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Abstract The Barzilai and Borwein gradient method has received a significant
amount of attention in different fields of optimization. This is due to its simplicity,
computational cheapness, and efficiency in practice. In this research, based on
spectral analysis techniques, root-linear global convergence for the Barzilai and
Borwein method is proven for strictly convex quadratic problems posed in infinite-
dimensional Hilbert spaces. The applicability of these results is demonstrated for
two optimization problems governed by partial differential equations.
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1 Introduction

First-order (gradient) methods are progressively getting more attention since it
has been realized that for a suitable choice of the step-length, using the negative
gradient as the search direction may give rise to very efficient algorithmic behav-
ior. As a pioneering work, we can refer to the method proposed by Barzilai and
Borwein in [1] abbreviated as the BB-method. In this work, the authors demon-
strated that choosing an appropriate step-length leads to a significant acceleration
over the steepest descent method. The BB-method incorporates the quasi-Newton
property, by approximating the Hessian matrix by a scalar times the identity which
satisfies the secant condition in the sense of least squares. Despite the simplicity
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and cheapness, this method has exhibited a surprisingly efficient numerical be-
haviour. This stimulated a significant amount of research. In the original work
[1], the authors established R-superlinear (R stands for root) convergence for two-
dimensional strictly convex quadratic problems. Later, Raydan [2] and Dai and
Liao [3] proved, respectively, global convergence and R-linear convergence rate of
the BB-method for any finite-dimensional strictly convex quadratic problem. One
of the important feature of this method is the nonmonotonicity in the values of the
objective function and of the gradient norm. A deep analysis of the asymptotic
behaviour of the BB-method was given in [4,5]. In these works, the surprising
computational efficiency of the algorithm in relation to its nonmonotonicity was
discussed and several circumstances were presented under which the performance
of the BB-method (without globalization) is competitive, or even, superior to con-
jugate gradient methods. This occurs, for instance, when a low accuracy for the
solution of problem is required, or when significant round-off errors are present,
and the objective functions is made up of a quadratic function plus a small non-
quadratic term (near quadratic).
In this work we study the BB-method within the scope of PDE-constrained opti-
mization. For optimization problems governed by partial different equations, every
function evaluation is typically carried out through solving a partial differential
equation (state equation). Hence function evaluations can be computationally very
expensive and it is desirable to avoid them as far as possible. Moreover, due to nu-
merical discretization, the presence of round-off and truncation errors is inevitable
and, depending on the discretization procedure, the finite-dimensional approxima-
tion for the gradient of the original problem need not coincide with the gradient of
the finite-dimensional approximation for the original problem (optimization and
discretization do not commute). A wide range of models arising from industry and
natural science can be formulated as optimization problems governed by linear
and semilinear partial differential equations. For these problems, the correspond-
ing reduced formulations lead to infinite-dimensional quadratic and near quadratic
unconstrained optimization problems.
In view of the above discussion, we are motivated to study the BB-method for
problems posed in infinite-dimensional Hilbert spaces.
As mentioned before, numerous results have been published on the BB-method,
but, to the best of our knowledge, for optimization problems posed in infinite-
dimensional spaces, there still does not exist a rigorous theory. Here we take a
step in this direction and we analyse the convergence of the BB-method. Inspired
by the result in [3] and based on the spectral theorem, we establish R-linear global
convergence of the BB-method for strictly convex quadratic problems defined by
bounded uniformly positive self-adjoint operators. Our theoretical framework is
supported by PDE constrained optimal control problems.
The rest of paper is organized as follows: The optimization problem and the BB-
method are specified in Section 2. In Section 3, we first recall some concepts
from the spectral theory for bounded self-adjoint operators. We then deal with
the global convergence analysis for strictly convex quadratic functions defined by
bounded self-adjoint operators. In Section 4, an optimal control problem for the
wave equation is presented. Finally, in Section 5 numerical results are given.
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2 Problem Formulation and Algorithm

Here we are concerned with the following quadratic programming in an abstract
Hilbert space H

min
u∈H

F(u) :=
1

2
(Au, u)− (b, u), (QP)

where A : H → H is a bounded self-adjoint uniformly positive operator and b ∈ H.
H is endowed with an inner product (·, ·) from which is derived the norm ‖ · ‖. The
Barzilai-Borwein iterations for solving (QP) are defined by

uk+1 = uk −
1

αk
Gk, (1)

where Gk := G(uk) and G : H → H stands for the gradient of F . This gradient
is defined by G := R ◦ F ′, where F ′ : H → H′ is the first derivative of F , and
R : H′ → H is the Riesz isomorphism, with H′ denoting the dual space of H.
Thus for every δu ∈ H, we have F ′(u)δu = (G(u), δu), with (·, ·) denoting the inner
product in H. Furthermore, the step-size αk > 0 is chosen according to either

αBB1
k :=

(Sk−1,Yk−1)

(Sk−1,Sk−1)
, or αBB2

k :=
(Yk−1,Yk−1)

(Sk−1,Yk−1)
, (2)

where Sk−1 := uk −uk−1 and Yk−1 := Gk −Gk−1. With these specifications we are
prepared to specify Algorithm 1 which will be investigated in this paper.

Algorithm 1 BB-gradient

Require: Let initial iterates u−1, u0 ∈ H with u−1 6= u0 have been given.
1: Set k = 0.
2: If ‖Gk‖ = 0 stop.
3: Choose αk equal to either αBB1

k or αBB2
k .

4: Set uk+1 = uk − 1
αk
Gk, k = k + 1, and go to Step 2.

3 Convergence Analysis

Here the convergence of Algorithm 1 applied to (QP) is investigated. The analysis
is inspired by the works [3,2] for finite-dimensional quadratic problems, but we deal
with the more general class of self-adjoint operators on infinite-dimensional spaces
whose spectrum may be a continuous set, or a countably infinite set with a finite
number of accumulation points. This requires a new analysis based on the spectral
theorem, see also Remark 3.1 below. Strictly convex quadratic problems are not
only of importance in their own right, but also as a model for twice continuously
Fréchet-differentiable functions in a neighbourhood of strong minima.
Due to the structure of (QP), we infer that Gk := G(uk) = Auk − b and it can
easily be shown for every k ≥ 0 that

αBB1
k =

(Sk−1,ASk−1)

(Sk−1,Sk−1)
and αBB2

k =
(Sk−1,A2Sk−1)

(Sk−1,ASk−1)
. (3)
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Moreover, using (3) and the fact that Sk−1 = − 1
αk−1

Gk−1 for every k ≥ 1, we can

infer that

αBB1
k =

(Gk−1,AGk−1)

(Gk−1,Gk−1)
and αBB2

k =
(Gk−1,A2Gk−1)

(Gk−1,AGk−1)
for k ≥ 1. (4)

We define the numerical range W(A) ⊂ R of A by

W(A) := {(u,Au) : u ∈ H, ‖u‖ = 1}.

This set is convex and contains all the eigenvalues of A. Moreover using (3) and
the fact that

αBB2
k =

(Sk−1,A2Sk−1)

(Sk−1,ASk−1)
=

(S̄k−1,AS̄k−1)

(S̄k−1, S̄k−1)
,

with S̄k−1 := A
1
2 Sk−1, we infer that αBB1

k , αBB2
k ∈ W(A) for all k ≥ 0. Therefore,

if we define the strictly positive constants δinf and δsup by

δinf := infW(A), δsup := supW(A),

we can write
αBB1
k , αBB2

k ∈ [δinf , δsup] for all k ≥ 0. (5)

To exclude trivial cases we assume throughout that δinf < δsup. For the following
analysis we recall some facts from spectral theory. The spectrum σ(A) of A is
a closed subset of the interval [δinf , δsup] with δinf , δsup ∈ σ(A) and since A is
a normal operator, we have W(A) = conv(σ(A)) = [δinf , δsup], where conv(S)
denotes the convex hull of the set S. Hence the interval [δinf , δsup] is completely
determined by the spectrum σ(A).

Further, due to the spectral theorem [6,7], there exists a unique spectral mea-
sure E on R which is supported on σ(A), and whose range is the set of orthogonal
projections in H, such that

A =

∫
σ(A)

λ dEλ.

For every bounded measurable function f : σ(A)→ R, the operator f(A) is defined
by

f(A) =

∫
σ(A)

f(λ) dEλ, (6)

and for every x, y ∈ H we have

(f(A)x, y) =

∫
σ(A)

f(λ)d(Eλx, y), (7)

where d(Eλx, y) stands for the integration with respect to the Borel measure A 7→
(EAx, y) where A ⊆ σ(A) is an arbitrary Borel set.
From (1) we have

Gk+1 =
1

αk
(αkI − A)Gk for all k = 0, 1, . . . . (8)

For G0 ∈ H we find

G0 =

∫
σ(A)

dEλ G0, and ‖G0‖2 =

∫
σ(A)

d(EλG0,G0).
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Using (6) and (8), we have

G1 =
1

α0
(α0 −A)G0 =

∫
σ(A)

1

α0
(α0 − λ) dEλG0,

and, in a similar manner, we obtain

Gk =

∫
σ(A)

k−1∏
p=0

(
αp − λ
αp

) dEλG0 for every k = 0, 1, . . . .

where
∏−1
p=0 = 1. Moreover, we can write for k = 0, 1, . . .

‖Gk+1‖2 =

(
1

αk
(αkI − A)Gk,

1

αk
(αkI − A)Gk

)
=

(
1

α2
k

(αkI − A)2Gk,Gk

)
=

∫
σ(A)

(
αk − λ
αk

)2

d(EλGk,Gk).

(9)

Similarly, we have

‖Gk‖2 =


k−1∏
p=0

(
αp −A
αp

)G0,

k−1∏
p=0

(
αp −A
αp

)G0


=


k−1∏
p=0

(
αp −A
αp

)2
G0,G0

 =

∫
σ(A)

k−1∏
p=0

(
αp − λ
αp

)2
 d(EλG0,G0).

(10)

We define γA := δsup−δinf
δinf

and ρA := δsup−δinf
δsup

and, from now on, for simplicity we

used the notation
dλ,k := d(EλGk,Gk) for k ≥ 0.

These quantities will be used frequently in the proofs. First we investigate the
special case in which δsup < 2δinf . In this case, it can be shown that γA < 1.

Theorem 3.1 Let δsup < 2δinf . Then the sequence {uk}k generated by Algorithm 1

converges Q-linearly to the solution u∗ of (QP) with the rate γA.

Proof Recall that by (9), we have for k ≥ 0 that

‖Gk+1‖2 =

∫
σ(A)

(
αk − λ
αk

)2

dλ,k. (11)

Since δsup < 2δinf , it follows for every k ≥ 0 and λ ∈ σ(A) that∣∣∣∣αk − λαk

∣∣∣∣2 ≤ (δsup − δinf

δinf

)2

= γ2
A < 1. (12)

Using (11) and (12), we obtain

‖Gk+1‖2 ≤
(
δsup − δinf

δinf

)2 ∫
σ(A)

dλ,k = γ2
A ‖Gk‖

2 for every k ≥ 0. (13)

Therefore, we can conclude that ‖Gk‖2 ≤ γ2k
A ‖G0‖2 for k ≥ 0, and this completes

the proof. ut
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If we lift the condition δsup < 2δinf , we attain the following result.

Theorem 3.2 Let {uk}k be the sequence generated by Algorithm 1 for finding the

global minimum u∗ of (QP). Then either uk = u∗ for a finite k, or the sequence {uk}k
converges R-linearly to u∗.

The proof requires several lemmas and will be given in the remainder of this
section. First, we need to define some quantities that will be used throughout
the results. For any given η > 0, we denote ai := δinf + (i − 1)η for every i with
1 ≤ i ≤ nuη , and

bi :=

{
δinf + iη for 1 ≤ i ≤ nuη − 1,

δsup for i = nuη ,

where nuη := b δsup−δinfη c+ 1. Then, clearly, bi−1 = ai for every i = 2, . . . , nuη and we
can define the following family of pairwise disjoint intervals

Ii =

{
[ai, bi) for 1 ≤ i ≤ nuη − 1,

[anuη , bnuη ] for i = nuη .
(14)

By construction it is clear that |Ii| ≤ η for every i = 1, . . . , nuη where |Ii| denotes
the length of Ii , and

σ(A) ⊆ [δinf , δsup] =

nuη⋃
i=1

Ii. (15)

For i = 1, · · · , nuη , we define

(gki )2 :=

∫
Ii

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0, (16)

and attain

‖Gk‖2 =

∫
σ(A)

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0 =

∫ δsup

δinf

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0

=

nuη∑
i=1

∫
Ii

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0 =

nuη∑
i=1

(gki )2.

(17)

Moreover, we define

G(k, `) :=
∑̀
i=1

(gki )2 for every k ≥ 0 and 1 ≤ ` ≤ nuη , (18)

where, nuη defined as above, depends on η > 0, and gki given in (16). Then it is
clear that

G(k, nuη) =

nuη∑
i=1

(gki )2 = ‖Gk‖2 for every k ≥ 0.

In the following lemma we show that there exists an index nlη such that the se-

quences {gki }k with 1 ≤ i ≤ nlη converge to zero Q-linearly as k tends to infinity.
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Lemma 3.1 For every η ∈ ]0, ρAδinf ], there exists an integer nlη with 1 ≤ nlη ≤ nuη
such that for every 1 ≤ i ≤ nlη , the sequences {gki }k converge to zero Q-linearly with

the factor ρA as k tends to infinity.

Proof Choose nlη ∈ {1, · · · , nuη} as the largest integer such that

nlη⋃
i=1

Ii ⊆ [δinf , (1 + ρA)δinf ].

Observe that this is well-defined since η ≤ ρAδinf . Moreover, for every λ ∈ Ii with
1 ≤ i ≤ nlη and every p ≥ 1 we have the following two cases:

1. If αp − λ ≥ 0, then we have∣∣∣∣αp − λαp

∣∣∣∣ =
αp − λ
αp

≤ ρA < 1.

2. If αp − λ < 0, then clearly both of αp and λ belong to [δinf , (1 + ρA)δinf ] and
we can write ∣∣∣∣αp − λαp

∣∣∣∣ =
λ− αp
αp

≤ (1 + ρA)δinf − δinf

δinf
= ρA.

Therefore, we obtain

(gk+1
i )2 =

∫
Ii

 k∏
p=0

(
αp − λ
αp

)2
 dλ,0 ≤ ∫

Ii

(
αk − λ
αk

)2
k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0

≤ ρ2
A

∫
Ii

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0 = ρ2

A(gki )2.

(19)

This concludes the proof. ut

Next we prove the following useful lemmas, which will be used later.

Lemma 3.2 For any interval length η ∈ ]0, δinf2 [ , every integer ` with nlη ≤ ` ≤ nuη ,

and k ≥ 1, the following property holds:

If the following condition

G(k + j, `) ≤ ζ‖Gk‖2 for all j ≥ r (20)

holds for some positive numbers r ∈ N and ζ ∈ R+, then there exists an integer

ĵ ∈ {r, · · · , r +Θ + 1} such that

(gk+ĵ
`+1 )2 ≤ 2ζ‖Gk‖2,

where Θ = Θ(ζ, r) :=
⌈

log(2ζγA
−2(r+1))

2 log c

⌉
with c := max{ρA, 1

2 + η
δinf
}.
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Proof Supposing that

(gk+j
`+1 )2 > 2ζ‖Gk‖2 for all j ∈ {r, · · · , r +Θ}, (21)

we will show that

(gk+r+Θ+1
`+1 )2 ≤ 2ζ‖Gk‖2.

Due to (16), we have for every k ≥ 0 that

(gk+r+1
`+1 )2 =

∫
I`+1

k+r∏
p=0

(
αp − λ
αp

)2
 dλ,0

=

∫
I`+1

k+r∏
p=k

(
αp − λ
αp

)2
k−1∏

p=0

(
αp − λ
αp

)2
 dλ,0

≤
(
δsup − δinf

δinf

)2(r+1) ∫
I`+1

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0

= γ
2(r+1)
A (gk`+1)2 ≤ γ2(r+1)

A ‖Gk‖2.

(22)

Due to Algorithm 1, for every j ∈ {r, · · · , r +Θ} we have one of the cases αk+j =

αBB1
k+j or αk+j = αBB2

k+j . Further, using (8), the fact that A is self-adjoint, and the
spectral property (7), we have for every k ≥ 0 and q = 0, 1, 2, that

(Gk,AqGk) =


k−1∏
p=0

(
αp −A
αp

)G0,Aq
k−1∏
p=0

(
αp −A
αp

)G0


=

Aq
k−1∏
p=0

(
αp −A
αp

)2
G0,G0

 =

∫
σ(A)

λq

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0

=

∫
⋃nuη
i=1 Ii

λq

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0.

(23)

Now, by using (4) and (23), we can write for j ∈ {r, · · · , r +Θ} that

αBB1
k+j+1 =

(Gk+j ,AGk+j)

(Gk+j ,Gk+j)
=

∫⋃nuη
i=1 Ii

λ

[∏k+j−1
p=0

(
αp−λ
αp

)2
]
dλ,0∫⋃nuη

i=1 Ii

[∏k+j−1
p=0

(
αp−λ
αp

)2
]
dλ,0

, (24)

and

αBB2
k+j+1 =

(Gk+j ,A2Gk+j)

Gk+j ,AGk+j)
=

∫⋃nuη
i=1 Ii

λ2

[∏k+j−1
p=0

(
αp−λ
αp

)2
]
dλ,0∫⋃nuη

i=1 Ii
λ

[∏k+j−1
p=0

(
αp−λ
αp

)2
]
dλ,0

. (25)
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Moreover, due to (16) and (20), we have

∫
⋃`
i=1 Ii

k+j−1∏
p=0

(
αp − λ
αp

)2
 dλ,0 =

∑̀
i=1

∫
Ii

k+j−1∏
p=0

(
αp − λ
αp

)2
 dλ,0

=
∑̀
i=1

(gk+j
i )2 = G(k + j, `) ≤ ζ‖Gk‖2 for all j ∈ {r, · · · , r +Θ}.

(26)

For every λ ∈
⋃`
i=1 Ii, we have λ ≤ a`+1. Thus, by (26), we can write

∫
⋃`
i=1 Ii

λ

k+j−1∏
p=0

(
αp − λ
αp

)2
 dλ,0 ≤ a`+1

∫
⋃`
i=1 Ii

k+j−1∏
p=0

(
αp − λ
αp

)2
 dλ,0

= a`+1G(k + j, `) ≤ a`+1ζ‖Gk‖2 for all j ∈ {r, · · · , r +Θ}.

(27)

From (24) and (26), we obtain

a`+1Z
ζ‖Gk‖2 + Z

≤ αBB1
k+j+1 ≤ δsup for all j ∈ {r, · · · , r +Θ}, (28)

where Z :=
∫⋃nuη

i=`+1 Ii

[∏k+j−1
p=0

(
αp−λ
αp

)2
]
dλ,0. From (25), (27), and the fact that

λ ≥ a`+1 for every λ ∈
⋃nuη
i=`+1 Ii, it follows for all j ∈ {r, · · · , r +Θ} that

a`+1Z
ζ‖Gk‖2 + Z

=
a2
`+1Z

a`+1ζ‖Gk‖2 + α`+1Z

≤
a`+1

∫⋃nuη
i=`+1 Ii

λ

[∏k+j−1
p=0

(
αp−λ
αp

)2
]
dλ,0

a`+1ζ‖Gk‖2 +
∫⋃nuη

i=`+1 Ii
λ

[∏k+j−1
p=0

(
αp−λ
αp

)2
]
dλ,0

≤ αBB2
k+j+1 ≤ δsup.

(29)

Now, using the fact that

Z ≥
∫
I`+1

k+j−1∏
p=0

(
αp − λ
αp

)2
 dλ,0 = (gk+j

`+1 )2,

and by (21), (28), and (29), we infer that for a chosen αk+j+1 = αBB1
k+j+1 or

αk+j+1 = αBB2
k+j+1 and for all j ∈ {r, · · · , r +Θ} that

2a`+1

3
=

a`+1Z
1
2Z + Z

≤
a`+1Z

1
2 (gk+j

`+1 )2 + Z
≤

a`+1Z
ζ‖Gk‖2 + Z

≤ αk+j+1 ≤ δsup. (30)

Now for λ ∈ [a`+1, b`+1] and for j ∈ {r, · · · , r+Θ} we have the following two cases:

1. If αk+j+1 − λ ≥ 0, then by (5) we have∣∣∣∣∣1− λ

αk+j+1

∣∣∣∣∣ =

(
1− λ

αk+j+1

)
≤ ρA < 1.
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2. If αk+j+1−λ < 0, then by (30) and using the fact that λ ≤ b`+1 ≤ a`+1 + η for
λ ∈ I`+1, we obtain∣∣∣∣∣1− λ

αk+j+1

∣∣∣∣∣ =

(
λ

αk+j+1
− 1

)
≤

(
b`+1

αk+j+1
− 1

)
≤

(
a`+1 + η

αk+j+1
− 1

)
≤ 3

2
+

η

αk+j+1
− 1 ≤ 1

2
+

η

δinf
< 1,

where in the last inequality we have used that η < δinf
2 .

Hence, by the fact that c = max{ρA, 1
2 + η

δinf
}, we have for every j ∈ {r, · · · , r+Θ}

and λ ∈ [a`+1, b`+1] that ∣∣∣∣∣1− λ

αk+j+1

∣∣∣∣∣ ≤ c < 1. (31)

Finally, by using (16) and (31) we obtain for every j ∈ {r, · · · , r +Θ} that

(gk+j+2
`+1 )2 =

∫
I`+1

k+j+1∏
p=0

(
αp − λ
αp

)2
 dλ,0

=

∫
I`+1

∣∣∣∣∣1− λ

αk+j+1

∣∣∣∣∣
2
k+j∏
p=0

(
αp − λ
αp

)2
 dλ,0

≤ c2
∫
I`+1

k+j∏
p=0

(
αp − λ
αp

)2
 dλ,0 = c2(gk+j+1

`+1 )2.

(32)

Using (22), (32), and the definitions of Θ, we obtain

(gk+r+Θ+1
`+1 )2 ≤ c2Θ(gk+r+1

`+1 )2 ≤ c2Θγ2(r+1)
A (gk`+1)2 ≤ c2Θγ2(r+1)

A ‖Gk‖2 ≤ 2ζ‖Gk‖2,

and the proof is complete. ut

Lemma 3.3 Let δsup ≥ 2δinf . Moreover, assume that for any η ∈ ]0, δinf2 [ , integer `

with nlη ≤ ` ≤ nuη , and k ≥ 0, there exist r` ∈ N and ζ` ∈ R+ such that the condition

G(k + j, `) ≤ ζ`‖Gk‖2 for all j ≥ r` (33)

holds. Then we show that for the choice of

ζ`+1 := (1 + 2γ4
A)ζ`, and r`+1 := r` +Θ` + 1,

with Θ` := Θ(ζ`, r`) defined as in Lemma 3.2, we have

G(k + j, `+ 1) ≤ ζ`+1‖Gk‖2 for all j ≥ r`+1.
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Proof First, observe that

G(k + j, `+ 1) = G(k + j, `) + (gk+j
`+1 )2.

Therefore, using (33) we only need to show that for every j ≥ r`+1

(gk+j
`+1 )2 ≤ 2γ4

Aζ`‖Gk‖
2. (34)

Due to Lemma 3.2 for ζ = ζ` and r = r`, there exists an integer j1 ∈ {r`, · · · , r` +
Θ` + 1} such that

(gk+j1
`+1 )2 ≤ 2ζ`‖Gk‖2.

Now let us introduce a shifting variable which we initialize by js = j1. Assume
that j2 ≥ js = j1 is an index, for which we have

(gk+j
`+1 )2 ≤ 2ζ`‖Gk‖2 for all j1 ≤ j ≤ j2, (35)

and
(gk+j2+1
`+1 )2 > 2ζ`‖Gk‖2. (36)

Note that if this case does not arise, clearly, (34) holds for all j ≥ js = j1 and since
γA ≥ 1 the proof is finished. Further, we can write

(gk+j+1
`+1 )2 > 2ζ`‖Gk‖2 for all j2 ≤ j ≤ j3 − 2, (37)

where j3 ≥ j2 + 2 is the first integer greater than j2 for which we have

(gk+j3
`+1 )2 ≤ 2ζ`‖Gk‖2. (38)

Existence of such an index is justified using Lemma 3.2 for r = j2 and ζ = ζ`.
Now, by (37) and using the same argument as in the proof of Lemma 3.2, where
we have shown that from (21) implies (30), we can infer that

2

3
a`+1 ≤ αk+j+2 ≤ δsup for every j2 ≤ j ≤ j3 − 2.

Continuing the argument from the proof of Lemma 3.2 we infer that

(gk+j+3
`+1 )2 ≤ c2(gk+j+2

`+1 )2 for every j2 ≤ j ≤ j3 − 2, (39)

where c := max{ρA, 1
2 + η

δinf
} < 1. Finally, using (16) and (35), we have for r = 1, 2

(gk+j2+r
`+1 )2 =

∫
I`+1

k+j2+r−1∏
p=0

(
αp − λ
αp

)2
 dλ,0

=

∫
I`+1

k+j2+r−1∏
p=k+j2

(
αp − λ
αp

)2
k+j2−1∏

p=0

(
αp − λ
αp

)2
 dλ,0

=

∫
I`+1

 r∏
p=1

(
αk+j2+p−1 − λ
αk+j2+p−1

)2
k+j2−1∏

p=0

(
αp − λ
αp

)2
 dλ,0

≤
(
δsup − δinf

δinf

)2r ∫
I`+1

k+j2−1∏
p=0

(
αp − λ
αp

)2
 dλ,0 = γ2r

A (gk+j2
`+1 )2.

(40)
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Now since c < 1 and γA ≥ 1 due to the fact that δsup ≥ 2δinf , we obtain from
(35), (39), and (40) that

(gk+j+3
`+1 )2 ≤ γ4

A(gk+j2
`+1 )2 ≤ 2ζ`γ

4
A‖Gk‖

2 for every j2 − 2 ≤ j ≤ j3 − 2, (41)

and as a consequence, we obtain

(gk+j
`+1 )2 ≤ 2ζ`γ

4
A‖Gk‖

2 for every j2 + 1 ≤ j ≤ j3 + 1. (42)

From (42) and (35) we conclude that (34) holds for every j ∈ {j1, · · · , j3}. Finally,
by setting js = j3 and restart the process for j3 justified in (38) and repeating
the same argument, it can be shown that (34) holds for every j ≥ j1. Recall that
j1 ∈ {r`, · · · , r` +Θ` + 1}. Therefore (34) holds for every j ≥ r`+1 and the proof is
finished. ut

In the next lemma, we investigate both of the cases δsup < 2δinf and δsup ≥ 2δinf .

Lemma 3.4 Let {uk}k be the sequence generated by Algorithm 1 for (QP). Then there

exists a positive integer m depending on δinf and δsup such that we have

‖Gk+m‖ ≤
1

2
‖Gk‖ for all k ≥ 0, (43)

or equivalently,

‖uk+m − u∗‖ ≤
1

2
‖uk − u∗‖ for all k ≥ 0, (44)

for all initial iterates u−1, u0 ∈ H with u−1 6= u0.

Proof If δsup < 2δinf , then γA < 1 and, by (13) in the proof of Theorem 3.1, we
have

‖Gk+1‖ ≤ γA‖Gk‖ for every k ≥ 0.

Therefore, (43) follows for the choice of m :=
⌈
− log 2
log γA

⌉
.

Now, we consider the case in which δsup ≥ 2δinf . In this case we have for ρA that
1
2 ≤ ρA < 1. First we decompose the interval [δinf , δsup] into the finite family of

intervals {Ii}
nuη
i defined by (14) with a fixed length η ∈ ]0, δinf2 [ ⊂ ]0, ρAδinf ]. Then

due to (17) and (18), we have for every k ≥ 0

G(k, nuη) =

nuη∑
i=1

(gki )2 = ‖Gk‖2,

where (gki )2 is defined by (16). Moreover due to (19) in the proof of Lemma 3.1,
there exists an integer nlη > 0 such that for every ` with 1 ≤ ` ≤ nlη, we have

(gk+j
` )2 ≤ ρ2j

A (gk` )2 for every j ≥ 0 and k ≥ 0.

By summing over all ` with 1 ≤ ` ≤ nlη, we obtain

G(k + j, nlη) ≤ ρ2j
AG(k, nlη) ≤ ρ2j

A ‖Gk‖
2 for every j ≥ 0 and k ≥ 0.

Now for the choice of rnlη :=
⌈ log ζ

nlη

2 log ρA

⌉
for any given ζnlη > 0, we have

G(k + j, nlη) ≤ ζnlη‖Gk‖
2 for every j ≥ rnlη and k ≥ 0,
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and thus, by choosing ζnlη := 1
4 (1 + 2γ4

A)−(nuη−n
l
η) we are in the position to use

Lemma 3.3. By using this lemma we have for ` with nlη ≤ ` ≤ nuη − 1 that

ζ`+1 = (1 + 2γ4
A)ζ` =

1

4
(1 + 2γ4

A)`+1−nuη , and r`+1 = r` +Θ` + 1,

where Θ` = Θ(ζ`, r`) has been defined as in Lemma 3.2. To be more precise, by
applying Lemma 3.3 once, for the first iteration, we obtain

G(k + j, nlη + 1) ≤ ζnlη+1‖Gk‖
2 = (1 + 2γ4

A)ζnlη‖Gk‖
2 =

1

4
(1 + 2γ4

A)1−(nuη−n
l
η)‖Gk‖2

for all j ≥ rnlη+1 := rnlη + Θnlη + 1. Applying this lemma repeatedly we conclude

after (nuη − nlη)− 1 iterations that

‖Gk+j‖2 = G(k + j, nuη) ≤ ζnuη ‖Gk‖
2 =

1

4
‖Gk‖2 for all j ≥ rnuη .

By putting m = rnuη , (43) holds.
Moreover, the equivalence of (43) and (44) is justified due to the fact that, similarly
to (8) for Gk, it can easily be shown that

(uk+1 − u∗) =
1

αk
(αkI − A)(uk − u∗) for all k = 0, 1, 2, . . . . (45)

Hence, the same machinery can be used to derive (44) and this completes the
proof. ut

Proof of Theorem 3.2. We need only to consider the case in which for every k ≥ 0
we have uk 6= u∗. In this case, we will show that uk → u∗ R-linearly. Due to (45)
and with a similar argument as in (9), we can write for every k ≥ 0 that

‖uk+1 − u∗‖2 =

∫
σ(A)

(
αk − λ
αk

)2

d(Eλ(uk − u∗), (uk − u∗))

≤ γ2
A

∫
σ(A)

d(Eλ(uk − u∗), (uk − u∗)) = γ2
A
∥∥uk − u∗∥∥2

.

(46)

Moreover, due to (44) in Lemma 3.4, we obtain

‖ujm − u∗‖ ≤ (
1

2
)j‖u0 − u∗‖ for all j ≥ 0, (47)

where m has been defined in Lemma 3.4. Now for every k ≥ 0, there exists an
integer j such that jm ≤ k < (j + 1)m. Therefore, it follows that k − jm < m and
j ≥ k

m > k
m − 1. Using (46) and (47), we obtain

‖uk − u∗‖ ≤ γmA ‖ujm − u
∗‖ ≤ γmA (

1

2
)j‖u0 − u∗‖ ≤ γmA (

1

2
)
k
m ‖u0 − u∗‖

= c1c
k
2‖u0 − u∗‖ for all k ≥ 0,

where c1 := γmA and c2 := (1
2 )

1
m < 1, and this completes the proof. ut
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Remark 3.1 If σ(A) is finite, we can infer that σ(A) = {λi : i = 1, . . . ,m} with
λi+1 > λi for i = 1, . . . ,m− 1, λ1 = δinf , and λm = δsup. Then for every arbitrary

η > 0 and partitioning {Ii}
nuη
i=1 of [δinf , δsup], we obtain for k ≥ 0 that

‖Gk‖2 =

∫ δsup

δinf

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0 =

nuη∑
i=1

∫
Ii

k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0

=
m∑
i=1

k−1∏
p=0

(
αp − λi
αp

)2
 ‖E{λi}G0‖2 =

m∑
i=1

(gki )2,

(48)

where (gk)2
i :=

[∏k−1
p=0

(
αp−λi
αp

)2
]
‖E{λi}G0‖2. Then the statements of Lemma 3.1

is true for nlη = 1. Further, Lemma 3.4 and Theorem 3.2 are applicable. Moreover,
in the proof of Lemma 3.2, similarly to (48), all the integrations are replaced by
finite sum and it follows that c := max{ρA, 1

2}. See [3,2] for more details.

Remark 3.2 Note that, due to Theorem 3.1, the numerical behaviour of Algorithm
1 is strongly depending on σ(A). In fact, this relation can be explained based on

the value of the spectral condition number κ(A) := ‖A‖‖A−1‖ =
δsup
δinf

. It can be

seen that γA = κ(A)− 1 and ρA = 1− 1
κ(A) < 1. Further, depending on the value

of κ(A), we can summarize the following cases:

1. κ(A) < 2 : In this case, due to Theorem 3.1, Algorithm 1 is Q-linearly con-
vergent with the rate γA < 1. Moreover, from (13), we infer that the sequence
{‖Gk‖}k is monotone decreasing.

2. κ(A) ≥ 2 : This case is more delicate. Recall from (17) that for every fixed

η ∈ ]0, δinf2 [ , and k ≥ 1, we have ‖Gk+1‖2 =
∑nuη
i=1(gk+1

i )2 where the values

(gk+1
i )2 with i = 1, . . . , nuη are defined by

(gk+1
i )2 =

∫
Ii

(
1− λ

αk

)2
k−1∏
p=0

(
αp − λ
αp

)2
 dλ,0. (49)

Due to Lemma 3.1, there exists an index nlη ≥ 1 such that the sequences {|gki |}k
with i = 1, . . . , nlη are Q-linearly monotonically decreasing with factor ρA < 1.

Therefore it remains only to consider the values of |gki | for i = nlη + 1, . . . , nuη .
From (49), it can be shown that for every interval Ii with αk ∈ Ii it holds
that |gk+1

i | ≤ η
αk
|gki | < 1

2 |g
k
i |. On the other hand, if for an interval Ii it holds

that ai > 2αk, then we obtain |gk+1
i | > |gki |. Further, for the last interval Inuη ,

we have
|gk+1
nuη
|

|gk
nuη
| ≤ κ(A) − 1. These facts explain the potential nonmonotonic

behaviour of the sequence {‖Gk‖}k and its dependence on κ(A).

Remark 3.3 (Preconditioning) Due to Remark 3.2, the convergence of Algorithm
1 depends strongly on κ(A). Analogously to the case of the conjugate gradient
methods, the problem (QP) can, by using an appropriate uniformly positive, self-
adjoint, and continuous operator C : H → H, be transformed to the following
equivalent problem

min
z∈H
F̃(z) :=

1

2
(Ãz, z)− (b̃, z),
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where Ã := C−
1
2AC−

1
2 , b̃ := C−

1
2 b and z := C

1
2 u. Clearly, σ(Ã) = σ(C−1A) and, as

a consequence, the spectrum of Ã is completely determined by C and A. Thus, the
operator C can be chosen such that the application of Algorithm 1 yields faster
convergence. In [8], preconditioning has been studied for Algorithm 1 in the case
of the Euclidean space Rn. For the case of infinite-dimensional Hilbert spaces,
preconditioning methods have been studied for the conjugate gradient methods.
Among them we can mention [9,10,11,12].

Remark 3.4 Let a function F of the form (QP) with κ(A) < 2 and a proper lower
semicontinuous convex (possibly nonsmooth) Φ : H → R be given, and consider

min
u∈H

E(u) := F(u) + Φ(u). (50)

For the solution u∗ ∈ H to (50), the first-order optimality conditions can be ex-
pressed as

u∗ = ProxᾱΦ(u∗ − ᾱG(u∗)) for each ᾱ > 0, (51)

where ProxᾱΦ : H → H stands for the proximal operator, see e.g, [13, Cor. 27.3].
Then, the sequence {uk}k, generated by the following proximal gradient method

uk+1 = Prox 1
αk
Φ(uk −

1

αk
G(uk)) with αk ∈ {αBB1

k , αBB2
k }, (52)

converges Q-linearly to the solution u∗ of (QP) with the rate γA < 1. More pre-
cisely, due to the fact the proximal operator is nonexpansive and using the same
argument as in the proof of Theorem 3.1 and (46), we obtain

‖uk+1 − u∗‖ = ‖Prox 1
αk
Φ(uk −

1

αk
G(uk))− Prox 1

αk
Φ(u∗ − 1

αk
G(u∗))‖

≤ ‖ 1

αk
(αkI − A)(uk − u∗)‖ ≤ γA‖(uk − u∗)‖.

(53)

Note that, Φ can be chosen as the indicator function of a convex set or any convex
functional enhancing sparsity.

4 Neumann Optimal Control for the Linear Wave Equation

In this section, we investigate the applicability of Algorithm 1 for an optimal
control problem governed by linear wave equation. We consider

min
u∈L2(Σc)

J(u, y) :=
α1

2
‖y − yd‖2L2(Q) +

α2

2
‖y(T )− zd‖2L2(Ω) +

β

2
‖u‖2L2(Σc), (54)

subject to


ytt −∆y = f in Q,

∂νy = u on Σc,

y = 0 on Σ0,

y(0) = y1
0 , yt(0) = y2

0 on Ω,

(55)

where α1, α2, and β are positive constants, the desired state yd and the desired final
state zd are smooth enough, Q := ]0, T [×Ω, Σc := ]0, T [×Γc, Σ0 := ]0, T [×Γ0, and
Ω ∈ Rn is a bounded domain with the smooth boundary ∂Ω := Γc ∪ Γ0. Further,
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two disjoint components Γc, Γ0 are relatively open in ∂Ω.
Before investigating the optimal control problem, we recall some useful results for
equation (55). The operator A : L2(Ω) ⊃ D(A) → L2(Ω) defined by Ah = −∆h
is a positive self-adjoint operator with D(A) := {h ∈ H2(Ω), h|Γ0

= ∂νh|Γc = 0}.
Thus, we define the spaces Hα

Γ0
(Ω) := D(A

α
2 ) for 0 ≤ α ≤ 1, and by (Hα

Γ0
(Ω))∗

we denote the corresponding dual space. These spaces are used throughout this
section. We use the following notion of solution [14].

Definition 4.1 (Very weak solution) Let T > 0, and

(y1
0 , y

2
0 , u, f) ∈ L2(Ω)× (H1

Γ0
(Ω))∗ × L2(Σc)× L2(0, T ; (H1

Γ0
(Ω))∗)

be given. A function y ∈ L2(Q) is referred to as the very weak solution of (55), if
the following inequality holds

〈f, ϕ〉(L2(0,T ;(H1
Γ0

(Ω))∗),L2(0,T ;H1
Γ0

(Ω))) =

(g, y)L2(Q) + (y1
0 , ϕt(0))L2(Ω) − 〈y

2
0 , ϕ(0)〉((H1

Γ0
(Ω))∗,H1

Γ0
(Ω)) − (u, ϕ)L2(Σ0)

(56)

for all g ∈ L2(Q), where ϕ(g) ∈ C0([0, T ];H1
Γ0

(Ω)) ∩ C1([0, T ];L2(Ω)) is the weak
solution of the following backward in time problem

ϕtt −∆ϕ = g in Q,

∂νϕ = 0 on Σc,

ϕ = 0 on Σ0,

ϕ(T ) = 0, ϕt(T ) = 0 on Ω.

We have the following existence and regularity results from [15,16] for (55).

Lemma 4.1 For every

(y1
0 , y

2
0 , u, f) ∈ L2(Ω)× (H1

Γ0
(Ω))∗ × L2(Σc)× L2(0, T ; (H1

Γ0
(Ω))∗),

equation (55) admits a unique very weak solution y(y1
0 , y

2
0 , u, f) in the space

C0([0, T ];L2(Ω)) ∩ C1([0, T ]; (H1
Γ0

(Ω))∗),

satisfying

‖y‖C0([0,T ];L2(Ω)) + ‖yt‖C0([0,T ];(H1
Γ0

(Ω))∗)

≤ c
(
‖y1

0‖L2(Ω) + ‖y2
0‖(H1

Γ0
(Ω))∗ + ‖u‖L2(Σc) + ‖f‖L2(0,T ;(H1

Γ0
(Ω))∗)

)
,

(57)

where the constant c1 is independent of y1
0, y2

0, u, and f . Moreover, the solution operator

L : L2(Σc)→ C0([0, T ];H
1
2

Γ0
(Ω)) ∩ C1([0, T ];H−

1
2 (Ω)) defined by u 7→ y(0, 0, u, 0) is

bounded. Furthermore, the mapping

Π : L2(Ω)× (H1
Γ0

(Ω))∗ × L2(0, T ; (H1
Γ0

(Ω))∗)→ C0([0, T ];L2(Ω)) ∩ C1([0, T ]; (H1
Γ0

(Ω))∗),

defined by (y1
0 , y

2
0 , f) 7→ y(y1

0 , y
2
0 , 0, f) is continuous.



BB-Method in Hilbert Spaces 17

By considering the following continuous embeddings

i1 : C0([0, T ];H
1
2

Γ0
(Ω)) ↪→ L2(Q), i2 : C0([0, T ];L2(Ω)) ↪→ L2(Q),

and the continuous operator δT : C0([0, T ];L2(Ω))→ L2(Ω) defined by y 7→ y(T ),
we can rewrite the problem (54)-(55) as the following linear least squares problem

min
u∈H

F(u) :=
1

2
‖Lu− ψ‖2X +

β

2
‖u‖2H, (LS)

where H := L2(Σc), X := L2(Q)× L2(Ω), and the linear operator L : H → X and
ψ ∈ X are defined as follows

Lu :=

(
α1(i1 ◦ L)(u)
α2(δT ◦ L)(u)

)
, ψ :=

(
α1yd − α1(i2 ◦Π)(y1

0 , y
2
0 , f)

α2zd − α2(δT ◦Π)(y1
0 , y

2
0 , f)

)
. (58)

Then, the problem (54)-(55), can be also rewritten in the form of (QP), where
A := L∗L+ βI with L∗ : X ∗ → H, and b := L∗ψ. In addition, due to the fact that
the operator A is uniformly positive, bounded, and self-adjoint, the existence and
uniqueness of the solution to the problem (54)-(55) can be justified due to the fact
that A has a bounded inverse.
Now assume that u∗ ∈ H is the optimal solution of the optimal control problem
(54)-(55). Then, the first-order optimality condition can be expressed as

(L∗L+ βI)u∗ = L∗ψ, (59)

where the operator L and the function ψ were defined in (58). Moreover, it can
be shown (see [17,18,19]) that (59) is equivalent to the condition βu∗ = p∗ on
Σc, where p∗ ∈ C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1

Γ0
(Ω)) is the weak solution of the

following linear wave equation
p∗tt −∆p∗ = −α1(y∗ − yd) in Q,

∂νp
∗ = 0 on Σc,

p∗ = 0 on Σ0,

p∗(T ) = 0, p∗t (T ) = α2(y∗(T )− zd) on Ω,

and y∗ = y(y1
0 , y

2
0 , f, u

∗) is the very weak solution of (55).

5 Numerical Experiments

Here we report on numerical results for optimal control problems related to the
linear wave equation and to the nonlinear viscous Burgers’ equation. Algorithm 1
will be used with the following step-size strategies:

BB1: αk := αBB1
k for every k ≥ 1,

BB2: αk := αBB2
k for every k ≥ 1,

ABB: αk = αBB1
k for odd k ≥ 1 and αk = αBB2

k for even k ≥ 1,
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and for different values of control cost parameter β. The value β in all the optimal
control problems of the previous section has a direct influence on the spectral
condition number of AFu∗ corresponding to F . To be more precise, as the value of β
increases, the value of κ(AFu∗) is getting smaller. Therefore, as discussed in Remarks
3.2, one expects slower convergence for smaller values of β. For each example, we
illustrate the convergence of the sequence {‖Gk‖}k for different values of β. We
have chosen u−1 = 0 and u0 := −G(0) as the initial iterates. All computations
were done on the MATLAB platform.

Example 5.1 (Neumann optimal control for the linear wave equation) In this exam-
ple, we deal with problem (54)-(55). The spatial domain Ω := ]0, 1[2 was dis-
cretized by a conforming linear finite element scheme using continuous piece-
wise linear basis functions over a uniform triangulation with 32768 cells. Further,
for the temporal discretization we used the Crank-Nicolson time stepping with
157 equidistant nodes (∆t = 1

156 ≈ 0.0064). Here we set T = α1 = α2 = 1,
y1
0(x) = sin(πx1) sin(πx2), y2

0(x) = 0, f(t, x) = π2 sin(πx1t) sin(πx2t), zd(x) = 0,
and

yd(x, t) =

{
−x1 for x1 < 0.5,

x1 for x1 ≥ 0.5,

where x := (x1, x2) ∈ Ω. The Neumann control is applied on the subset Γc ⊂ ∂Ω

given by {(1, x2) : x2 ∈ ]0, 1[ } ∪ {(x1, 1) : x1 ∈ ]0, 1[ }. In Figure 1, we report the
behaviour of the gradient norm for different values of β. For each choice of the
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Fig. 1 Example 5.1: Convergence of {‖Gk‖}k for β = 1, 0.5, 0.1, 0.05, 0.01

step-size strategy, decreasing the value of β implies that the number of required
iterations becomes larger and, thus, the convergence is getting slower. This is due
to the fact that there is a trade-off between the magnitude of β and the value of
κ(A) where A = L∗L+βI with L specified in the previous section. More precisely,

κ(A) = β+δsup
β+δinf

with δinf := inf(σ(L∗L)) and δsup := sup(σ(L∗L)). This behaviour
is clearly illustrated in Figure 1. As can be seen from Figure 1, the convergence
for the cases β = 1 and β = 0.5 is Q-linear. For these cases we might conjecture
that κ(A) < 2 with a smaller value of convergence rate γA for β = 1 compared to
β = 0.5. However, for the rest of the cases, nonmonotonic behaviour is exhibited in
the sequences {‖Gk‖}k which corresponds to κ(A) ≥ 2. Clearly, as β decreases, the
nonmonotonic behaviour is getting stronger. As discussed in Remarks 3.2 if κ(A)
becomes larger, then the changes in the decreasing components |gki | are getting
smaller compared to the nondecreasing components. This explains why a decrease
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in the value β leads to an increase in nonmonotonicity. Figure 2 reports on the
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(b) β = 0.01
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Fig. 2 Example 5.1: Convergence of {‖G‖k(NoEq)}NoEq for different Algorithms and values
of β

performance of four different algorithms including: 1. BB1, 2. Conjugate gradient
method (CG) without preconditioning, 3. Steepest descent method with exact line
search (SDE), and 4. Steepest descent direction with constant step-size 1 (SDC1).
Here, the spatial discretization was achieved with 8192 cells and with ∆t = 0.01
for the temporal discretization. The norm of the gradient ‖Gk(NoEq)‖ with respect
to the number (NoEq) of linear wave equation solves is plotted in Figure 2. The
algorithm was terminated as soon as either ‖G‖k(NoEq) ≤ 10−9 or NoEq > 1200
held. Indeed, every multiplication Av = (L∗L + βI)v for v ∈ H requires solving
a forward- and a backward-in-time linear wave equation (see (58)). Therefore, all
algorithms need solving two linear wave equations at every iteration (gradient
evaluation), that is, k = 2 × NoEq . As can be seen from Figure 2, BB1 and CG
have better performance compared to SDE and SDC1. In the cases β = 0.1, 0.01,
CG converges slightly faster than BB1. As β gets larger, we can see that the
performance of BB1 is getting closer to the performance of CG. For the case
β = 0.001, algorithm BB1, though exhibiting stronger nonmonotonic behaviour,
reached the termination (‖Gk‖ ≤ 10−9 ) faster than the other algorithms.

In the next example, we results of Algorithm 1 when applied to a nonlinear optimal
control problem which does not have quadratic form.
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Example 5.2 (Distributed optimal control for the Burgers equation) We consider the
following optimal control problem

min
u∈L2(Q̂)

J(y, u) :=
1

2
‖y‖2L2(Q) +

1

2
‖y(T )‖2L2(0,1) +

β

2
‖u‖2

L2(Q̂)
, (60)

subject to


yt − ϑyxx + yyx = Bu, (t, x) ∈ Q,
y(t, 0) = y(t, 1) = 0, t ∈ ]0, T [ ,

y(0, x) = y0(x), x ∈ ]0, 1[ .

(61)

where β > 0, ϑ = 0.01, T = 1, Q := ]0, T [ × ]0, 1[ , and Q̂ := ]0, T [ × Ω̂, with Ω̂ :=
]0.1, 0.4[ ⊂ ]0, 1[ . The variables y(t) = y(t, x) and u(t) = u(t, x) denote the state
and control, respectively. The extension-by-zero operator B ∈ L(L2(Ω̂), L2(0, 1))
is defined by

(Bu)(x) =

{
u(x), x ∈ Ω̂,
0, x ∈ ]0, 1[ \Ω̂.

It is wellknown from e.g., [20,21] that, for every pair (y0, u) ∈ L2(0, 1) × L2(Q̂),
equation (61) admits a unique weak solution y(y0, u) ∈W (0, T ) where W (0, T ) :=
{φ : φ ∈ L2(0, T ;H1

0 (0, 1)), φt ∈ L2(0, T ;H−1)}. Therefore the control-to-state op-
erator u ∈ H 7→ y(u) ∈ W (0, T ) is well-defined. By setting H := L2(Q̂), and
rewriting (60)-(61) in reduced form, we obtain a nonconvex unconstrained opti-
mization problem posed in the Hilbert space H := L2(Q̂) and thus the algorithm
(1) is applicable. We report the performance of Algorithm (1) for different values
of β and y0(x) = 5 exp(−20(x− 0.5)2).
The spatial discretization was carried out by the standard Galerkin method based
on piecewise linear basis functions with mesh-size h = 0.004. For temporal dis-
cretization, we used the implicit Euler method with step-size ∆t = 0.008. More-
over, the resulting nonlinear systems after the temporal discretization were solved
by Newton’s method with tolerance εn = 10−13. Figure 3 shows the convergence
of {‖Gk‖}k corresponding to Example 5.2 for different values of β. As can be seen
from Figure 3, despite the nonlinearity similar observations as in Example 5.1 also
hold for this example.
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Fig. 3 Example 5.2: Convergence of {‖Gk‖}k for β = 1, 0.5, 0.1, 0.05, 0.01
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6 Conclusions

Based on spectral analysis for self-adjoint operators, convergence results for the
Barzilai-Borwein (BB) method were obtained for quadratic functions in a general
Hilbert spaces.

As observed for Example 5.2, Algorithm 1 converges even for a more general
class of infinite-dimensional optimization problems than strictly convex quadratic
ones. In fact, the results of this paper, can be extended to R-linear local conver-
gence for a twice continuously Frećhet-differentiable function F : H → R whose
second derivative is Liptschitz continuous in a neighbourhood of a strong local
minimum.

Inspired by the BB step-sizes, a significant amount of investigations has been
carried out for the design and analysis of spectral gradient methods for finite-
dimensional problems, see e.g., [22,4,23,24,25,26,27,28]. The analysis of these
methods is based on the behaviour of the eigenvalues of the Hessian matrix. We
believe that, by spectral analysis and using similar arguments as in this manuscript,
the convergence results of these methods can be extended to problems posed in
infinite-dimensional Hilbert spaces such as PDE-constrained optimization prob-
lems. An interesting next step consists in investigating the mesh-independent prin-
ciple for these spectral gradient methods. As an outlook, it would be interesting
to further investigate Remark 3.4 for the case that κ(A) ≥ 2 and to see whether
the sequence of iterations (52) is convergent without incorporating any step-size
strategy.
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