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Abstract. A receding horizon framework for stabilization of a class of infinite-dimensional
controlled systems is presented. No terminal costs and constraints are used to ensure asymptotic
stability of the controlled system. The key assumption is a stabilizability assumption, which can be
guaranteed, for example, for the Burgers’ equations with periodic and with homogeneous Neumann
boundary conditions. Numerical experiments validate the theoretical results. Comparisons to the
case with terminal penalties acting as control Lyapunov functions are included.
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1. Introduction. We consider the optimal control problem which consists in
minimizing

(1) J∞(u, y0) :=

∫ ∞
0

`(y(t), u(t))dt

subject to

(2)

{
d
dty(t) = f(y(t)) +Bu(t) for t > 0,

y(0) = y0,

where f(0) = 0, `(0, 0) = 0. The state y(t) and the control u(t) are respectively ele-
ments of spatially dependent function spaces H and U , and B is the control operator.
Furthermore, the incremental cost function `(·, ·) is assumed to be uniformly positive
definite in both the state and control variables.

One strategy to solve problem (1)-(2) numerically employs the receding horizon
control (RHC) which is also known as model predictive control (MPC). This method
consists in obtaining a suboptimal solution of the infinite horizon problem by solving
a series of finite horizon problems on a family of intervals which are arranged in
an temporally increasing manner and which cover [0,∞). Since proceeding in this
manner, the solution of (1)-(2) is not obtained, the question of justifying the RHC
technique arises. This is typically addressed by analyzing whether the RHC control
meets the control objective which is formulated within (1)-(2). Frequently this control
objective is given by the stabilization problem. Due to replacing the infinite prediction
horizon by a family of finite ones, the asymptotic stability of the receding horizon
control scheme is not a-priori guaranteed. However, the succinct use of the structure
of the dynamical system under consideration together with possible terminal costs
and/or terminal constraints for the finite horizon problems can ensure asymptotic
stability of RHC control under appropriate assumptions.
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In the past three decades, numerous results have been published on receding
horizon control for finite-dimensional systems [1, 2, 13, 17, 19, 23, 24, 28] and the
many references therein. Only more recently the case of infinite-dimensional systems
was considered as well [3, 18, 21, 22]. In [21] a general framework to stabilize infinite-
dimensional dynamical systems by receding horizon control is proposed. The stability
of the receding horizon control is ensured by adding control Lyapunov functions as
terminal cost to the finite horizon problems. More recently several authors, see e.g
[17, 18, 19, 23] managed to prove the asymptotic stability of the RHC even without use
of control Lyapunov functions and terminal constraints. So far, this framework has
been well studied for finite-dimensional dynamical systems [23, 30] and discrete time
dynamical systems [17, 18, 19]. But as far as we know, for infinite-dimensional systems
with continuous time dynamical systems there still does not exist a rigorous theory.
In this paper we make a step in this direction. The present work is inspired by, but
different from [30], since we treat partial rather than ordinary differential equations.
As a consequence Barbalat’s lemma, which relies on the finite dimensionality of the
state space, is not applicable. Moreover, we consider systems which are only locally
rather than globally stabilizable.

To briefly recapture the receding horizon approach, we choose a sampling time
δ > 0 and an appropriate prediction horizon T > δ. Then sampling instances tk := kδ
for k = 0, 1, . . . are defined. At every sampling instance tk, an open-loop optimal
control problem is solved over a finite prediction horizon [tk, tk + T ]. The optimal
control thus obtained is applied to steer the system from time tk with the initial state
yrh(tk) until time tk+1 := tk+δ at which point, a new measurement of state is assumed
to be available. The process is repeated starting from the new state: we obtain a
new optimal control and a new predicted state trajectory by shifting the prediction
horizon forward in time. Throughout, we denote the receding horizon state- and
control variables by yrh(·) and urh(·), respectively. Also, (y∗T (·; y0, t0), u∗T (·; y0, t0))
stands for the optimal state and control of the optimal control problem with finite
time horizon T , and initial function y0 at initial time t0. We next summarize the
resulting Algorithm 1.

The importance of RHC rests not only on speed up of the solution process, but
also on its use as a state feedback mechanism which can be activated at each instance
time tk. In practice this requires to include a dynamic observer. We leave this aspect
to future work.

The applicability of our theoretical work will be demonstrated for the Burgers’
equation. This is a nonlinear partial differential equation (PDE) that combines both
nonlinear propagation and diffusion effects. It shares some important features with
the Navier-Stokes equation. The Burgers’ equation has the origin as a steady state.
It is asymptotically stable in the case of homogeneous Dirichlet boundary conditions.
For homogeneous Neumann boundary conditions and periodic boundary conditions
this is not the case. Control theory for the Burgers’ equation was investigated, both
theoretically and numerically, by many authors. From among them we only mention
[4, 5, 6, 9, 10, 11, 12, 20, 25, 26, 27, 34].

The remainder of the paper is structured as follows. In section 2 based on Bell-
man’s principle we develop an abstract setting which estimates the value of the cost
J∞ evaluated along the receding horizon control and trajectory in terms of the min-
imal value functional associated to (1)-(2). These results are applied in section 3 to
stabilization of the Burgers’ equation with different types of boundary conditions.
Section 4 contains numerical experiments which highlight the effect to the ratio T

δ
on the stabilizing effect of the RHC strategy. Moreover comparisons are carried out
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Algorithm 1 Receding Horizon Algorithm

Input: Let the prediction horizon T , the sampling time δ < T , and the initial state

y0 ∈ H be given.

1. Set k := 0, t0 := 0, and yrh(t0) := y0.

2. Find the optimal pair (y∗T (·; yrh(tk), tk), u∗T (·; yrh(tk), tk)) over the time horizon

[tk, tk + T ] by solving the finite horizon open-loop problem

min
u∈L2(tk,tk+T ;U)

JT (u, yrh(tk)) := min
u∈L2(tk,tk+T ;U)

∫ tk+T

tk

`(y(t), u(t))dt,

s.t

{
d
dty(t) = f(y(t)) +Bu(t) for t ∈ (tk, tk + T ),

y(tk) = yrh(tk)

3. Set

urh(τ) := u∗T (τ ; yrh(tk), tk) for all τ ∈ [tk, tk + δ),

yrh(τ) := y∗T (τ ; yrh(tk), tk) for all τ ∈ [tk, tk + δ],

tk+1 := tk + δ,

k := k + 1.

4. Go to step 2.

comparing the effect of RHC control with and without terminal control penalty.

2. Stability of the receding horizon method. Let V ⊂ H = H∗ ⊂ V ∗ be a
Gelfand triple of real Hilbert spaces with V densely contained in H. Further let U
denote the control space which is also assumed to be a real Hilbert space. For any
T > 0 and y0 ∈ H we consider the controlled dynamical system

(3)

{
d
dty(t) = f(y(t)) +Bu(t) for t ∈ (0, T ),

y(0) = y0,

where f is a continuous function from V to V ∗, f(0) = 0, and B ∈ L(U, V ∗). Here
L(U, V ∗) denotes the space of all continuous linear operators from U to V ∗. Through-
out the paper, it is assumed that for any triple (T, y0, u) ∈ R+×H×L2(0, T ;U) there
exists a unique y ∈W (0, T ), where

(4) W (0, T ) = L2(0, T ;V ) ∩H1(0, T ;V ∗),

satisfying

y(t)− y(0) =

∫ t

0

(f(y(s)) +Bu(s))ds in V ∗

for t ∈ [0, T ]. For sufficient conditions on f we refer to e.g. [32], Chapter II.3. We
recall that W (0, T ) is continuously embedded in C([0, T ];H), see e.g. [32, 36].

To define the optimal control problems we introduce the continuous incremental
function ` : H × U → R+ satisfying

(5) `(y, u) ≥ α`(‖y‖2H + ‖u‖2U )
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for a number α` > 0 independent of y ∈ H and u ∈ U , and `(0, 0) = 0. For every
T > 0 and y0 ∈ H consider the finite horizon optimal control problem

min
u∈L2(0,T ;U)

JT (u, y0) := min
u∈L2(0,T ;U)

∫ T

0

`(y(t), u(t))dt,

subject to{
d
dty(t) = f(y(t)) +Bu(t) for t ∈ (0, T ),

y(0) = y0.

(PT )

Throughout we fix a neighborhood N0 of the origin in H. We assume that

(PT ) admits an optimal pair (y∗T (·; y0, 0), u∗T (·; y0, 0)) for any

y0 ∈ N0 and T > 0.
(A1)

Conditions on ` and f which imply (A1) are well-known from e.g. [33]. The functional
J∞ is defined as JT in (PT ) with T replaced by ∞. With (A1) holding the following
definition is well posed.

Definition 1. For any y0 ∈ N0 the infinite horizon value function V∞(·) is de-
fined as the extended real valued function

V∞(y0) := inf
u∈L2(0,∞;U)

{J∞(u, y0) subject to (3)}.

Similarly, the finite horizon value function VT (·) is defined by

VT (y0) := min
u∈L2(0,T ;U)

{JT (u, y0) subject to (3)}.

The following notion of local stabilizability will be used.

Definition 2 (Local stabilizability). The dynamical system (3) is called locally
stabilizable if for every positive T and initial function y0 ∈ N0 there exists a control
û(·, y0) ∈ L2(0, T ;U) with

(6) VT (y0) ≤ JT (û, y0) ≤ γ(T )‖y0‖2H ,

where γ : R+ → R+ is a continuous, non-decreasing and bounded function.

If N0 can be chosen to be all of H then we call (3) globally stabilizable. We shall
require the following two assumptions:

(A2) The dynamical system (3) is locally stabilizable for the neighborhood N0.

(A3)

For every T > 0 there exists a constant cT ≥ 0 such that for every

y0 ∈ N0, and u with ‖u‖L2(0,T ;U) ≤
√
γ(T )/α` ‖y0‖H we have

‖y(t)‖2H ≤ ‖y0‖2H + cT

∫ t

0

‖y(s)‖2Hds+ cT

∫ t

0

‖u(s)‖2U ds for all t ∈ [0, T ].


Below Bd1(0) denotes a ball in H centered at 0 with radius d1.
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Lemma 3. If (A1)-(A3) hold, and T > δ > 0, then there exists a neighborhood
Bd1(0) ⊂ N0 with d1 = d1(T ) > 0 such that for every y0 ∈ Bd1(0) the following
inequalities hold

VT (y∗T (δ; y0, 0)) ≤
∫ t̃

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

+ γ(T + δ − t̃)‖y∗T (t̃; y0, 0)‖2H for all t̃ ∈ [δ, T ],

(7)

and

(8)

∫ T

t̃

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T − t̃)‖y∗T (t̃; y0, 0)‖2H for all t̃ ∈ [0, T ].

Proof. First observe that due to (5) for every y0 ∈ N0 and t̃ ∈ [0, T ] we have by
Bellman’s principle

α`

∫ t̃

0

(‖y∗T (t; y0, 0)‖2H + ‖u∗T (t; y0, 0)‖2U )dt ≤
∫ t̃

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

= VT (y0)− VT−t̃(y∗T (t̃; y0, 0)),

and as a consequence ‖u∗T ‖2L2(0,T ;U) ≤
γ(T )
α`
‖y0‖2H . By (6), (A3), and the above in-

equality we have

‖y∗T (t̃; y0, 0)‖2H ≤ ‖y0‖2H + cT

∫ t̃

0

‖y∗T (t; y0, 0)‖2Hdt+ cT

∫ t̃

0

‖u∗T (t; y0, 0)‖2Udt

≤ ‖y0‖2H +
cT
α`

(VT (y0)− VT−t̃(y∗T (t̃; y0, 0))

≤ ‖y0‖2H +
cT
α`
VT (y0) ≤ (1 +

cT
α`
γ(T ))‖y0‖2H .

Since N0 is a neighborhood of zero, it follows that there exists a ball Bδ1(0) ⊆ N0.

Choosing d1 :=
√

(1 + cT
α`
γ(T ))−1δ2

1 we obtain that for every y0 ∈ Bd1(0) we have

y∗T (t̃; y0, 0) ∈ N0 for all t̃ ∈ [0, T ].

We turn to the verification of (7). For simplicity of notation, we denote
y∗T (δ; y0, 0) by y∗(δ), where y0 ∈ Bd1(0). Due to Bellman’s optimality principle, we
have for every t̃ ∈ [δ, T ]

VT (y∗(δ)) =

∫ T+δ

δ

`(y∗T (t; y∗(δ), δ), u∗T (t; y∗(δ), δ))dt

=

∫ t̃

δ

`(y∗T (t; y∗(δ), δ), u∗T (t; y∗(δ), δ))dt+ VT+δ−t̃(y
∗
T (t̃; y∗(δ), δ)).

(9)

By optimality of y∗T (·; y∗(δ), δ) as a solution on [δ, T + δ] with initial state y∗(δ) ∈ N0

at t = δ we obtain

VT (y∗(δ)) ≤
∫ t̃

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ VT+δ−t̃(y
∗
T (t̃; y0, 0))

≤
∫ t̃

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T + δ − t̃)‖y∗T (t̃; y0, 0)‖2H ,
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where for the last inequality we used (6).
To prove the second inequality let t̃ ∈ [0, T ] be arbitrary. By Bellman’s principle

and (6), we have

VT (y0) =

∫ t̃

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+

∫ T

t̃

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

=

∫ t̃

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ VT−t̃(y
∗
T (t̃; y0, 0))

≤
∫ t̃

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T − t̃)‖y∗T (t̃; y0, 0)‖2H .

(10)

Therefore,∫ T

t̃

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T − t̃)‖y∗T (t̃; y0, 0)‖2H for all t̃ ∈ [0, T ],

as desired.

Lemma 4. Suppose that for some initial function y0 ∈ H, properties (7) and (8)
of Lemma 3 hold. Then for the choice of

θ1 := 1 +
γ(T )

α`(T − δ)
, θ2 :=

γ(T )

α`δ
,

we have the following estimates

(11) VT (y∗T (δ; y0, 0)) ≤ θ1

∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt,

and

(12)

∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ θ2

∫ δ

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.

Proof. To verify the inequality (11) recall that y∗T (·; y0, 0) ∈ C([0, T ];H). Hence
there is a t̄ ∈ [δ, T ] such that

t̄ = arg min
t∈[δ,T ]

‖y∗T (t; y0, 0)‖2H .

By (7) we have

VT (y∗T (δ; y0, 0))

≤
∫ t̄

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T + δ − t̄)‖y∗T (t̄; y0, 0)‖2H

≤
∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+ γ(T )‖y∗T (t̄; y0, 0)‖2H

≤
∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt+
γ(T )

T − δ

∫ T

δ

‖y∗T (t; y0, 0)‖2Hdt.

(13)

Furthermore, by (5)∫ T

δ

‖y∗T (t; y0, 0)‖2Hdt ≤
1

α`

∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.(14)
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Now by using (13) and (14), we have

VT (y∗T (δ; y0, 0)) ≤ (1 +
γ(T )

α`(T − δ)
)

∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.

Turning to (12) we define

t̂ = arg min
t∈[0,δ]

‖y∗T (t; y0, 0)‖2H .

Then by (8) we have∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤
∫ T

t̂

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤γ(T − t̂)‖y∗T (t̂; y0, 0)‖2H
≤γ(T )‖y∗T (t̂; y0, 0)‖2H

≤γ(T )

δ

∫ δ

0

‖y∗T (t; y0, 0)‖2Hdt.

(15)

Moreover, we have

γ(T )

δ

∫ δ

0

‖y∗T (t; y0, 0)‖2Hdt ≤
γ(T )

α`δ

∫ δ

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.(16)

By (15) and (16) we can estimate∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt ≤ γ(T )

α`δ

∫ δ

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.

Proposition 5. Suppose that (A1)-(A3) hold and that δ > 0. Then there exist
T ∗ > δ and α ∈ (0, 1) such that the following inequality is satisfied

(17) VT (y∗T (δ; y0, 0)) ≤ VT (y0)− α
∫ δ

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

for every T ≥ T ∗ and y0 ∈ Bd1(T )(0) with d1(T ) defined in Lemma 3.

Proof. Since for θ1 and θ2 defined in Lemma 4 we have

1− θ2(θ1 − 1) = 1− γ2(T )

α2
`δ(T − δ)

,

and

γ2(T )

α2
`δ(T − δ)

→ 0 as T →∞,

there exist T ∗ > δ and α ∈ (0, 1) such that 1 − θ2(θ1 − 1) ≥ α for all T ≥ T ∗. Next
let T ≥ T ∗ and y0 ∈ Bd1(T )(0). Then from the definition of VT (y0), Lemma 3, and
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Lemma 4 we have

VT (y∗T (δ; y0, 0))− VT (y0) = VT (y∗T (δ; y0, 0))−
∫ T

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤(θ1 − 1)

∫ T

δ

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt−
∫ δ

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤(θ2(θ1 − 1)− 1)

∫ δ

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt

≤− α
∫ δ

0

`(y∗T (t; y0, 0), u∗T (t; y0, 0))dt.

This implies (17).

Theorem 6 (Suboptimality). Suppose that (A1)-(A3) hold and let a sampling
time δ > 0 be given. Then there exist numbers T ∗ > δ, and α ∈ (0, 1), such that for
every fixed prediction horizon T ≥ T ∗, the receding horizon control urh obtained from
Algorithm 1 satisfies

(18) αV∞(y0) ≤ αJ∞(urh, y0) ≤ VT (y0) ≤ V∞(y0)

for all y0 ∈ Bd2(0) with some d2 = d2(T ) > 0 .

Proof. The right and left inequalities are obvious, therefore we only need to verify
the middle one. For fixed δ > 0 choose T ∗ and α according to Proposition 5. Define

d2 :=
√

((1 + cT
αα`

γ(T ))−1d2
1 where T ≥ T ∗ and d1 is defined in Lemma 3. We proceed

by induction with respect to the receding horizon sampling index k.
First, since d2 < d1 the assumptions of Proposition 5 are applicable due to

Lemma 3, and we have

(19) VT (yrh(t1)) ≤ VT (y0)− α
∫ t1

0

`(yrh(t), urh(t))dt,

and also

‖yrh(t1)‖2H
(A3)

≤ ‖yrh(0)‖2H + cT

∫ t1

0

(‖yrh(t)‖2H + ‖urh(t)‖2U )dt

(5)

≤ ‖y0‖2H +
cT
α`

∫ t1

0

`(yrh(t), urh(t))dt

(19)

≤ ‖y0‖2H +
cT
αα`

(VT (y0)− VT (yth(t1))

≤ ‖y0‖2H +
cT
αα`

VT (y0)
(6)

≤ (1 +
cT
αα`

γ(T ))‖y0‖2H ≤ d2
1.

Proceeding by induction we assume that

(20) yrh(tk) ∈ Bd1(0) for all k = 0, . . . , k′,

and that

(21) VT (yrh(tk′)) ≤ VT (y0)− α
∫ tk′

0

`(yrh(t), urh(t))dt
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for k′ ∈ N.
Since yrh(tk′) ∈ Bd1(0), by Lemma 3 and Proposition 5 we have

(22) VT (yrh(tk′+1)) ≤ VT (yrh(tk′))− α
∫ tk′+1

tk′

`(yrh(t), urh(t))dt.

Combined with (21) this gives

(23) VT (yrh(tk′+1)) ≤ VT (y0)− α
∫ tk′+1

0

`(yrh(t), urh(t))dt.

Moreover, by repeated use of (A3) which is applicable by (20) and due to (5), (6),
and (23), we have

‖yrh(tk′+1)‖2H
(A3)

≤ ‖yrh(tk′)‖2H + cT

∫ tk′+1

tk′

(‖yrh(t)‖2H + ‖urh(t)‖2U )dt

(A3)

≤ ‖yrh(0)‖2H + cT

∫ tk′+1

0

(‖yrh(t)‖2H + ‖urh(t)‖2U )dt

(5)

≤ ‖yrh(0)‖2H +
cT
α`

∫ tk′+1

0

`(yrh(t), urh(t))dt

(23)

≤ ‖y0‖2H +
cT
αα`

(VT (y0)− VT (yth(tk′+1))

≤ ‖y0‖2H +
cT
αα`

VT (y0)
(6)

≤ (1 +
cT
αα`

γ(T ))‖y0‖2H ≤ d2
1.

Hence yrh(tk′+1) ∈ Bd1(0) which concludes the induction step. Taking the limit
k′ →∞ we find

(24) αJ∞(urh, y0) = α

∫ ∞
0

`(yrh(t), urh(t))dt ≤ VT (y0),

which concludes the proof.

Remark 7. If (3) is globally stabilizable, i.e. (6) holds with N0 replaced by H
and if also (A1) is satisfied for all y0 ∈ H, then Theorem 6 holds for all y0 ∈ H,
without the need of (A3). In fact (A3) was only used in the proof of Lemma 3 for the
construction of Bd1(0) which is not needed any more if (A2) holds globally.

In the following Theorem, we will show that the value function VT−δ exponentially
decays along the receding horizon trajectory yrh.

Theorem 8 (Exponential decay). Suppose that (A1)-(A3) hold and let a sam-
pling time δ > 0 be given. Then there exist numbers T ∗ > δ, α > 0 such that for
every prediction horizon T ≥ T ∗, and every y0 ∈ Bd2(0) with d2(T ) > 0, the receding
horizon trajectory yrh(·) satisfies

(25) VT (yrh(tk)) ≤ e−ζtkVT (y0),

where ζ is a positive number depending on α, δ, and T but independent of y0. More-
over, for every positive t we have

(26) VT−δ(yrh(t)) ≤ ce−ζtVT (y0)

with a positive constant c depending on α, δ, and T but independent of y0.
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Proof. Let δ > 0 be arbitrary. Then according to Theorem 6 and (17), there
exists a positive number T ∗ such that for every T ≥ T ∗ and y0 ∈ Bd2(0) with d2 > 0
we have

(27) VT (yrh(tk+1))− VT (yrh(tk)) ≤ −α
∫ tk+1

tk

`(yrh(t), urh(t))dt for every k ∈ N,

with a positive α < 1. Moreover, by using (11) and (12) we have

VT (yrh(tk+1)) ≤θ1

∫ tk+T

tk+1

`(y∗T (t; yrh(tk), tk), u∗T (t; yrh(tk), tk)) dt

≤θ1θ2

∫ tk+1

tk

`(y∗T (t; yrh(tk), tk), u∗T (t; yrh(tk), tk)) dt

=θ1θ2

∫ tk+1

tk

`(yrh(t), urh(t)) dt,

(28)

where θ1 > 0 and θ2 > 0 are defined in Lemma 4 and the last equality follows from
Step 3 in Algorithm 1. Now by using (27) and (28) we obtain

VT (yrh(tk+1))− VT (yrh(tk)) ≤ −α
θ1θ2

VT (yrh(tk+1)) for every k ∈ N.

Therefore, by defining η := (1 + α
θ1θ2

)−1 for every k ∈ N we can write

(29) VT (yrh(tk)) ≤ ηVT (yrh(tk−1)) ≤ η2VT (yrh(tk−2)) ≤ · · · ≤ ηkVT (y0).

Now by defining ζ := |ln η|
δ , we obtain the inequality (25).

Turning to the inequality (26) with t > 0 arbitrary, then there exists an index
k such that t ∈ [tk, tk+1]. Now since T − δ ≤ T + tk − t and by using Bellman’s
optimality principle we have

VT−δ(yrh(t)) ≤ VT+tk−t(yrh(t))

= VT (yrh(tk))−
∫ t

tk

`(y∗T (s; yrh(tk), tk), u∗T (s; yrh(tk), tk)) ds

≤ VT (yrh(tk)).

(30)

By using (29) and (30) we obtain

VT−δ(yrh(t)) ≤ VT (yrh(tk)) ≤ ηk+1

η
VT (y0) =

1

η
e−ζtk+1VT (y0) ≤ 1

η
e−ζtVT (y0).

Remark 9. The above result is similar to the result obtained in [21] (Theorem
2.4), if the value function VT−δ is considered as a control Lyapunov function G. At
every iteration k of Algorithm 1 for every open-loop optimal control problem we have

min
u∈L2(tk,tk+T ;U)

JT (u, yrh(tk))

=

∫ T+tk

tk

`(y∗T (t; yrh(tk), tk), u∗T (t; yrh(tk), tk))dt

=

∫ δ+tk

tk

`(y∗T (t; yrh(tk), tk), u∗T (t; yrh(tk), tk))dt+ VT−δ(y
∗
T (δ + tk; yrh(tk), tk))

=

∫ tk+1

tk

`(yrh(t), urh(t))dt+ VT−δ(yrh(tk+1)).
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This means that the terminal cost VT−δ is implicitly added to the objective function
of every open-loop optimal control problem. Indeed Vt−δ can be interpreted as an
approximation of the infinite horizon value function V∞ which is incorporated in the
objective function of every open-loop problem.

Remark 10. Note that the inequality (26) does not imply the asymptotic stability
of the receding horizon control law defined by Algorithm 1 within the neighborhood
Bd2(0), unless the finite horizon value function Vt−δ is uniformly positive on the level-
sets of Vt−δ. That is, for every positive r > 0 we have

VT−δ(y) ≥ C‖y‖2H for all y ∈ Πr,

where C is a positive constant depending on the time horizon T − δ and Πr is defined
by

Πr := {y ∈ H | VT−δ(y) ≤ r}.

In the case of finite-dimensional controlled systems, the above condition was investi-
gated in [31]. However for infinite-dimensional controlled systems, this condition only
holds in special cases [15].

3. Stabilization of Burgers’ Equation. Here we apply results of the previous
section to the stabilization of the viscous Burgers’ equation with periodic and homo-
geneous Neumann boundary conditions, respectively. For these boundary conditions
the origin of the uncontrolled system is stable but not asymptotically stable. In the
case of homogeneous Dirichlet boundary conditions, on the other hand, the origin is
asymptotically stable.

We shall investigate Assumptions (A1)-(A3) and show that in the case of peri-
odic boundary conditions Algorithm 1 provides globally stabilizing controls, while for
Neumann boundary conditions we obtain locally stabilizing controls.

3.1. Burgers’ Equation with Periodic Boundary Conditions. For an ar-
bitrary finite horizon T > 0, we consider the controlled Burgers’ equation with the
periodic boundary conditions of the form

(31)


d
dty(t) = µyxx(t)− y(t)yx(t) +Bu(t) in (0, T )× (0, 1),

y(t, 0) = y(t, 1), yx(t, 0) = yx(t, 1) on (0, T ),

y(0, ·) = y0 in (0, 1).

Throughout µ > 0 and y0 ∈ L2(0, 1) are fixed, and the control operator B is the
extension-by-zero operator given by

(Bu)(x) =

{
u(x) x ∈ Ω̂,

0 x ∈ (0, 1)\Ω̂,

where the control domain Ω̂ is a nonempty open subset of (0, 1).
For the function space setting of (31) we introduce the spaces

V := {y ∈ H1(0, 1) | y(0) = y(1)}, H := L2(0, 1),

and

W (0, T ) := {φ : φ ∈ L2(0, T ;V ),
d

dt
φ ∈ L2(0, T ;V ∗)},



12 B. AZMI AND K. KUNISCH

where V ∗ is the adjoint space of V . The spaces H and V are endowed with the usual
norms ‖ · ‖H := ‖ · ‖L2(0,1) and ‖ · ‖V := ‖ · ‖H1(0,1). Further 〈·, ·〉H and 〈·, ·〉V ∗,V
denote the inner product in H and the duality pairing between V and V ∗. We recall
that W (0, T ) is continuously embedded into C([0, T ];H), see e.g. [32]. It will be
convenient to define the continuous trilinear form b : V × V × V → R by

b(ϕ,ψ, φ) =

∫ 1

0

ϕψxφdx.

We shall frequently use the property that

(32) b(y, y, y) =

∫ 1

0

yxy
2dx =

1

3
(y3(1)− y3(0)) = 0 for all y ∈ V.

It is well-known that for every control u ∈ L2(0, T ;L2(Ω̂)), equation (31) admits
a unique weak solution y ∈ W (0, T ), i.e. y satisfies y(0) = y0 in H, and for a.e.
t ∈ (0, T ),

(33)
d

dt
〈y(t), ϕ〉V ∗,V + µ〈y(t), ϕ〉V − µ〈y(t), ϕ〉H + b(y(t), y(t), ϕ) = 〈Bu(t), ϕ〉H

holds for all ϕ ∈ V . Using (32) and Gronwall’s lemma it can easily be shown that
there exists a constant CT such that

(34) |y(·; y0, u)|W (0,T ) ≤ CT (|y0|H + |u|L(0,T ;L2(Ω̂))),

where y(·; y0, u) indicates the dependence of the solution on y0 and u. The running
cost will be taken of the form

(35) l(y, u) :=
1

2
‖y‖2H +

β

2
‖u‖2

L2(Ω̂)
,

where β > 0.
We have now specified all items of the finite horizon problem (PT ). Using (34)

it follows from standard subsequential limit arguments that (PT ) with the control
system given by (31) admits a solution for each y0 ∈ H. In particular (A1) holds with
N0 = H. In the following lemma we show that Assumption (A2) holds as well.

Lemma 11 (Global stabilizability). For each T > 0 and initial state y0 ∈ H there
exists a control û(·; y0) ∈ L2(0, T ;L2(Ω̂)) such that

(36) VT (y0) ≤ JT (û, y0) ≤ γ(T )‖y0‖2H ,

for a continuous, non-decreasing and bounded function γ : R+ → R+.

Proof. Set û(t) := −y(t)|Ω̂ and consider

(37)


d
dty(t) = µyxx(t)− y(t)yx(t)−By(t)|Ω̂ in (0, T )× (0, 1),

y(t, 0) = y(t, 1), yx(t, 0) = yx(t, 1) on (0, T ),

y(0, ·) = y0 in (0, 1).

Taking the inner product of the first equation of (37) with y(t), we have for a.e.
t ∈ (0, T )

1

2

d

dt
‖y(t)‖2H + µ(‖yx(t)‖2H − yx(t, 1)y(t, 1) + yx(t, 0)y(t, 0))

+ b(y(t), y(t), y(t)) + ‖y(t)‖2
L2(Ω̂)

= 0.
(38)
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Taking into account the boundary conditions and (32) one can express (38) as

1

2

d

dt
‖y(t)‖2H + µ‖yx(t)‖2H + ‖y(t)‖2

L2(Ω̂)
= 0.

One can easily show that ‖y‖21 := ‖yx‖2H + 1
µ‖y‖

2
L2(Ω̂)

is a norm which is equivalent to

the H1-norm [29], Page 26. Thus there exist positive constants c2 > c1 > 0 such that

c1‖y‖2V ≤ ‖y‖21 ≤ c2‖y‖2V for all y ∈ V,

and consequently

1

2

d

dt
‖y(t)‖2H + µc1‖y(t)‖2V ≤ 0,

and therefore,

d

dt
‖y(t)‖2H + 2µc1‖y(t)‖2H ≤ 0 for all t ∈ [0, T ].

Multiplying both sides of the above equation by e2µc1t and integrating from 0 to t we
obtain

‖y(t)‖2H ≤ ‖y0‖2He−2µc1t for all t ∈ [0, T ].

By integrating the above inequality over the interval [0, T ], we obtain

(39)

∫ T

0

‖y(t)‖2Hdt ≤
1

2µc1
(1− e−2µc1T )‖y0‖2H .

By the definition of the value function VT (·) and (39) we have

VT (y0) ≤
∫ T

0

(
1

2
‖y(t)‖2H +

β

2
‖ − y(t)‖2

L2(Ω̂)
) dt ≤ 1 + β

4µc1
(1− e−2µc1T )‖y0‖2H ,

and (A2) follows with γ(T ) := 1+β
4µc1

(1− e−2µc1T ), and N0 = H.

From Lemma 11, we infer that Assumption (A2) holds globally. Thus by Remark 7
we can directly apply Theorem 6 without addressing (A3) and conclude that: for any
arbitrary sampling time δ, there exists a positive T ∗ such that for every T ≥ T ∗ the
receding horizon control urh is globally suboptimal (within H) with suboptimality
factor α > 0, and we have

(40) αV∞(y0) ≤ αJ∞(urh, y0) ≤ VT (y0) ≤ V∞(y0)

for every y0 ∈ H. Now it remains for us to show that the receding horizon control
urh computed by Algorithm 1 is globally stabilizing. This property will be verified
by means of the following theorem.

Theorem 12. Let y0 ∈ H and δ > 0 be arbitrary, and apply Algorithm 1 for the
stabilization of the Burgers’ equation (31) with a prediction horizon T ≥ T ∗, where
T ∗ is introduced by Proposition 5. Then the receding horizon trajectory yrh satisfies
limt→∞ ‖yrh(t)‖H = 0.
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Proof. First, we show that

(41) ‖yrh‖L∞(0,∞;H) ≤ ν‖y0‖H

for a constant ν > 0.
Due to (35), (36), and (40), we have

αmin{1, β}
2

∫ ∞
0

(
‖yrh(t)‖2H + ‖urh(t)‖2

L2(Ω̂)

)
dt

≤ αJ∞(urh(·), y0) ≤ VT (y0) ≤ γ(T )‖y0‖2H .

Therefore by choosing σ1 := 2γ(T )
αmin{1,β} , we obtain

(42)

∫ ∞
0

‖yrh(t)‖2H + ‖urh(t)‖2
L2(Ω̂)

dt ≤ σ1‖y0‖2H .

Moreover, the receding horizon state given by Algorithm 1 satisfies yrh ∈ C([0,∞), H),
for every k ∈ N we have

(43) yrh |(tk,tk+1)∈ L2(tk, tk+1;V ),
d

dt
yrh |(tk,tk+1)∈ L2(tk, tk+1;V ∗),

and yrh is the solution of
d
dty(t) = µyxx(t)− y(t)yx(t) +Burh(t) in (tk, tk+1)× (0, 1),

y(t, 0) = y(t, 1), yx(t, 0) = yx(t, 1) on (tk, tk+1),

y(tk, ·) = yrh(tk) for k > 0, and y(0, ·) = y0 for k = 0 in (0, 1).

By multiplying the above equation by yrh(·) and integrating over the interval (0, 1),
we have

1

2

d

dt
‖yrh(t)‖2H + µ‖(yrh)x(t)‖2H = 〈Burh(t), yrh(t)〉H a.e. t ∈ (tk, tk+1).

From Cauchy-Schwarz and Young’s inequalities we infer that

d

dt
‖yrh(t)‖2H + 2µ‖(yrh)x(t)‖2H ≤ ‖urh(t)‖2

L2(Ω̂)
+ ‖yrh(t)‖2H a.e. t ∈ (tk, tk+1).

Integrating from tk to t for every t ∈ (tk, tk+1) we have

‖yrh(t)‖2H

≤ ‖yrh(tk)‖2H +

∫ t

tk

‖urh(s)‖2
L2(Ω̂)

ds+

∫ t

tk

‖yrh(s)‖2H ds for all t ∈ (tk, tk+1).

By the same estimate as above for the interval (tk−1, tk) we have

(44) ‖yrh(tk)‖2H ≤ ‖yrh(tk−1)‖2H +

∫ tk

tk−1

‖urh(s)‖2
L2(Ω̂)

ds+

∫ tk

tk−1

‖yrh(s)‖2H ds.

Moreover by the above two estimates we have

‖yrh(t)‖2H ≤ ‖yrh(tk−1)‖2H +

∫ t

tk−1

‖urh(s)‖2
L2(Ω̂)

ds+

∫ t

tk−1

‖yrh(s)‖2H ds.
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By repeating the above argument for k − 2, k − 3, . . . , 0, one can show that

‖yrh(t)‖2H ≤‖yrh(tk)‖2H +

∫ t

tk

‖urh(s)‖2
L2(Ω̂)

ds+

∫ t

tk

‖yrh(s)‖2H ds

≤‖y0‖2H +

∫ t

0

‖urh(s)‖2
L2(Ω̂)

ds+

∫ t

0

‖yrh(s)‖2H ds

≤‖y0‖2H +

∫ ∞
0

‖urh(s)‖2
L2(Ω̂)

ds+

∫ ∞
0

‖yrh(s)‖2H ds

≤(1 + σ1)‖y0‖2H ,

where in the last line (42) has been used. Choosing ν :=
√

1 + σ1 we obtain (41).
Next we are in the position to prove

lim
t→∞

‖yrh(t)‖2H = 0.

For every t′′ ≥ t′ we have

‖yrh(t′′)‖2H−‖yrh(t′)‖2H =

∫ t′′

t′

d

dt
‖yrh(t)‖2H dt

= 2

∫ t′′

t′
〈yrh(t), µ(yrh)xx(t)− (yrh)x(t)yrh(t) +Burh(t)〉V,V ∗ dt

= −2µ

∫ t′′

t′
‖(yrh)x(t)‖2Hdt+ 2

∫ t′′

t′
〈Burh(t), yrh(t)〉H dt

≤ 2

∫ t′′

t′
‖urh(t)‖L2(Ω̂)‖yrh(t)‖H dt

≤ 2
( ∫ t′′

t′
‖urh(t)‖2

L2(Ω̂)
dt
) 1

2
( ∫ t′′

t′
‖yrh(t)‖2Hdt

) 1
2 ,

and thus

(45) ‖yrh(t′′)‖2H − ‖yrh(t′)‖2H ≤ 2
√
σ1ν‖y0‖2H(t′′ − t′) 1

2 .

For the last inequality, (41) and (42) have been used. Moreover, from (35), (36), and
(40) we have

α

2

∫ ∞
0

‖yrh(t)‖2
L2(Ω̂)

≤ αJ∞(urh, y0) ≤ VT (y0) ≤ γ(T )‖y0‖2H <∞.

This estimate implies that

(46) lim
t→∞

∫ t

t−L
‖yrh(s)‖2Hds = 0

for all L > 0. Suppose to the contrary that

lim
t→∞

‖yrh(t)‖2H 6= 0.

Then there exists an ε > 0 and a sequence {tn}∞n=1 with tn > 0 and limn→∞ tn =∞
for which

(47) ‖yrh(tn)‖2H > ε for all n = 1, 2, . . . .
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It follows from (45) and (47) that for every L > 0 and n = 1, 2, . . .∫ tn

tn−L
‖yrh(t)‖2Hdt

=

∫ tn

tn−L
‖yrh(tn)‖2Hdt−

∫ tn

tn−L

(
‖yrh(tn)‖2H − ‖yrh(t)‖2H

)
dt,

> Lε− 2
√
σ1ν‖y0‖2H

∫ tn

tn−L
(tn − t)

1
2 dt = Lε− 4

3

√
σ1ν‖y0‖2HL

3
2 .

(48)

Setting ω := 4
3

√
σ1ν‖y0‖2H , and choosing L := ( ε

2ω )2, we obtain∫ tn

tn−L
‖yrh(t)‖2Hdt >

Lε

2
for all n = 1, 2, . . . .

This contradicts (46). Hence limt→∞ ‖yrh(t)‖2H = 0 and the proof is complete.

3.2. Burgers’ Equation with Homogeneous Neumann Boundary Condi-
tions. Here we consider the controlled Burgers’ equation with homogenous Neumann
boundary conditions of the form

(49)


d
dty(t) = µyxx(t)− y(t)yx(t) +Bu(t) in (0, T )× (0, 1),

yx(t, 0) = yx(t, 1) = 0 on (0, T ),

y(0, ·) = y0 in (0, 1).

We can utilize the same notation as in subsection 3.1, except for the energy space
which is now chosen to be

V := {y ∈ H1(0, 1) | yx(0) = yx(1) = 0}.

Again V ⊂ H ⊂ V ∗ is a Gelfand triple and W (0, T ) is continuously embedded in
C([0, T ];H).

The significant difference between (31) and (49) is given by the fact that in the
case of periodic boundary conditions the nonlinearity is conservative, i.e. we have that
b(φ, φ, φ) = 0 for all φ ∈ V , which is not the case for Neumann boundary conditions.
As a consequence we have to rely on the local version of the results of section 2.

Again we use the weak or variational solution concept of (33). Due to the fact
that the nonlinearity is not conservative the verification of a global weak solution is
not trivial. We have the following result.

Lemma 13. For every T > 0, and for every y0 ∈ H, and u ∈ L2(0, T ;L2(Ω̂))
there exists a unique solution y(·; y0, u) ∈ W (0, T ) to (49). Moreover there exists a
constant CT such that

|y(·; y0, u)|W (0,T ) ≤ CT (1 + |y0|H + |u|L(0,T ;L2(Ω̂))),

for all y0 ∈ H, and u ∈ L2(0, T ;L2(Ω̂)).

For the proof we refer to [35]. For the step that the local solution can be ex-
tended to a global one we prefer the argument given in [16] for which it is useful
to recall that for a measurable function, which will be u in our case, the function
E →

∫
E
|u(t)|L2(Ω̂) dt, with E a measurable subset of (0, T ), is absolutely continuous.
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The running cost will again be taken to be of the form (35). It is now stan-
dard to argue the existence of a solution to (PT ) with the control system given by
(49). In particular (A1) holds with N0 = H. In the following lemmas we show that
Assumptions (A2) and (A3) hold as well.

Lemma 14 (Local stabilizability). There exists a neighborhood Bδ1(0) ⊂ H such
that for every T > 0 and every y0 ∈ Bδ1(0) there exists a control û(·, y0) ∈ L2(0, T ;L2(Ω̂))
with

VT (y0) ≤ JT (û, y0) ≤ γ(T )‖y0‖2H ,

where γ : R+ → R+ is a continuous, non-decreasing and bounded function.

Proof. Setting û(t) := −y(t)|Ω̂ in the first equation of (49), multiplying y(t) and
taking the L2-scalar product we obtain

(50)
1

2

d

dt
‖y(t)‖2H + µ‖yx(t)‖2H + b(y(t), y(t), y(t)) + ‖y(t)‖2

L2(Ω̂)
= 0

As in the case of periodic boundary conditions one can argue that ‖y‖21 := ‖yx‖2H +
1
µ‖y‖

2
L2(Ω̂)

is an equivalent norm to H1-norm, see e.g. [29], Page 26, and hence there

exist positive constants c2 > c1 > 0 such that c1‖y‖2V ≤ ‖y‖21 ≤ c2‖y‖2V for all y ∈ V.
The nonlinearity satisfies the following equality

b(y, y, y) =

∫ 1

0

yxy
2dx ≤ ‖y‖L∞(0,1)‖yx‖H‖y‖H ≤ ca‖y‖21‖y‖H for all y ∈ V,

where ca, depends on the embedding constant of V into L∞(0, 1) and c1. From (50)
we therefore deduce that

1

2

d

dt
‖y(t)‖2H + µ‖yx(t)‖2H + ‖y(t)‖2

L2(Ω̂)
≤ ca‖y(t)‖21‖y(t)‖H ,

and consequently

1

2

d

dt
‖y(t)‖2H + µ‖y(t)‖21 ≤ ca‖y(t)‖21‖y(t)‖H .

Now let us choose ‖y0‖H sufficiently small, say ‖y0‖H ≤ µ
4ca

. Then by continuity of
the solution for a short interval of time [0, T ∗], we have ‖y(t)‖H ≤ µ

2ca
for all t ∈ [0, T ∗]

and further

d

dt
‖y(t)‖2H + µc1‖y(t)‖2H ≤ 0 for all t ∈ [0, T ∗].

Multiplying both sides of the above equation by eµc1t and integrating from 0 to t we
obtain

(51) ‖y(t)‖2H ≤ ‖y0‖2He−µc1t ≤ (
µ

4ca
)2 for all t ∈ [0, T ∗].

Repeating the above argument implies that ‖y(t)‖H ≤ µ
4ca

will remain small for all
t ∈ [0, T ] and moreover we have

‖y(t)‖2H ≤ ‖y0‖2He−µc1t for all t ∈ [0, T ].
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Integration over [0, T ] implies that

(52)

∫ T

0

‖y(t)‖2Hdt ≤
1

µc1
(1− e−µc1T )‖y0‖2H .

By the definition of the value function VT (·) and (52) we have

VT (y0) ≤
∫ T

0

1

2
‖y(t)‖2H +

β

2
‖y(t)‖2

L2(Ω̂)
dt ≤ 1 + β

2µc1
(1− e−µc1T )‖y0‖2H ,

where γ(T ) := 1+β
2µc1

(1−e−µc1T ) is a nondecreasing, continuous and bounded function,

as desired, and δ1 := µ
4ca

.

Lemma 15. Assumption (A3) holds for (49) with N0 = Bδ1(0) defined in Lemma 14.

Proof. For every y0 ∈ Bδ1(0) we have from (49) that

1

2

d

dt
‖y(t)‖2H + µ‖y(t)‖2V
≤ µ‖y(t)‖2H + |b(y(t), y(t), y(t))|+ |〈y(t), Bu(t)〉H | a.e t ∈ [0, T ].

(53)

From Agmon’s inequality we recall that there exists a constant cA such that

‖φ‖L∞(0,1) ≤ cA‖φ‖
1
2

H‖φ‖
1
2

V for all φ ∈ V,

and consequently there exits a constant cI such that

b(φ, φ, φ) ≤ ‖φ‖L∞(0,1)‖φ‖H‖φ‖V ≤ cA‖φ‖
3
2

H‖φ‖
3
2

V ≤ µ‖φ‖
2
V + cI‖φ‖6H for all φ ∈ V.

Utilizing the above inequality and (53) we obtain

d

dt
‖y(t)‖2H ≤ 2µ‖y(t)‖2H + 2cI‖y(t)‖6H + 2‖y(t)‖H‖u(t)‖L2(Ω̂) for a.e t ∈ [0, T ].

Upon integration we obtain

‖y(t)‖2H ≤ ‖y(0)‖2H + (2µ+ 1 + 2cI‖y‖4C([0,T ];H))

∫ t

0

‖y(s)‖2H ds+

∫ t

0

‖u(s)‖2
L2(Ω̂)

ds.

By Lemma 13 the family

{‖y(·; y0, u)‖C([0,T ];H)| y0 ∈ Bδ1(0), ‖u‖L2(0,T ;L2(Ω̂)) ≤
√

2γ(T )/min{1, β} ‖y0‖H}

is bounded, and hence the desired estimate follows.

Now we are in the position that we can apply Theorem 6 and it remains for us to
show that the receding horizon control urh computed by Algorithm 1 is stabilizing.
This will be accomplished in the following theorem. It uses the quantifier d2(T ) for
the size of the neighborhood of the initial data. Recall that d2(T ) depends on γ(T ),
which was given explicitly in the proof of Lemma 14 and on cT , the existence of which
was provided in the proof of Lemma 15.

Theorem 16. Let a sampling time δ > 0 be given, and apply Algorithm 1 for the
stabilization of the Burgers’ equation (49) with a prediction horizon T ≥ T ∗, where
T ∗ is introduced by Proposition 5. Then we have limt→∞ ‖yrh(t)‖H = 0 provided that
|y0|H ≤ d2(T ).
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Proof. We recall that δ1 = µ
4ca

depends on embedding constants and was intro-
duced in the proof of Lemma 14. Furthermore, we have d2(T ) ≤ d1(T ) ≤ δ1. To
verify the claim we can follow for the most part the proof of Theorem 12. Again we
first show that there exists some ν > 0 such that

(54) ‖yrh‖L∞(0,∞;H) ≤ ν‖y0‖H ,

for each y0 ∈ Bd2(0). By construction we have that yrh ∈ C([0,∞), H), that (43)
holds, and that

(55)

∫ ∞
0

‖yrh(t)‖2H + ‖urh(t)‖2
L2(Ω̂)

dt ≤ σ1‖y0‖2H ,

where σ1 := 2γ(T )
αmin{1,β} . For any k = 0, 1, . . . we have

d

2dt
‖yrh(t)‖2H + µ‖(yrh)x(t)‖2H+b(yrh(t), yrh(t), yrh(t))

= 〈Burh(t), yrh(t)〉H a.e. t ∈ (tk, tk + 1).

Furthermore, d2 in Theorem 6 has been chosen in such way that for every t > 0, the
receding horizon trajectory yrh(t) stays in the neighborhood Bδ1(0). In other word,
we have

(56) ‖yrh(t)‖H ≤ δ1 =
µ

4ca
<

µ

2ca
for all t > 0,

where ca defined in Lemma 14. Now by Cauchy-Schwarz and Young’s inequalities, by
(56) and the definition of ‖ · ‖1, we infer that

b(yrh(t),yrh(t), yrh(t))

≤ ‖yrh(t)‖L∞(0,1)‖yrh(t)‖H‖(yrh)x(t)‖H
≤ ca‖yrh(t)‖H‖yrh(t)‖21

≤ µ

2
‖yrh(t)‖21 ≤

µ

2
‖(yrh)x(t)‖2H +

1

2
‖yrh(t)‖2H for a.e. t ∈ (tk, tk+1).

Thus for every k ∈ N we have

d

dt
‖yrh(t)‖2H + µ‖(yrh)x(t)‖2H ≤ ‖urh(t)‖2

L2(Ω̂)
+ 2‖yrh(t)‖2H for a.e. t ∈ (tk, tk+1),

and therefore for t ∈ (tk, tk+1)

‖yrh(t)‖2H+µ

∫ t

tk

‖(yrh)x(s)‖2Hds

≤ ‖yrh(tk)‖2H +

∫ t

tk

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ t

tk

‖yrh(s)‖2Hds.
(57)

By the same estimate as above for the interval (tk−1, tk) we have

‖yrh(tk)‖2H+µ

∫ tk

tk−1

‖(yrh)x(s)‖2Hds

≤ ‖yrh(tk−1)‖2H +

∫ tk

tk−1

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ tk

tk−1

‖yrh(s)‖2Hds.
(58)
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By summing (57) and (58) we have

‖yrh(t)‖2H+µ

∫ t

tk−1

‖(yrh)x(s)‖2Hds

≤ ‖yrh(tk−1)‖2H +

∫ t

tk−1

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ t

tk−1

‖yrh(s)‖2Hds.

Repeating the above argument for k − 2, k − 3, . . . , 0, it follows that

‖yrh(t)‖2H ≤‖yrh(tk)‖2H +

∫ t

tk

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ t

tk

‖yrh(s)‖2Hds

≤‖y0‖2H +

∫ ∞
0

‖urh(s)‖2
L2(Ω̂)

ds+ 2

∫ ∞
0

‖yrh(s)‖2Hds

≤(1 + 2σ1)‖y0‖2H ,

where for the last inequality (55) has been used. Choosing ν :=
√

1 + 2σ1 we obtain
(54).

Now we are in the position to prove

lim
t→∞

‖yrh(t)‖2H = 0.

For every t′′ ≥ t′ we have

‖yrh(t′′)‖2H − ‖yrh(t′)‖2H =

∫ t′′

t′

d

dt
‖yrh(t)‖2Hdt

= 2

∫ t′′

t′
〈yrh(t), µ(yrh)xx(t)− (yrh)x(t)yrh(t) +Burh(t)〉V,V ∗dt

≤ −2µ

∫ t′′

t′
‖(yrh)x(t)‖2Hdt+ 2

∫ t′′

t′
ca‖yrh(t)‖H‖yrh(t)‖21dt

+ 2

∫ t′′

t′
〈Burh(t), yrh(t)〉Hdt

≤ −µ
∫ t′′

t′
‖(yrh)x(t)‖2Hdt+

∫ t′′

t′
‖yrh(t)‖2Hdt+ 2

∫ t′′

t′
〈Burh(t), yrh(t)〉Hdt

≤ 2

∫ t′′

t′
‖urh(t)‖L2(Ω̂)‖yrh(t)‖Hdt+

∫ t′′

t′
‖yrh(t)‖2Hdt

≤ 2
( ∫ t′′

t′
‖urh(t)‖2

L2(Ω̂)
dt
) 1

2
( ∫ t′′

t′
‖yrh(t)‖2Hdt

) 1
2

+
( ∫ t′′

t′
‖yrh(t)‖2Hdt

) 1
2
( ∫ t′′

t′
‖yrh(t)‖2Hdt

) 1
2

≤ 3
√
σ1ν‖y0‖2H(t′′ − t′) 1

2 ,

where (54) and (55) were used to obtain the last inequality. Now the proof can be
completed as the one for Theorem 12, except that the factor 2 in (48) has to be
replaced by the factor 3 which appeared in the last estimate.
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4. Numerical Results. We present numerical results to illustrate the theoret-
ical findings of the previous sections. For the Burgers’ equation with periodic -, or
homogeneous Neumann boundary conditions, every constant function is a steady state
of the uncontrolled equation. Hence the origin is stable, but it is not asymptotically
stable. Consequently it is of interest to force the state of these equations to the steady
state by an external control which is computed on the basis of the receding horizon
control.

Our numerical experiments will also include a comparison of the performance of
the receding horizon control scheme with and without terminal penalty term. The
latter case was investigated in the previous section, the former one in [21], where
it was shown that the quadratic penalty term G(y) = 1

2‖y‖
2
L2(Ω), can be used as a

control Lyapunov function for the Navier-Stokes eqaution.
Our numerical tests utilize the following Algorithm 2, where G is chosen as one

of the two cost functionals:

(59) Zero: G(y) = 0, or Quadratic: G(y) =
1

2
‖y‖2L2(0,1).

For G(y) = 0, Algorithm 2 essentially coincides with Algorithm 1, except for the fact
that we need to terminate our computations at some T∞ <∞.

Algorithm 2

Input: Let a final computational time horizon T∞, and an initial state y0 ∈ L2(0, 1)

be given.

1. Choose a prediction horizon T < T∞, and a sampling time δ ∈ (0, T ].

2. Consider a grid 0 = t0 < t1 · · · < tr = T∞ on the interval [0, T∞], where ti := iδ

for i = 0, . . . , r.

3. Solve successively the open-loop subproblem on [ti, ti + T ]:

(60) min
1

2

∫ ti+T

ti

‖y(t)‖2L2(0,1)dt+
β

2

∫ ti+T

ti

‖u(t)‖2
L2(Ω̂)

dt+G(y(ti + T )),

subject to Burgers’ equations (49) (or (31)) for the initial condition

y(ti) = y∗T (ti) if i ≥ 1 and y(ti) = y0 if i = 0,

where y∗T (·) is the solution to the preceding subproblem on [ti−1, ti−1 + T ].

4. The receding horizon optimal pair (yrh(·), urh(·)) is obtained by concatenation

of the optimal pairs (y∗T (t), u∗T (t)) of the finite horizon subproblems on [ti, ti+1] for

i = 0, . . . , r − 1.

The numerical simulations were carried out on the MATLAB platform. Through-
out, the spatial discretization was done by the standard Galerkin method based on
piecewise linear and continuous basis functions with mesh-size h = 0.0125. The or-
dinary differential equations resulting after spatial discretization were solved by the
implicit Euler method with step-size ∆t = 0.0125, where the nonlinear systems of
equations within the implicit Euler method were solved by Newton’s method. Every
open-loop problem was solved by applying the Barzilai-Borwein (BB) gradient steps
[7] with a nonmonotone line search [14] on the reduced problem in the “first optimize,
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then discretize” manner. For every open-loop problem, the optimization algorithm
was terminated when L2-norm of the gradient for the reduced objective function was
less than the tolerance 10−6. Furthermore in all examples, we set δ = 0.25 and
β = 10−3.

For every example, we implemented the receding horizon strategy for different
choices of the prediction horizon T , and the two terminal costsG in (59). Furthermore,
in order to have a measure for the performance of the receding horizon strategy, we
consider

1. JT∞(urh, y0) := 1
2

∫ T∞
0
‖yrh(t)‖2L2(0,1)dt+ β

2

∫ T∞
0
‖urh(t)‖2

L2(Ω̂)
dt,

2. ‖yrh‖L2(Q) with Q := (0, T∞)× (0, 1),
3. ‖yrh(T∞)‖L2(0,1),
4. iter : The total number of iterations (BB-gradient steps) that the optimizer

needs for all open-loop problems on the intervals (ti, ti+T ) for i = 0, . . . , r−1.

Example 1. We considered the Burgers’ equation (31) with periodic boundary
conditions. We chose y0(x) = exp(−20(x− 0.5)2) as the initial function, µ = 10−3 as
a viscosity parameter, and T∞ = 15. Further the receding horizon control acts only
on the set

Ω̂ = (0.1, 0.2) ∪ (0.4, 0.6) ∪ (0.8, 0.9) ⊂ (0, 1).

Figures 1(a) and 1(b) depict, respectively, the solution and the evolution of the
L2(0, 1)-norm for the state of the uncontrolled Burgers’ equation (31). For the un-
controlled solution yu we have

‖yu‖L2(Q) = 1.5768, ‖yu(T∞)‖L2(0,1) = 0.3958.
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(b) Evolution of L2(0, 1)-norm of state

Fig. 1. Uncontrolled solution for Example 1

The results of Algorithm 2 for different choices of T and G and the fixed sampling
time δ = 0.25 are summarized in Table 1. Figure 2 shows the results for the receding
horizon pairs (yrh, urh) if G = 0 and T = 1.

As expected, increasing the prediction horizon T results in a decrease of the
stabilization measures ‖yrh‖L2(Q) and ‖yrh(T∞)‖L2(0,1), both for quadratic and zero
terminal penalties. The quadratic terminal penalty term results in smaller values of
the stabilization measures, with the difference in the ‖yrh‖L2(Q)-norm less pronounced
than in the ‖yrh(T∞)‖L2(0,1)-norm. Using a non-trivial terminal penalty results in
higher iteration numbers for the optimizer. In view of the fact that the choice of
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G Prediction Horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(0,1) iter

Quadratic

T = 1 0.021891 0.1799 2.62× 10−5 11861

T = 0.5 0.023196 0.1820 3.95× 10−5 8352

T = 0.25 0.027547 0.1828 1.32× 10−4 6041

Zero

T = 1 0.021886 0.1805 8.41× 10−5 6220

T = 0.5 0.021893 0.1818 2.10× 10−4 3139

T = 0.25 0.021943 0.1856 4.26× 10−4 1467
Table 1

Numerical results for Example 1
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(c) RH Control
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(d) L2(Ω̂)-norm of RHC

Fig. 2. Receding horizon trajectories for Example 1

T has only little effect on the stabilization measures, but significant effect on the
number of iterations in the optimization algorithm, small T is preferable for this class
of problems. It should also be of interest to search for methods which adaptively tune
the prediction horizon.

Example 2. Here we considered the stabilization of the Burgers’ equation (49)
with homogeneous Neumann boundary conditions. We set y0(x) = cos(πx) as the
initial function and chose T∞ = 10. The spatial support for the controls is

Ω̂ = (0, 0.15) ∪ (0.85, 1) ⊂ (0, 1).

Furthermore, µ = 0.01. Note that for this small viscosity parameter and the above
anti-symmetric initial function, the uncontrolled numerical solution of (49) approaches
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a non-constant, time independent steady state, see [8]. The uncontrolled solution yu

is illustrated in Figure 3 and we have

‖yu‖L2(Q) = 3.08, ‖yu(T∞)‖L2(0,1) = 0.9791.
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(b) Evolution of L2(0, 1)-norm of state

Fig. 3. Uncontrolled solution for Example 2

Table 2 reveals the numerical results of Algorithm 2 for different choices of the
prediction horizon T and the terminal cost G. Figure 4 shows the results for the
receding horizon pairs (yrh, urh) in the case that zero terminal cost and T = 1 were
chosen.
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(c) RH Control

0 2 4 6 8 10
0

1

2

3

4

5

t

L
2
 n

o
rm

 c
o
n
tr

o
l

(d) L2(Ω̂)-norm of RHC

Fig. 4. Receding horizon trajectories for Example 2
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G Prediction Horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(0,1) iter

Quadratic

T = 1 0.053394 0.2820 3.38× 10−6 5890

T = 0.5 0.056004 0.2792 9.99× 10−6 3957

T = 0.25 0.060580 0.2788 9.74× 10−6 3285

Zero

T = 1 0.053058 0.2835 7.23× 10−6 3382

T = 0.5 0.052961 0.2873 1.46× 10−5 1698

T = 0.25 0.053717 0.2977 4.00× 10−5 903
Table 2

Numerical results for Example 2.

Concerning the effect of different choices of T and G, the same observations as in
Example 1 apply.

Example 3. In this example, we dealt with the stabilization of a noisy Burg-
ers’ equation with homogeneous Neumann boundary conditions. We chose y0(x) =
exp(−20(x − 0.5)2) as the initial function, µ = 0.01 as a viscosity parameter, and
T∞ = 10. Furthermore, the noise was simulated by generating uniformly distributed
random numbers within the range [−4, 4]. It was added to the right-hand side of the
equation (49) at the spatial-temporal grid points. The results correspond to uncon-
trolled solutions are reported in Table 3.

Problem types ‖yu‖L2(Q) ‖yu(T∞)‖L2(0,1)

Uncontrolled state without noise 0.6291 0.0829

Uncontrolled state with noise 0.7945 0.1436
Table 3

Uncontrolled solutions for Example 3

In Figure 5, we show the results for uncontrolled solution with noise and without
noise. The control acts only on the set

Ω̂ = (0.1, 0.3) ∪ (0.7, 0.9) ⊂ (0, 1).

In implementations of Algorithm 2 on every interval [ti, ti + T ], first an open-loop
optimal control u∗T was computed for every subproblem without noise. Then the
optimal control u∗T is used to steer the noisy Burgers’ equation. This process was
repeated for every interval [ti, ti + T ] with i = 0, . . . , r − 1. Table 4 (rep. Table 5)
represents the results of Algorithm 2 applied on the Burgers’ equation (49) with
noise (resp. without noise) for different choices of the prediction horizon T and the
terminal cost G. In Figures 6 and 7, we show the results for the receding horizon
pairs (yrh, urh) in the case that zero terminal cost and T = 1 were chosen.
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(c) Noisy state
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(d) L2(0, 1)-norm of the noisy state

Fig. 5. Uncontrolled solutions for Example 3

G Prediction Horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(0,1) iter

Quadratic

T = 1 0.049456 0.2996 0.0426 4327

T = 0.5 0.052292 0.3031 0.0418 3489

T = 0.25 0.060291 0.3063 0.0441 2739

Zero

T = 1 0.049545 0.3009 0.0438 2463

T = 0.5 0.050112 0.3046 0.0462 1479

T = 0.25 0.053008 0.3163 0.0512 880
Table 4

Numerical results corresponding to the noisy equation for Example 3

G Prediction Horizon JT∞ ‖yrh‖L2(Q) ‖yrh(T∞)‖L2(0,1) iter

Quadratic

T = 1 0.044212 0.2828 2.56× 10−6 4215

T = 0.5 0.046700 0.2855 9.70× 10−6 3346

T = 0.25 0.054818 0.2892 5.58× 10−6 2636

Zero

T = 1 0.044212 0.2839 9.26× 10−6 2532

T = 0.5 0.044626 0.2870 2.79× 10−5 1450

T = 0.25 0.047149 0.2983 1.51× 10−4 835
Table 5

Numerical results corresponding to the equation without noise for Example 3
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(c) RH Control
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(d) L2(Ω̂)-norm of RHC

Fig. 6. Receding horizon trajectories for Example 3 without noise
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(c) RH Control
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Fig. 7. Receding horizon trajectories for Example 3 with presence of noise
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From Tables 4 and 5 we note that the stabilization quantifiers for the quadratic
and zero terminal penalties differ less in the case with noise than without noise.
Comparing Figures 6(d) and 7(d) we note the effect on the required control action
due to noise in the equation.

Consistently over all numerical results it can be observed that a longer prediction
horizon leads to smaller values of JT∞ . Concerning the total number of iterations, it
can be seen that for the problems under consideration Algorithm 2 with zero terminal
cost requires significantly fewer iterations than in the case with quadratic terminal
cost.
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