Gk∗(ε)‖6 ‖Gk∗(ε)‖+ζ < ε,

and, thus, we have
k∗h(ε)6 k∗(ε) for every h ∈ (0,hε ],

which implies the second inequality in (3.8). Now assume that δ > 0 be given. Then due to (3.10) we
have

lim
h↓0

max
06k<k∗(δ+ε)

∣∣∣‖G h
k ‖h−‖Gk‖

∣∣∣= 0. (3.12)

By the definition of k∗(δ + ε), we have

‖Gk‖> δ + ε for all k < k∗(δ + ε). (3.13)

Moreover due to (3.12), there exists a positive number hδ such that∣∣∣‖G h
k ‖h−‖Gk‖

∣∣∣6 max
06k′<k∗(δ+ε)

∣∣∣‖G h
k′‖h−‖Gk′‖

∣∣∣6 δ for all h ∈ (0,hδ ] and k < k∗(δ + ε). (3.14)

Using (3.13) and (3.14) we infer for every h ∈ (0,hδ ] and k < k∗(δ + ε) that

‖G h
k ‖h > ‖Gk‖−δ > δ + ε−δ = ε,

and, thus, k∗h(ε)> k∗(δ +ε) for every h∈ (0,hδ ]. Now for the choice of hδ ,ε :=min{hδ ,hε}, the relation
(3.8) holds for every h ∈ (0,hδ ,ε ] and we are finished with the proof. �

THEOREM 3.3 Suppose that Assumptions A0-A2 hold. Further assume that uh
i

H→ ui for i =−1,0 with
u−1 6= u0 and uh

−1 6= uh
0. Then for each ε > 0 there exists hε > 0 such that

k∗(ε)− `6 k∗h(ε)6 k∗(ε) for every h ∈ (0,hε ],

where the integer ` > 0 is independent of h and ε .
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Proof. Theorem 2.2 implies R-linear convergence of uk → u∗. It can be shown as in the proof of
Theorem 2.2 that there exist a positive integer m, positive numbers c2 < 1 and ζ 6 τ , and a subsequence
of indices {ki}i ∈ N with k0 = 0, for which we have

uk ∈Bζ (u
∗) for every k > k0, (3.15)

and
ki+1− ki 6 m and ‖uki+1 −u∗‖6 c2‖uki −u∗‖, for all i> 0. (3.16)

Moreover, as mentioned in the proof of Theorem 2.2, there exists a number c1 > 0 such that

‖uk+ j−u∗‖6 c1‖uk−u∗‖ for all j ∈ {1, . . . ,m} and any k > k0. (3.17)

Let us first denote the integer q∗ as the smallest integer for which cq∗
2 < αinf

c1αsup
holds. The existence of

such q∗ is guaranteed since c2 < 1. Next, we show for every k > k0 that there exists a positive integer
i+(k)6 m(q∗+1)−1 =: ` such that

‖Gk+i+(k)‖< ‖Gk‖. (3.18)

For every k > k0, the exists an index i such that ki 6 k < ki+1. Due to (2.13), (3.16), (3.17), and the
definition of q∗, we obtain

‖Gki+q∗+1
‖6 αsup‖uki+q∗+1

−u∗‖6 αsupcq∗
2 ‖uki+1 −u∗‖6 αsupc1cq∗

2 ‖uk−u∗‖

6
αsupc1cq∗

2
αinf

‖Gk‖< ‖Gk‖.

By setting i+(k) := ki+q∗+1− k, we have i+(k)6 ` and we are finished with the verification of (3.18).
Now, due to the definition of k∗(ε), we have ‖Gk‖> ε for every k < k∗(ε). We will next show that

for every k∗(ε)> ` that
‖Gk‖> ε for every k < k∗(ε)− `. (3.19)

Suppose on contrary that there exists an index k̄ < k∗(ε)− ` with ‖Gk̄‖ = ε . Then due to (3.18) there
exists an integer i+(k̄)6 ` such that we have ‖Gk̄+i+(k̄)‖< ‖Gk̄‖= ε with k̄+ i+(k̄)6 k̄+` < k∗(ε), and
this contradicts the definition of k∗(ε). Hence, (3.19) holds.

Due to (3.19), for k < k∗(ε)− ` there exist strictly positive numbers {δk}k such that ‖Gk‖ = ε +δk
for k < k∗(ε)− `. By setting 0 < δ := min{δk : k < k∗(ε)− `}, we obtain

‖Gk‖> ε +δ for every k < k∗(ε)− `.

Therefore we conclude that k∗(ε)−`6 k∗(ε +δ ). Due to Theorem 3.2, for ε > 0 and δ > 0, there exists
a number hε > 0 such that we have

k∗(ε)− `6 k∗(ε +δ )6 k∗h(ε)6 k∗(ε) for every h ∈ (0,hε ]. (3.20)

This concludes the proof. �

REMARK 3.2 In the case of quadratic functions (QP), due to Proposition 2.1, inequality (3.20) holds
for ` = m and all initial iterates u−1,u0 ∈H with u−1 6= u0. In particular, due to Remark 2.1,if also
κ(A )< 2, then (3.20) holds for `= 1. Further as κ(A ) increases, ` becomes larger.

REMARK 3.3 In general, the sequence {‖Gk‖}k corresponding to Algorithm 1 is not monotonically
decreasing. This is the reason why we have to introduce ` in Theorem 3.3 which can possibly be larger
than 1. For the case that {‖Gk‖}k is monotone decreasing, we have `= 1. Moreover, clearly ` depends
on κ(A F

u∗ ).
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4. Application to Optimal Control Problems with PDEs

In this section we apply Algorithm 1 to optimal control problems which are governed by partial differ-
ential equations. For the sake of brevity, finite-dimensional approximation is only discussed for the first
one.

4.1 Dirichlet Optimal Control for the Poisson Equation

4.1.1 Continuous Problem. We consider the following elliptic Dirichlet boundary control problem

min
u∈L2(Γ )

J(u,y) :=
1
2
‖y− yd‖2

L2(Ω)+
β

2
‖u‖2

L2(Γ ), (4.1)

subject to

{
−∆y = f in Ω ,

y = u on Γ ,
(4.2)

on an open convex bounded polygonal set Ω ⊂ R2 with boundary denoted by Γ := ∂Ω . We assume
that f ,yd ∈ L2(Ω) and β > 0. Then, for a given (u, f ) ∈ L2(Γ )×L2(Ω), the solution y(u, f ) ∈ L2(Ω)
of (4.2) exists in a very weak sense and it satisfies the following variational equation

(y,−∆ϕ)L2(Ω)+(u,∂ν ϕ)L2(Γ ) = (ϕ, f )L2(Ω) for all ϕ ∈ H2(Ω)∪H1
0 (Ω).

The corresponding solution operator defined by (u, f ) 7→ y(u, f ) is a continuous operator from L2(Γ )×
L2(Ω) to L2(Ω)(see e.g., Grisvard, 1985, 1992). Moreover, the linear operators L : L2(Γ )→ L2(Ω)
defined by u 7→ y(u,0), and Π : L2(Ω)→ L2(Ω) defined by f 7→ y( f ,0) are continuous. Then by
defining X := L2(Ω), H := L2(Γ ) and ψ :=−Π f + yd , we can express the optimal control problem
(4.1)-(4.2) as the following linear least squares problem

min
u∈H

F (u) :=
1
2
‖L u−ψ‖2

X +
β

2
‖u‖2

H . (LS)

Thus problem (4.1)-(4.2) can be written in the form of (QP) with

A := L ∗L +β I and b := L ∗
ψ, (4.3)

where L ∗ : X →H defined as the adjoint operator of L and I is the identity mapping. The operator
A is uniformly positive, bounded, and self-adjoint on H , and thus, the existence and uniqueness of the
solution to (4.1)-(4.2) can be obtained due the fact that A has a bounded inverse.

For every u ∈H , the derivative of F at u in direction δu ∈H can be expressed by

F ′(u)δu = (L ∗(L u−ψ)+βu,δu), (4.4)

and the gradient of F at u is identified by G (u) = L ∗(L u−ψ)+βu. Alternatively, if we consider the
solution p(u) ∈ H2(Ω)∩H1

0 (Ω) of the adjoint equation{
−∆ p = y(u, f )− yd in Ω ,

p = 0 on Γ ,
(4.5)

with the solution y(u, f ) ∈ L2(Ω) to (4.2), then the directional derivative (4.4) and the corresponding
gradient G at point u can be rewritten as

F ′(u)δu = (∂ν p(u)+βu,δu) for all δu ∈H , and G (u) = ∂ν p(u)+βu in H . (4.6)
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For the global minimizer u∗ ∈H to (LS), the first-order optimality condition can be expressed as

(L ∗L +β I)u∗ = L ∗
ψ, (4.7)

which can be rewritten, equivalently, as the following system of equations
y∗ = y(u∗, f ) in L2(Ω),

∂ν p∗ =−βu∗ in L2(Γ ),

−∆ p∗ = y∗− yd in L2(Ω),with p∗ = 0 on Γ .

4.1.2 Discretized Problem . For the discretization of (4.1)-(4.2), we use finite elements. Let us con-
sider the regular family of triangulations {Th}h>0 of Ω with Ω = ∪T∈ThT and the mesh-size defined
by h := max{diam(T ) : T ∈ Th}. Let {x j}16 j6N(h) be the nodes which lies on the boundary with the
counterclockwise numbering and xN(h)+1 = x1. Then we define the space of discretized control by

H h := {uh ∈C(Γ ) : uh|[x j ,x j+1] ∈P1 for j = 1, . . . ,N(h)},

and, we consider the space V h ⊂ H1(Ω) defined by

V h := {yh ∈C(Ω) : yh|T ∈P1 for every T ∈Th},

where P1 is the space of polynomials of degree less than or equal to 1. Further we set V h
0 := V h ∩

H1
0 (Ω). The space H h is formed by the restriction of the functions of V h to ∂Ω . Clearly, we have

H h ⊂H and, as a result, the finite-dimensional space H h is endowed with the inner product and the
norm introduced by the space H = L2(Γ ). Then, naturally, the prolongation operator Ph : H h→H
is defined to be the canonical injection operator i.e., Ph(uh) = uh for every uh ∈H h. Let us consider
the orthogonal projection operator Π h : H →H h defined by

(Π hv,uh)H = (v,uh)H for all uh ∈H h.

It satisfies the following estimate

‖u−Π
hu‖H 6 ch

1
2 ‖u‖

H
1
2 (Γ )

, (4.8)

for every u ∈ H
1
2 (Γ ), see, e.g., Berggren (2004) and Casas & Raymond (2006). For every u ∈H we

consider the unique discrete solution yh(u) ∈V h satisfying{
(∇yh,∇φ h) = ( f ,φ h) for all φ h ∈V h,

yh|Γ = Π hu.
(4.9)

Then we can define the discrete objective function in H by

Jh(u,yh(u)) :=
1
2
‖yh(u)− yd‖2

L2(Ω)+
β

2
‖u‖2

L2(Γ ). (4.10)

The finite-dimensional approximation of (4.1)-(4.2) can be expressed as

min
uh∈H h

F h(uh) = min
uh∈H h

Jh(uh,yh(uh)). (4.11)
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Existence of a solution to (4.11) follows by similar arguments as for the continuous problem. Given
u ∈H we consider the adjoint state ph(u) ∈V h

0 as the solution of

(∇ph(u),∇ψ
h)L2(Ω) = (yh(u)− yd ,ψ

h)L2(Ω) for all ψ
h ∈V h

0 . (4.12)

In order to compute the gradient of F h, analogously to the expression (4.6), we need to characterise a
discrete normal derivative ∂ h

ν ph(u). For every u∈H , similarly to Casas & Raymond (2006, Proposition
4.2), ∂ h

ν ph(u) ∈H h is characterized as the unique solution of the following variational problem

(∂ h
ν ph(u),ϕh)H = (∇ph(u),∇ϕ

h)L2(Ω)− (yh(u)− yd ,ϕ
h)L2(Ω) for all ϕ

h ∈V h,

where ph(u) ∈V h
0 is the solution of (4.12). Next, we prove the following useful estimate.

LEMMA 4.1 There exists a constant c depending on f and yd , and independent of h such that

‖∂ν p(u)−∂
h
ν ph(v)‖H 6 c

(
‖u− v‖H +h

1
2 (1+‖v‖H )

)
for all u,v ∈H . (4.13)

Proof. This proof is based on the results from Casas & Raymond (2006), where u ∈ L∞(Ω) was used
in the context of semilinear elliptic equation. Throughout the proof, c > 0 is a generic constant which is
independent of h. First, using a similar argument as in Berggren (2004) and Casas & Raymond (2006),
one can show that

‖y(u)− yh(u)‖H 6 c(1+‖u‖H )2h
1
2 , (4.14)

where the constant c depends on f . From (4.14), it follows that

‖y(u)− yh(v)‖H 6 c
(
‖u− v‖H +h

1
2 (1+‖u‖H )

)
for all u,v ∈H ,

Next, we show that

‖∂ν p(u)−∂
h
ν ph(u)‖H 6 ch

1
2 (1+‖u‖H ) for all u ∈H . (4.15)

Recall that p(u) ∈ H2(Ω)∩H1
0 (Ω) and therefore ∂ν p(u) ∈ H

1
2 (Γ ). For the left hand-side of (4.15) we

obtain

‖∂ν p(u)−∂
h
ν ph(u)‖2

H =
∫

Γ

∣∣∣∂ν p(u)−Π
h
∂ν p(u)

∣∣∣2 dS +
∫

Γ

∣∣∣Π h
∂ν p(u)−∂

h
ν ph(u)

∣∣∣2 dS =: I1 + I2.

(4.16)
The last term can be equivalently be expressed as

I2 =
∫

Γ

(∂ν p(u)−∂
h
ν ph(u))(Π h

∂ν p(u)−∂
h
ν ph(u))dS . (4.17)

Let wh ∈V h be the solution of the following variational equation{
(∇wh,∇φ h) = 0 for all φ h ∈V h,

wh|Γ = Π h∂ν p(u)−∂ h
ν ph(u).

(4.18)

Then, by referring to Bramble et al. (1986, Lemma 3.2), we have the following estimate for (4.18)

‖wh‖H1(Ω) 6 c‖Π h
∂ν p(u)−∂

h
ν ph(u)‖

H
1
2 (Γ )

, (4.19)
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with a constant c independent of h. Using the definition of ∂ h
ν ph(u) and Green formula for ∂ν p(u), we

obtain

(∂ν p(u)−∂
h
ν ph(u),φ h)H = (∇(p(u)− ph(u)),∇φ

h)L2(Ω)+(yh(u)− y(u),φ h)L2(Ω) (4.20)

for every φ h ∈V h. Using (4.17), (4.18), and (4.20), we find

I2 = (∇(p(u)− ph(u)),∇wh)L2(Ω)+(yh(u)− y(u),wh)L2(Ω).

Moreover, we have
(∇ph(u),∇wh)L2(Ω) = (∇Ih p(u),∇wh)L2(Ω) = 0, (4.21)

where Ih ∈L (C(Ω),V h
0 ) stands for the classical interpolation operator, see e.g., Brenner & Scott (1994).

Due to (4.21) and the definition of wh from (4.18), we obtain

I2 = (∇(p(u)− Ih p(u)),∇wh)L2(Ω)+(yh(u)− y(u),wh)L2(Ω). (4.22)

Using (4.19), the interpolation estimate, and the following inverse estimate (see e.g., Berggren, 2004)

‖uh‖
H

1
2 (Γ )
6 C̄h−

1
2 ‖uh‖H for all uh ∈H h,

for a constant C̄ > 0, we infer that

|(∇(p(u)− Ih p(u)),∇wh)L2(Ω)|6 ‖∇(p(u)− Ih p(u))‖L2(Ω)‖w
h‖H1(Ω) 6 ch‖p(u)‖H2(Ω)‖w

h|Γ ‖
H

1
2 (Γ )

6 ch
1
2 (1+‖u‖H )‖wh|Γ ‖H 6 ch

1
2 (1+‖u‖H )

√
I2,

(4.23)

where the constant c from the second line of (4.23) depends also on yd . Moreover, due to (4.14), we can
write

|(yh(u)− y(u),wh)L2(Ω)|6 ‖y
h(u)− y(u)‖L2(Ω)‖w

h‖L2(Ω) 6 ch
1
2 (1+‖u‖H )

√
I2. (4.24)

From (4.22), (4.23), and (4.24), it follows that

I2 6 ch(1+‖u‖H )2. (4.25)

Further, using (4.8) we obtain

I1 6 ch‖∂ν p(u)‖2

H
1
2 (∂Ω)

6 ch‖p(u)‖2
H2(Ω) 6 ch(1+‖u‖H )2. (4.26)

Now, from (4.16), (4.25), and (4.26), we conclude (4.15). Finally, using (4.15) we can write that

‖∂ν p(u)−∂
h
ν ph(v)‖H 6 ‖∂ν p(u)−∂ν p(v)‖H +‖∂ν p(v)−∂

h
ν ph(v)‖H

6 c‖p(u)− p(v)‖H2(Ω)+ ch
1
2 (1+‖v‖H )6 c

(
‖u− v‖H +h

1
2 (1+‖v‖H )

)
,

for every u,v ∈H and we are finished with the verification of (4.13). �
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Now we are in the position in which we can verify the assumptions A1-A2 of Section 3.A1 follows
from the definition of H h and Ph. To verify A2, assume that uh H→ u with uh ∈H h. Similarly to (4.6),
the directional derivative and its corresponding gradient of F h of the discretized problem (4.11) at point
uh can be rewritten as

F h′(uh)δuh = (∂ h
ν ph(uh)+βuh,δuh) for all δuh ∈H h, and G h(uh) = ∂

h
ν ph(uh)+βuh in H h.

(4.27)

Then by (4.6), (4.27), and (4.13), we obtain

‖G (u)−PhG h(uh)‖H 6 ‖∂ν p(u)−∂
h
ν ph(uh)‖H +β‖u−uh‖H

6 (c+β )‖u−uh‖H + ch
1
2 (1+‖uh‖H ).

(4.28)

Hence, G h(uh)
H→ G (u) follows by sending h to zero in (4.28).

REMARK 4.1 Due the fact that ∂ν p(u)∈H
1
2 (Γ ) for every u∈H , using (4.6) and Step 4 in Algorithm 1,

it is easy to see that for every u−1,u0 ∈H
1
2 (Γ ), the sequence {uk}k stays in the space H

1
2 (Γ ). Moreover,

for given yd , f ∈ Lp∗(Ω) with p∗ > 2, we have y ∈W 1,p(Ω) and p(y,yd) ∈W 2,p(Ω) for p ∈ (2, p∗]

depending on Ω , see e.g., Casas & Raymond (2006, Theorem 3.4). Hence, {uk}k ⊂W 1− 1
p ,p(Γ )⊂C(Γ )

provided that u−1,u0 ∈W 1− 1
p ,p(Γ ). In this case, uh

0,u
h
1 can be chosen as IΓ

h u−1, IΓ
h u0 ∈H h where

IΓ
h ∈L (W 1− 1

p ,p(Γ ),H h) is the standard interpolation operator.

4.2 Distributed Optimal Control for the Burgers Equation

We consider the following optimal control problem

min
u∈L2(Q̂)

J(y,u) :=
α1

2
‖y− yd‖2

L2(Q)+
α2

2
‖y(T )− zd‖2

L2(0,1)+
β

2
‖u‖2

L2(Q̂)
, (4.29)

subject to


yt −ϑyxx + yyx = Bu+ f , (t,x) ∈ Q,

y(t,0) = y(t,1) = 0, t ∈ (0,T ),
y(0,x) = y0(x), x ∈ (0,1),

(4.30)

where ϑ , β α1, α2, and T are positive constants, y(t) = y(t,x),u(t) = u(t,x), Q := (0,T )× (0,1), and
Q̂ := (0,T )× Ω̂ where Ω̂ is an open subset of (0,1). Moreover, y0 ∈ L2(0,1), f ∈ L2(0,T ;H−1(0,1)),
the desired states yd and zd are smooth enough, and the extension operator B ∈L (L2(Ω̂),L2(0,1)) is
defined by

(Bu)(x) =

{
u(x), x ∈ Ω̂ ,

0 x ∈ (0,1)\Ω̂ .

Considering W (0,T ) := {φ : φ ∈ L2(0,T ;H1
0 (0,1)),φt ∈ L2(0,T ;H−1(0,1))} as the space of solutions,

we have the following notion of weak solution.

DEFINITION 4.1 Let (y0,u, f ) ∈ L2(0,1)× L2(Q̂)× L2(0,T ;H−1(0,1)) be given. Then, a function
y ∈W (0,T ) is referred as a weak solution to (4.30) if y(0) = y0 is satisfied in L2(0,1) and for almost
every t ∈ (0,T ), the following equality

〈yt(t),ϕ〉H−1,H1
0
+ϑ(y(t),ϕ)H1

0
+b(y(t),y(t),ϕ) = 〈Bu(t)+ f ,ϕ〉H−1,H1

0
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for all ϕ ∈H1
0 (0,1) holds, where the continuous trilinear form b : H1

0 (0,1)×H1
0 (0,1)×H1

0 (0,1)→R+

is defined as

b(ϕ,ψ,φ) =
∫ 1

0
ϕψxφdx for all ϕ,ψ,φ ∈ H1

0 (0,1).

It is known that, for every triple (y0,u, f ) ∈ L2(0,1)×L2(Q̂)×L2(0,T ;H−1(0,1)), equation (4.30)
admits a unique weak solution y(y0,u, f ) ∈W (0,T ) and for this weak solution we have the following
estimate

‖y‖W (0,T ) 6C
(
‖y0‖L2(Ω)+‖u‖L2(Q̂)+‖ f‖L2(0,T ;H−1(0,1))

)2
, (4.31)

where the constant C depends only on T and ϑ . Now, by setting X =W (0,T )×H with H := L2(Q̂),
and Y := L2(0,T ;H−1(0,1))×L2(0,1), we define e : X → Y by

e(y,u) :=

(
yt −ϑyxx + yyx−Bu− f

y(0)− y0

)
.

The mapping e : X → Y consists of a sum of continuous linear terms and a continuous bilinear term.
Hence, it can be shown that it is infinitely Fréchet differentiable. Moreover due to the unique solvability
of (4.30), for every u ∈H there exists a unique element y = y(u) ∈W (0,T ) satisfying e(y(u),u) = 0
and estimate (4.31) holds. Therefore the control-to-state u∈H 7→ y(u)∈W (0,T ) is well-defined. Then
we can rewrite the optimal control problem (4.29)-(4.30) in the following form

min
u∈H

F (u) = min
u∈H

J(y(u),u) = min
(y,u)∈X

{J(y,u) : subject to e(y,u) = 0}. (4.32)

Further, due to estimate (4.31) and the compact embedding from the space W (0,T ) to the space L2(Q),
it follows from standard subsequential limit arguments that the problem (4.29)-(4.30) admits a solution
(see e.g., Tröltzsch & Volkwein, 2001; Volkwein, 2001). Before dealing with the optimality conditions,
we refer to the following linearized Burgers equation at y ∈W (0,T ) and its corresponding backward in
time adjoint equation

qt −ϑqxx +(yq)x = φ (t,x) ∈ Q,

q(t,0) = q(t,1) = 0 t ∈ (0,T ),
q(0) = q0 x ∈ (0,1),

(4.33)


−pt −ϑ pxx− ypx = ψ (t,x) ∈ Q,

p(t,0) = p(t,1) = 0 t ∈ (0,T ),
p(T,x) = pT x ∈ (0,1).

(4.34)

It can be shown that for all pairs (φ ,q0) and (ψ, pT ) in the space Y , the solution operators S y
lin : Y →

W (0,T ) of (4.33), and S y
ad j : Y →W (0,T ) of (4.34) defined by (φ ,q0) 7→ v and (ψ, pT ) 7→ p, respec-

tively, are well-defined and continuous (see e.g., Tröltzsch & Volkwein, 2001; Volkwein, 2001).
Due to the definitions of S

y(u)
lin and ey(y(u),u), we can infer that e−1

y (y(u),u) =S
y(u)

lin and, as conse-
quence, ey(y,u) is continuously invertible. In addition, since e is inifinitely often continuously differen-
tiable, the implicit function theorem (Hinze et al., 2009, Theorem. 1.41) implies that the control-to-state
operator u→ y(u) is infinitely continuously differentiable from H to W (0,T ) as well. Due to the
compact embedding W (0,T ) ↪→ L2(Q) (see Temam, 1984, Theorem. 2.3), one obtains that all Fréchet
derivatives of this mapping from H to L2(Q) are Lipschitz continuous on bounded sets. Now we are in
the position to derive the first-order optimality conditions. First, by using the implicit function theorem,
the first derivative of the mapping u 7→ y(u) at u in direction of an arbitrary δu ∈H is given by

y′(u)δu =−e−1
y (x)eu(x)δu, (4.35)
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where x := (y(u),u) ∈ X . Then, by the chain rule we obtain

F ′(u)δu = (G (u),δu) = ((y′(u))∗Jy(x)+ Ju(x),δu),

where (y′(u))∗ stands for the adjoint operator of y′(u). Since δu is arbitrary, the first-order optimality
condition (EP) can be written as

G (u∗) = Ju(x∗)− e∗u(x)e
−∗
y (x)Jy(x∗) = 0. (4.36)

where x∗ := (y(u∗),u∗). Moreover, by setting (p∗, p̄) := −e−∗y (x)Jy(x∗) with (p∗, p̄) ∈ Y ∗ and p̄ =
p∗(0), the first-order optimality condition (4.36) can be expressed as the following system of differential
equations B∗p∗ = βu∗ in L2(Q̂),

p∗ = S
y(u∗)

ad j (−α1(y(u∗)− yd),−α2((y(u∗))(T )− zd)).

Next, we compute the second derivative of F . Let (δu,δv) ∈H ×H be arbitrary, then using the
implicit functions theorem, the second derivative of the operator u 7→ y(u) from H to W (0,T ) can be
written as

y′′(u)(δu,δv) =−e−1
y (x)eyy(x)(y′(u)δu,y′(u)δv). (4.37)

Now, by using the chain rule and (4.37) as in Hinze & Kunisch (2001) and Hinze et al. (2009), we obtain

F ′′(u)(δu,δv) = 〈Jyy(x)y′(u)δu,y′(u)δv〉
+ 〈−e−∗y (x)Jy(x),eyy(x)(y′(u)δu,y′(u)δv)〉+ 〈Juu(x)δu,δv〉H .

(4.38)

Furthermore, due to the first estimate in (4.38), and the fact that J : H ×W (0,T )→ R and the control-
to-state operator are infinitely Fréchet differentiable, it follows that F ′′ : H →L (H ,L (H ,R)) is
locally Lipschitz continuous. Then, the uniformly positiveness of F ′′(u∗) can be expressed as

F ′′(u∗)(v,v) : = α1‖q∗‖2
L2(Q)+α2‖q∗(T )‖2

L2(0,1)+(p∗,2q∗q∗x)L2(Q)+β‖v‖2
H

> δinf‖v‖2
H for all v ∈H ,

(4.39)

where δinf > 0, p∗ := S
y(u∗)

ad j (−α1(y(u∗)− yd),−α2((y(u∗))(T )− zd), and q∗ := S
y(u∗)

lin (v,0).

REMARK 4.2 Clearly, the only term in (4.39) that can spoil the uniformly positiveness of F ′′(u∗) is the
term involving p∗. This term originates from the nonlinear convection term in the state equation. Since∣∣∣(p∗,2q∗q∗x)L2(Q)

∣∣∣6 c‖p∗‖L2(0,T ;L∞(0,1))‖q
∗‖2

W (0,T )

for a constant c > 0, the uniform positiveness of F ′′(u∗) holds, provided that ‖p∗‖L2(0,T ;L∞(0,1)) is small
enough. Indeed, for p∗ = 0, inequality (4.39) holds for δinf := β . For instance, by setting yd = zd = f =
0, inequality (4.39) holds for every initial function y0 with sufficiently small ‖y0‖L2(0,1).

5. Numerical Experiments

In order to validate our theoretical findings in the previous sections, we report numerical results corre-
sponding to the optimal control problems introduced in the previous section. We investigate the appli-
cation of Algorithm 1 with respect to different strategies for selecting step-sizes and different choices
of the discretization parameter h, the control cost parameter β , and the tolerance ε in the termination
condition (3.7). For Algorithm 1, we consider the cases:
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BB1: αk := αBB1
k for every k > 0.

BB2: αk := αBB2
k for every k > 0.

ABB: αk := αBB1
k for even k > 0, and αBB2

k for odd k > 0.

The last case, which is known as the alternating strategy, has already been introduced by e.g., Dai et al.
(2002) and Grippo & Sciandrone (2002). Further, Dai & Fletcher (2005b) reported numerical results
for the case of finite-dimensional bound-constrained optimization problems which show that projected
ABB works somewhat better than projected BB1. According to (4.3) and (4.39), the value β in all the
optimal control problems of the previous section has a direct influence on the spectral condition number
of A F

u∗ corresponding to F . To be more precise, as the value of β increases, the value of κ(A F
u∗ ) is

getting smaller. Therefore, as its has been discussed in Remarks 2.1, one expects a larger total num-
ber of iterations for a smaller value of β and a fixed tolerance ε . Moreover, according to Remark 3.2,
the number ` depends on the behaviour (monotonicity versus nonmonotonicity) of {‖Gk‖}k, and conse-
quently also on κ(A F

u∗ ). Hence, the smaller β is chosen, the larger the value of ` is expected to be. We
report the total number of iterations of the optimization Algorithm for different levels of discretization,
or equivalently, different values of mesh-sizes. Then, for every example and fixed tolerance ε , ` is re-
ported as the maximum of the pairwise differences of kh(ε) for different choices of h. We have chosen
u−1 = 0 and u0 :=−G (0) as the initial iterates. All computations were done on a MATLAB platform.

EXAMPLE 5.1 (Dirichlet optimal control for the Poisson equation) We consider the problem introduced
in Subsection 4.1 which is posed on the domain Ω := (0,1)2. For the discretization a uniform mesh was
generated by triangulation. Then over this mesh, the discretization was done by a conforming linear
finite element scheme using continuous piecewise linear basis functions as described in Subsection
4.1.2. We set f (x) = 10sin(π(x1 + x2)) and yd(x) = (x2

1 + x2
2)

1
3 where x := (x1,x2) ∈Ω . Table 1 shows

the number of required iterations k∗h(ε) for different step-size strategies, and different values of β , ε ,
and the mesh-size h. From Table 1, it can be observed that:

1. For every fixed h, ε , and choice of step-size, decreasing in the value of β implies that the number
of required iterations k∗h(ε) becomes larger and, thus, the convergence is getting slower. This is
in accordance with the fact that there is a trade-off between the magnitude of β and the value of
κ(A ) where A = L ∗L +β I with L specified in Subsection 4.1.1. More precisely, κ(A ) =
β+δsup
β+δinf

with δinf := inf(σ(L ∗L )) and δsup := sup(σ(L ∗L )). Hence a larger value of β yields
a smaller value of κ(A ). That is as expected from the theory, for a larger β Algorithm 1 requires
fewer iterations k∗h(ε) for every fixed h and ε . This behaviour is clearly illustrated in Figure
1 which depicts the convergence of ‖G h

k ‖h for the choice h = 2−9
√

2, and different step-sizes
strategies and values of β . As can be seen from Figure 1, the convergence for the cases β = 0.5
and β = 0.2 is Q-linear. For these cases, based on the discussion given in Remark 2.1, we might
conjecture that κ(A ) < 2 with a smaller value of convergence rate γA for β = 0.5 compared to
β = 0.2. However, for the rest of the cases, nonmonotonic behaviour occurs, which corresponds
to κ(A )> 2. Apparently, as β decreases, the nonmonotonic behaviour in the sequences {‖Gk‖}k
and, consequently, in {‖G h

k ‖h}k becomes stronger.

2. Mesh-independence can be observed from Table 1.Indeed we can see that for every fixed β , ε , and
step-size strategy, the iterations kh(ε) stay almost constant and do not change as the discretezation
levels changes. Moreover, for β = 0.2, β = 0.05, and β = 0.01 we can state that `≈ 1, `≈ 3, and
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`≈ 6, respectively. This is also due to the dependence of the spectrum of A =L ∗L +β I on the
magnitude of β (see Remark 3.2).

0 10 20 30 40 50 60
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(a) BB1

0 10 20 30 40 50 60
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b) BB2

0 10 20 30 40 50 60
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(c) ABB

FIG. 1. Example 5.1: Convergence of ‖G h
k ‖h with h = 2−9

√
2 for different choices of β and step-size strategies

To further study the behaviour of Algorithms 1, we consider Table 2 which summarizes the values of
‖G h

k ‖h for the choice of β = 0.01, at the iterations k = 36, . . . ,44, and different levels of discretization.
It can be seen that in any case the sequence {‖G h

k ‖h}k has a nonmonotonic behaviour. For every case
the members of {‖G h

k ‖h}k at which the monotonicity of the sequence is violated, are indicated by bold
type. With the superscript star we denote the members corresponding to k∗h(ε) with ε = 1e−8.

EXAMPLE 5.2 (Distributed optimal control for the Burgers equation) The spatial discretization of
(4.29)-(4.30) was done by the standard Galerkin method based on piecewise linear basis functions
with mesh-size h. For temporal discretization, we used the implicit Euler method with a step-size
denoted by ∆ t. The resulting nonlinear systems were solved by Newton’s method with the tolerance
εn = 10−13. Here the control acts on the open interval Ω̂ = (0.1,0.4). Moreover we set ϑ = 0.01,
y0(x) = 8exp(−20(x−0.5)2), and yd(t,x) = zd(x) = f (t,x) = 0. To illustrate the mesh-independence,
we report the values of k∗

∆ t,h(ε) for different levels of temporal and spatial discretizations. These results
are gathered in Table 3. Figure 2 shows the convergence of Algorithm 1 applied to Example 5.2, for
(∆ t,h) = (2−7,2−8), and different step-size strategies and values of β . Similarly to the previous exam-
ple, due to (4.39), there is a trade-off between the magnitude of β and the value of κ(A F

u∗ ). Further, as
can be seen from Table 3 and Figures 2, despite the nonlinearity the observations 1 and 2 from Example
5.1 hold also true for this example, with the difference that here for β = 0.5, and β = 0.05, we have
`≈ 1 and `≈ 5, respectively.

6. Conclusions

We have studied the performance of the BB-method in the context of PDE-contained optimization.
Relying on the convergence results given in Azmi & Kunisch (2020) for infinite-dimensional, strictly
convex, and quadratic functions, we have established the local R-linear convergence for a class of twice
continuously Frećhet-differentiable functions. Based on this convergence result, the mesh-independent
principle for the BB-method has been investigated. More precisely, we have proved that, for sufficiently
small mesh-size, there is at most a difference of ` iterates between the number of iterations required for
the infinite-dimensional problem and for its discretization to converge within a given tolerance. Here `
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The number of required iteration k∗h(ε)
β = 0.2

BB1

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 2 2 2 2 2 2
1e−4 5 5 5 5 5 5
1e−6 8 8 8 8 8 8
1e−8 11 12 12 12 12 12

BB2

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 2 2 2 2 2 2
1e−4 5 5 5 5 5 5
1e−6 8 8 8 8 8 8
1e−8 10 11 11 11 11 11

ABB

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 2 2 2 2 2 2
1e−4 5 5 5 5 5 5
1e−6 8 8 8 8 8 8
1e−8 11 11 12 12 12 12

β = 0.05

BB1

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 3 3 3 3 3 3
1e−4 8 8 8 8 9 9
1e−6 13 15 15 15 15 15
1e−8 20 20 20 20 20 20

BB2

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 3 3 3 3 3 3
1e−4 8 8 8 8 8 8
1e−6 13 14 14 14 14 14
1e−8 18 20 20 20 21 21

ABB

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 3 3 3 3 3 3
1e−4 8 8 8 8 8 8
1e−6 13 13 14 15 15 15
1e−8 17 20 20 20 20 20

β = 0.01

BB1

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 3 3 3 4 4 4
1e−4 15 15 15 15 15 15
1e−6 23 27 26 26 26 26
1e−8 37 38 37 39 37 38

BB2

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 3 3 4 4 4 4
1e−4 12 14 14 14 14 14
1e−6 25 25 29 30 30 31
1e−8 38 43 42 44 44 43

ABB

PPPPPPPPε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e−2 3 3 4 4 4 4
1e−4 14 14 15 15 15 15
1e−6 23 23 27 27 27 27
1e−8 42 37 42 42 42 39

Table 1. Example 5.1: Numerical results
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The value of ‖G h
k ‖ at an iteration k

BB1

PPPPPPPPk
h

2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

36 1.29e−8 1.59e−8 3.96e−8 5.25e−7 1.90e−7 1.98e−7
37 9.22e−9∗ 1.05e−8 4.26e−9∗ 1.03e−7 9.69e−9∗ 1.39e−8
38 2.93e−8 5.17e−9∗ 3.78e−9 5.93e−8 3.88e−9 8.75e−9∗

39 1.05e−7 1.38e−9 2.38e−9 7.21e−9∗ 3.25e−9 3.46e−9
40 1.43e−8 1.08e−9 6.90e−9 4.30e−9 2.02e−9 1.90e−9
41 1.46e−8 1.69e−9 4.72e−9 5.76e−9 2.66e−9 1.28e−9
42 7.26e−10 1.26e−8 3.74e−9 1.12e−9 2.47e−9 6.74e−9
43 6.24e−10 1.55e−9 2.63e−10 8.49e−10 8.46e−10 1.84e−8
44 4.09e−10 1.43e−9 1.74e−10 7.33e−10 1.11e−9 4.10e−10

BB2

PPPPPPPPk
h

2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

36 5.94e−8 2.91e−8 7.59e−8 3.38e−7 7.83e−8 2.40e−7
37 2.52e−8 2.71e−8 4.59e−8 2.19e−7 6.21e−8 1.95e−7
38 4.97e−9∗ 1.78e−8 1.28e−8 2.08e−7 5.32e−8 3.46e−8
39 4.06e−9 2.87e−8 1.38e−7 1.71e−7 4.72e−8 2.61e−7
40 3.52e−9 6.00e−8 4.12e−8 6.06e−8 1.77e−8 4.37e−8
41 4.08e−9 2.13e−8 2.63e−8 1.13e−6 2.12e−7 1.40e−8
42 3.36e−9 1.23e−8 1.02e−9∗ 9.80e−8 6.14e−8 1.00e−8
43 2.38e−9 1.88e−9∗ 7.07e−10 4.43e−8 1.64e−8 2.19e−9∗

44 2.67e−9 1.78e−9 4.10e−10 9.39e−9∗ 7.97e−9∗ 2.00e−9

ABB

PPPPPPPPk
h

2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

36 5.10e−8 1.57e−8 2.93e−8 3.44e−8 3.83e−8 2.55e−8
37 2.70e−8 7.44e−9∗ 1.96e−8 2.49e−8 2.94e−8 1.55e−8
38 2.37e−8 5.79e−9 3.70e−8 4.67e−8 2.20e−8 1.15e−8
39 2.50e−8 4.61e−9 7.85e−8 1.50e−7 9.20e−8 2.21e−9∗

40 1.50e−7 1.25e−8 8.04e−8 9.71e−8 1.81e−7 5.17e−8
41 1.31e−8 1.39e−8 1.06e−8 1.08e−8 1.17e−8 3.26e−8
42 9.26e−9∗ 8.82e−9 2.66e−9∗ 6.73e−9∗ 6.90e−9∗ 1.36e−8
43 8.76e−9 1.06e−9 1.75e−9 1.90e−9 6.11e−9 2.33e−9
44 4.43e−9 9.25e−10 7.39e−10 1.29e−9 5.62e−9 1.90e−9

Table 2. Example 5.1: The values of ‖G h
k ‖h for β = 0.01 and iterations k = 36, . . . ,44
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FIG. 2. Example 5.2: Convergence of ‖G ∆ t,h
k ‖∆ t,h with (∆ t,h) = (2−7,2−8) for different choices of β and step-size strategies
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The number of required iteration k∗
∆ t,h(ε)

β = 0.5

BB1

XXXXXXXXXXε

(∆ t,h)
(2−4,2−5) (2−5,2−6) (2−6,2−7) (2−7,2−8) (2−8,2−9)

1e−2 4 4 4 3 3
1e−4 7 7 7 7 7
1e−6 10 10 10 10 10
1e−8 12 13 12 12 12

BB2

XXXXXXXXXXε

(∆ t,h)
(2−4,2−5) (2−5,2−6) (2−6,2−7) (2−7,2−8) (2−8,2−9)

1e−2 3 3 3 3 3
1e−4 7 8 8 8 8
1e−6 9 10 10 10 10
1e−8 12 13 13 13 13

ABB

XXXXXXXXXXε

(∆ t,h)
(2−4,2−5) (2−5,2−6) (2−6,2−7) (2−7,2−8) (2−8,2−9)

1e−2 3 3 3 3 3
1e−4 7 7 7 7 7
1e−6 9 10 11 11 11
1e−8 12 12 12 12 12

β = 0.05

BB1

XXXXXXXXXXε

(∆ t,h)
(2−4,2−5) (2−5,2−6) (2−6,2−7) (2−7,2−8) (2−8,2−9)

1e−2 14 15 15 15 15
1e−4 25 24 24 26 26
1e−6 34 36 31 34 37
1e−8 47 42 42 43 45

BB2

XXXXXXXXXXε

(∆ t,h)
(2−4,2−5) (2−5,2−6) (2−6,2−7) (2−7,2−8) (2−8,2−9)

1e−2 8 8 8 8 8
1e−4 24 23 23 23 23
1e−6 31 30 32 33 33
1e−8 37 35 40 36 36

ABB

XXXXXXXXXXε

(∆ t,h)
(2−4,2−5) (2−5,2−6) (2−6,2−7) (2−7,2−8) (2−8,2−9)

1e−2 11 11 12 12 12
1e−4 26 24 25 25 23
1e−6 30 28 34 34 32
1e−8 39 38 37 42 38

Table 3. Example 5.2: Numerical results
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is independent of the mesh and depends on the spectrum of the Hessian. These results were confirmed
by the numerical experiments.
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KARÁTSON, J. (2012) Characterizing mesh independent quadratic convergence of Newton’s method for a class of
elliptic problems. SIAM J. Math. Anal., 44, 1279–1303.

KELLEY, C. T. & SACHS, E. W. (1987) Quasi-Newton methods and unconstrained optimal control problems.
SIAM J. Control Optim., 25, 1503–1516.

KELLEY, C. T. & SACHS, E. W. (1990) Approximate quasi-Newton methods. Math. Programming, 48, 41–70.
KELLEY, C. T. & SACHS, E. W. (1991) Mesh independence of Newton-like methods for infinite-dimensional

problems. J. Integral Equations Appl., 3, 549–573.
KELLEY, C. T. & SACHS, E. W. (1992) Mesh independence of the gradient projection method for optimal control

problems. SIAM J. Control Optim., 30, 477–493.
LAUMEN, M. (1999) Newton’s mesh independence principle for a class of optimal shape design problems. SIAM

J. Control Optim., 37, 1070–1088.
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A. Appendix: Proof of Lemma 2.2

For every k > 0, we consider the sequence {α̂k
j } j associated to {ûk

j} j, which is defined by

α̂
k
j :=

{
α̂

BB1,k
j if αk+ j = αBB1

k+ j ,

α̂
BB2,k
j if αk+ j = αBB2

k+ j .
(A.1)

for all j > 0. We will show by induction that for every q ∈ {0, . . . ,m}, there exist positive constants λq
and ηq such that{

If uk ∈Bηq(u
∗), uk−1 ∈Bτ(u∗), and if for some ` ∈ {0, . . . ,q}, property (2.14) holds,

then we have uk+ j ∈Bτ(u∗), and ‖uk+ j− ûk
j‖6 λq‖uk−u∗‖2 for all j ∈ {0, . . . , `}.

(Pq)

For the case that q = ` = 0 and the choice of η0 = τ and arbitrary λ0 > 0, property (Pq) holds clearly
since ûk

0 = uk.
Induction step: Let p be an integer with 1 6 p < m such that property (Pq) holds for q = p and,

constants λp and ηp. We will show that this property holds for q = p+1, a positive constant λp+1 > λp,
and for the choice of

ηp+1 := min

{
1

4λp
,ηp,τ

(
1+

αsup

αinf

)−(p+1)
}
, (A.2)

where due to (A.2), we obtain ηp+1 6 ηp.
Now assume that uk ∈Bηp+1(u

∗) and uk−1 ∈Bτ(u∗). First we investigate property (Pq) for q= p+1
and ` 6 p. That is, we assume that (2.14) holds for any given ` 6 p and we show that (2.15) holds. In
this case, since ηp+1 6 ηp, we can use the induction hypothesis (property (Pq) for q = p) and conclude,
for every j ∈ {0, . . . , `} and λp+1 > λp, that

uk+ j ∈Bτ(u∗) and ‖uk+ j− ûk
j‖6 λp‖uk−u∗‖2 6 λp+1‖uk−u∗‖2, (A.3)

and, thus, (2.15) holds. In the remainder of the proof, we consider the case ` = p+ 1. In this case
uk ∈Bηp+1(u

∗), uk−1 ∈Bτ(u∗), and

‖ûk
j−u∗‖> 1

2
‖uk−u∗‖ for all j ∈ {0, . . . , p}, (A.4)

and we need to verify that uk+ j ∈Bτ(u∗) for j = {1, . . . , p+1} and

‖uk+ j+1− ûk
j+1‖6 λp+1‖uk−u∗‖2 for all j ∈ {0, . . . , p+1}. (A.5)

First, suppose that uk+ j ∈Bτ(u∗) for j = 1,2, . . . , p. By (2.7) and (2.13), we have

‖uk+p+1−u∗‖6 ‖uk+p−u∗‖+‖Sk+p‖6 ‖uk+p−u∗‖+ 1
|αk+p|

‖Gk+p‖

6 (1+
αsup

αinf
)‖uk+p−u∗‖6 · · ·6 (1+

αsup

αinf
)p+1‖uk−u∗‖.

Therefore, due to the definition of ηp+1, it follows that u` ∈Bτ(u∗) for every ` ∈ {0,1, . . . , p+1} and
any uk ∈Bηp+1(u

∗) and uk−1 ∈Bτ(u∗). It remains to verify (A.5). In fact, due to (A.4), the induction
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hypothesis, and the fact that ηq+1 6 ηq, (A.5) holds for any arbitrary λp+1 > λp and j 6 p . Hence, it
suffices to show that

‖uk+p+1− ûk
p+1‖6 λp+1‖uk−u∗‖2 (A.6)

for some λp+1 > λp.
By using (1.2) and the triangle inequality, we obtain

‖uk+p+1− ûk
p+1‖6 ‖uk+p−

1
αk+p

G (uk+p)− (ûk
p−

1
α̂k

p
Ĝ (ûk

p))‖

6 ‖uk+p− ûk
p‖+

1
|α̂k

p|
‖G (uk+p)− Ĝ (ûk

p)‖+

∣∣∣∣∣ 1
αk+p

− 1
α̂k

p

∣∣∣∣∣‖G (uk+p)‖.
(A.7)

From now on, we define c as a positive generic constant which depends only on τ , αinf, αsup and m , but
not on k, and the choice of uk−1,uk ∈Bτ(u∗). We shall show that

1
|α̂k

p|
‖G (uk+p)− Ĝ (ûk

p)‖6 c‖uk−u∗‖2, (A.8)∣∣∣∣∣ 1
αk+p

− 1
α̂k

p

∣∣∣∣∣‖G (uk+p)‖6 c‖uk−u∗‖2. (A.9)

Verification of inequality (A.8): First, by adding and subtracting Ĝ (uk+p), using the triangle inequality,
L1 and L3, we obtain

‖G (uk+p)− Ĝ (ûk
p)‖6 ‖G (uk+p)− Ĝ (uk+p)‖+‖Ĝ (uk+p)− Ĝ (ûk

p)‖

6 ‖G (uk+p)−A F
u∗ (uk+p−u∗)‖+‖A F

u∗ (uk+p− ûk
p)‖

6 L‖uk+p−u∗‖2 +αsup‖uk+p− ûk
p‖6 c‖uk−u∗‖2,

(A.10)

where Ĝ (u) =A F
u∗ (u−u∗). In the last estimate, we have used the induction hypothesis and the fact that

‖uk+p−u∗‖6 (1+
αsup

αinf
)p‖uk−u∗‖6 (1+

αsup

αinf
)m‖uk−u∗‖. (A.11)

Now by using (A.10) and (2.12), we can infer that

1
|α̂k

p|
‖G (uk+p)− Ĝ (ûk

p)‖6
1

αinf
‖G (uk+p)− Ĝ (ûk

p)‖6 c‖uk−u∗‖2.

Verification of inequality (A.9): Here we need only to show that∣∣∣∣∣ 1
αk+p

− 1
α̂k

p

∣∣∣∣∣6 c‖uk−u∗‖. (A.12)

Then, thanks to (2.13), (A.11), and (A.12), we obtain∣∣∣∣∣ 1
αk+p

− 1
α̂k

p

∣∣∣∣∣‖G (uk+p)‖6 cαsup‖uk−u∗‖‖uk+p−u∗‖6 c‖uk−u∗‖2.

which implies (A.9). Due to (A.1) we have only these two cases :
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1. α̂k
p = α̂

BB1,k
p and αk+p = αBB1

k+p,

2. α̂k
p = α̂

BB2,k
p and αk+p = αBB2

k+p.

We investigate the first case. Due to (1.3), we have

1
αk+p

=
(Sk+p−1,Sk+p−1)

(Sk+p−1,Yk+p−1)
, and

1
α̂k

p
=

(Ŝ k
p−1,Ŝ

k
p−1)

(Ŝ k
p−1, Ŷ

k
p−1)

. (A.13)

Due to (A.4) and the induction hypothesis i.e., property (Pq) for q = p, we have

‖Sk+p−1− Ŝ k
p−1‖6 ‖uk+p− ûk

p‖+‖uk+p−1− ûk
p−1‖6 2λp‖uk−u∗‖2, (A.14)

and, as a consequence, we obtain∣∣∣‖Sk+p−1‖2−‖Ŝ k
p−1‖2

∣∣∣6 ∣∣∣2(Sk+p−1,Sk+p−1− Ŝ k
p−1)−‖Ŝ k

p−1−Sk+p−1‖2
∣∣∣

6 c‖uk−u∗‖3.
(A.15)

Further, by (2.12), (A.4), we have

‖Ŝ k
p−1‖=

1
|α̂k

p−1|
‖Ĝ k

p−1‖>
1

αsup
‖A F

u∗ (û
k
p−1−u∗)‖> αinf

αsup
‖(ûk

p−1−u∗)‖

>
αinf

2αsup
‖(ûk

0−u∗)‖= αinf

2αsup
‖(uk−u∗)‖.

(A.16)

From (A.15) and (A.16), it follows that∣∣∣∣∣∣1− ‖Sk+p−1‖2

‖Ŝ k
p−1‖2

∣∣∣∣∣∣6 c‖uk−u∗‖. (A.17)

Now observe that

(Sk+p−1,Yk+p−1)− (Ŝ k
p−1, Ŷ

k
p−1) = (Sk+p−1,Yk+p−1− Ŷ k

p−1)+(Sk+p−1− Ŝ k
p−1, Ŷ

k
p−1)

= (Sk+p−1,Yk+p−1− Ŷ k
p−1)+(Sk+p−1− Ŝ k

p−1,A
F

u∗ Ŝ k
p−1).

(A.18)

Using (A.14) and L3, we obtain∣∣∣(Sk+p−1− Ŝ k
p−1,A

F
u∗ Ŝ k

p−1)
∣∣∣

=
∣∣∣(Sk+p−1− Ŝ k

p−1,A
F

u∗ Sk+p−1)− (Sk+p−1− Ŝ k
p−1,A

F
u∗ (Sk+p−1− Ŝ k

p−1))
∣∣∣

6 c‖uk−u∗‖3,

(A.19)

and, by (A.10) and the induction hypothesis, we have∣∣∣(Sk+p−1,Yk+p−1− Ŷ k
p−1)

∣∣∣6 ‖Sk+p−1‖(‖Gk+p− Ĝ k
p‖+‖Gk+p−1− Ĝ k

p−1‖)6 c‖uk−u∗‖3. (A.20)
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Hence, using (A.18), (A.19), and (A.20), we have∣∣∣(Sk+p−1,Yk+p−1)− (Ŝ k
p−1, Ŷ

k
p−1)

∣∣∣6 c‖uk−u∗‖3. (A.21)

Moreover, by using L3, (2.7), (2.8), (2.13), and the facts that uk+p,uk+p−1 ∈Bτ(u∗) and αk 6 αsup for
all k > 1, we can write that

(Sk+p−1,Yk+p−1) = (Sk+p−1,Gk+p−Gk+p−1)

> αinf‖Sk+p−1‖2 = αinf

∣∣∣∣∣ 1
αk+p−1

∣∣∣∣∣
2

‖Gk+p−1‖2

>
αinf

α2
sup
‖Gk+p−1‖2 =

αinf

α2
sup
‖G (uk+p−1)−G (u∗)‖2 >

α3
inf

α2
sup
‖uk+p−1−u∗‖2.

(A.22)

Further, by L3, the definition of ηp+1 in (A.2), (A.4) and (Pq) with q = p, we have

‖uk+p−1−u∗‖2 >
1
2
‖ûk

p−1−u∗‖2−‖uk+p−1− ûk
p−1‖2

>
1
8
‖ûk

0−u∗‖2−λ
2
p‖uk−u∗‖4 > (

1
8
−λ

2
p η

2
p+1)‖uk−u∗‖2 =

1
16
‖uk−u∗‖2,

(A.23)

Combining (A.22) and (A.23) we have

(Sk+p−1,Yk+p−1)>
α3

inf
α2

sup
‖uk+p−1−u∗‖2 >

α3
inf

16α2
sup
‖uk−u∗‖2. (A.24)

From (A.21) and (A.24) we can write∣∣∣∣∣∣1− (Ŝ k
p−1, Ŷ

k
p−1)

(Sk+p−1,Yk+p−1)

∣∣∣∣∣∣6 c‖uk−u∗‖. (A.25)

Now, observe that by (A.13)∣∣∣∣∣ 1
αk+p

− 1
α̂k

p

∣∣∣∣∣=
∣∣∣∣∣∣ (Sk+p−1,Sk+p−1)

(Sk+p−1,Yk+p−1)
−

(Ŝ k
p−1,Ŝ

k
p−1)

(Ŝ k
p−1, Ŷ

k
p−1)

∣∣∣∣∣∣
=

1
|α̂k

p|

∣∣∣∣∣∣1−
 (Sk+p−1,Sk+p−1)

(Ŝ k
p−1,Ŝ

k
p−1)

 (Ŝ k
p−1, Ŷ

k
p−1)

(Sk+p−1,Yk+p−1)

∣∣∣∣∣∣
=

1
αinf

∣∣φ1(1−φ2)+φ2
∣∣6 1

αinf
(|φ1|+ |φ2|+ |φ1φ2|),

(A.26)

where

φ1 := 1−
(Sk+p−1,Sk+p−1)

(Ŝ k
p−1,Ŝ

k
p−1)

and φ2 := 1−
(Ŝ k

p−1, Ŷ
k

p−1)

(Sk+p−1,Yk+p−1)
. (A.27)

By (A.17), (A.25), (A.26), and (A.27), we can infer that estimate (A.12) holds for the case that αk+p =

αBB1
k+p and α̂k

p = α̂
BB1,k
p are chosen.
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Now we deal with the second case, i.e., αk+p = αBB2
k+p and α̂k

p = α̂
BB2,k
p . First due to (1.3), we have

1
αk+p

=
(Sk+p−1,Yk+p−1)

(Yk+p−1,Yk+p−1)
, and

1
α̂k

p
=

(Ŝ k
p−1, Ŷ

k
p−1)

(Ŷ k
p−1, Ŷ

k
p−1)

.

By using the fact that uk+p,uk+p−1, ûk
p−1, û

k
p ∈Bτ(u∗), and the hypothesis of induction which is appli-

cable due to (A.4), we can write

‖Yk+p−1− Ŷ k
p−1‖6 ‖Gk+p− Ĝ k

p‖+‖Gk+p−1− Ĝ k
p−1‖6 c‖uk−u∗‖2. (A.28)

In addition, by using (2.13), (A.11), and the triangle inequality we obtain

‖Yk+p−1‖= ‖Gk+p−Gk+p−1‖6 ‖Gk+p−G (u∗)‖+‖Gk+p−1−G (u∗)‖
6 αsup

(
‖uk+p−u∗‖+‖uk+p−1−u∗‖

)
6 c‖uk−u∗‖.

(A.29)

From (A.28), (A.29), we deduce∣∣∣‖Yk+p−1‖2−‖Ŷ k
p−1‖2

∣∣∣6 ∣∣∣(Yk+p−1,Yk+p−1− Ŷ k
p−1)+(Yk+p−1− Ŷ k

p−1, Ŷ
k

p−1)
∣∣∣

6 ‖Yk+p−1‖‖Yk+p−1− Ŷ k
p−1‖+‖Ŷ k

p−1‖‖Yk+p−1− Ŷ k
p−1‖6 c‖uk−u∗‖3,

(A.30)

where in the last line we have used the fact that

‖Ŷ k
p−1‖6 ‖Yk+p−1− Ŷ k

p−1‖+‖Yk+p−1‖.
Furthermore, by using (2.5), (2.12), and (A.16), we obtain

‖Ŷ k
p−1‖= ‖A F

u∗ Ŝ k
p−1‖> αinf‖Ŝ k

p−1‖>
α2

inf
2αsup

‖(uk−u∗)‖, (A.31)

and, as a consequence, it follows from (A.30) and (A.31) that∣∣∣∣∣∣1− ‖Yk+p−1‖2

‖Ŷ k
p−1‖2

∣∣∣∣∣∣6 c‖uk−u∗‖. (A.32)

Now similarly to the case for BB1, by (2.7) we can write∣∣∣∣∣ 1
αk+p

− 1
α̂k

p

∣∣∣∣∣=
∣∣∣∣∣∣ (Sk+p−1,Yk+p−1)

(Yk+p−1,Yk+p−1)
−

(Ŝ k
p−1, Ŷ

k
p−1)

(Ŷ k
p−1, Ŷ

k
p−1)

∣∣∣∣∣∣
=

1
|αk+p|

∣∣∣∣∣∣1−
 (Yk+p−1,Yk+p−1)

(Ŷ k
p−1, Ŷ

k
p−1)

 (Ŝ k
p−1, Ŷ

k
p−1)

(Sk+p−1,Yk+p−1)

∣∣∣∣∣∣
=

1
αinf

∣∣φ1(1−φ2)+φ2
∣∣6 1

αinf
(|φ1|+ |φ2|+ |φ1φ2|),

(A.33)

where

φ1 := 1−
(Yk+p−1,Yk+p−1)

(Ŷ k
p−1, Ŷ

k
p−1)

and φ2 := 1−
(Ŝ k

p−1, Ŷ
k

p−1)

(Sk+p−1,Yk+p−1)
. (A.34)

By (A.25), (A.32), (A.33), and (A.34), we infer that (A.12) holds for the case BB2.
Hence, we are finished with the verification of (A.9). Now from (A.7), (A.8), and (A.9), estimate

(A.6) follows and, thus, property (Pq) holds for q = p+1. Since m is fixed and finite, we can choose λ

and η independent of k and `, and, thus the proof is complete.
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