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OBLIQUE PROJECTION LOCAL FEEDBACK STABILIZATION OF

NONAUTONOMOUS SEMILINEAR DAMPED WAVE-LIKE EQUATIONS

BEHZAD AZMI AND SÉRGIO S. RODRIGUES

Abstract. The stabilization of a class of nonlinear weakly damped wave equations by means of
a finite-dimensional feedback control is investigated. The stabilizing control is constructed based

on an appropriate oblique projection and it enters as a time-dependent linear combination of a
finite numbers of suitable indicator functions supported in small regions. Firstly, it is shown that

an oblique projection feedback is able to globally exponentially stabilize linear nonautonomous

weakly damped wave equations. Then, relying on this result, the local stabilization for semilinear
equations is proven for a suitable class of nonlinearities. Finally, numerical experiments are given

which validate the theoretical results.

1. Introduction

We are concerned with the stabilization of controlled systems governed by weakly damped wave
equations

∂2

∂t2 y − ν∆y + ς ∂∂ty + ay +N (y) =

M∑
i=1

ui1ωMi , Gy|Γ = 0, (1.1a)

y(0) = y0,
∂
∂ty(0) = y1. (1.1b)

with a time depending control vector u = (u1(t), . . . , uM (t)) ∈ RM with a positive integer M . The
equation evolves in a spatial bounded smooth domain Ω ⊂ Rd, which is a located locally on one
side of its boundary Γ = ∂Ω, for a positive integer d. The unknown y = y(t, x) ∈ R, defined for
(t, x) ∈ (0,+∞) × Ω, stands for the state. The coefficient ν > 0 and the damping coefficient ς > 0
are positive constants and the function a = a(t, x) ∈ R is fixed. Further, our actuators are the
indicator functions 1ωMi = 1ωMi (x), where ωMi ⊂ Ω are small domains for i = 1, 2, . . . ,M . The term

N (·) stands for the nonlinearity which will be specified later. Finally the relation Gy|Γ = 0 sets the
boundary conditions up. Our results will cover both Dirichlet and Neumann boundary conditions,
respectively G = 1 and G = ∂

∂n
:= n · ∇, where n stands for the unit outward normal vector to the

boundary Γ.
Throughout this manuscript the symbol 1 stands for the identity operator on a given linear space,

such space will be clear from the context.
Our objective is to construct an oblique projection based feedback control u ∈ L2((0,+∞),RM )

that is able to locally exponentially stabilize systems as (1.1).
First of all, to simplify the exposition, it will be convenient to guarantee the coercivity of the

diffusion operator (in particular, for Neumann boundary conditions), in other words we would like
to have −ν∆ + 1 instead of −ν∆ (cf. [21, Eq. (6a)]). For this we will rewrite (1.1) in the equivalent
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form

∂2

∂t2 y + (−ν∆ + 1)y + ς ∂∂ty + (a− 1)y +N (y) =

M∑
i=1

ui1ωMi , Gy|Γ = 0, (1.2a)

y(0) = y0,
∂
∂ty(0) = y1. (1.2b)

1.1. Main results. In order to introduce the oblique projection feedback we need some notation.
The eigenvalues of −ν∆ + 1, repeated accordingly with their multiplicity, are denoted by αi ∈ R for
i ∈ N0 := {1, 2, 3, . . . }, and satisfy

0 < αi ≤ αi+1, lim
i→+∞

αi = +∞.

Then we fix a complete orthonormal system of eigenfunctions ei,

−ν∆ei + 1ei = αiei, i ≥ 1.

Let M := {1, 2, 3, . . . ,M} and let EM = span{ei | 1 ≤ i ≤ M} ⊂ L2(Ω) be the linear space
spanned by the first M eigenfunctions. E⊥M is the orthogonal complement to EM in L2(Ω), and
UM = span{1ωMi | 1 ≤ i ≤M} ⊂ L

2(Ω) is the linear space spanned by our M actuators.

As in the case of parabolic equations [20], stabilization will be guaranteed for a large enough
number M of actuators. Therefore, we will allow ourselves to take such number of actuators.
However, as in [20] we are interested in the case where the total volume covered by the actuators is
uniformly bounded, that is,

vol(
⋃M
i=1 ω

M
i ) ≤ r vol(Ω), 0 < r < 1, (1.3)

where r is given independently of M .
The construction of the feedback operator here is based on a suitable oblique (non-orthogonal)

projection. Let two closed subspaces F ⊆ H and G ⊆ H, and a Hilbert space H be given. Further
assume that F and G are complementary in H, that is, H = F + G and F

⋂
G = {0}. Then the

oblique projection in H onto F along G is denoted by PGF : H → F and, for every u ∈ H it is defined
by u 7→ uF where uF is given by

u = uF + uG with (uF , uG) ∈ F ×G.

Note that the continuity of the oblique projection is well known (see. e.g., [10, Sect. 2.4]. Further,
due to the definition, it follows immediately that 1 − PGF = PFG . The projection PGF is orthogonal
if, and only if, G = F⊥. Hereafter, we shall denote orthogonal projections simply by

PF := PF
⊥

F

Now, let P
E⊥M
UM

be the oblique projection in L2(Ω) onto UM along E⊥M.
Next we give sufficient conditions for stabilization.

Sufficient conditions for stabilization. For each M , we can find the actuators {1ωMi | 1 ≤ i ≤
M} so that:

L2(Ω) = UM + E⊥M, UM
⋂
E⊥M = {0}, and (1.4a)∣∣∣PE⊥MUM

∣∣∣
L(L2(Ω))

≤ CP < +∞, with CP ≥ 1 independent of M, (1.4b)

Condition (1.4a) is necessary and sufficient for the projection P
E⊥M
UM

to be well defined. Condi-
tion (1.4b) is satisfied for a suitable placement of the actuators in 1D domains Ω ⊂ R. For instance,
for bounded intervals Ω = (0, L) with L > 0, we refer to [33]. Then, an analogous condition follows
also for rectangular domains Ω ⊂ Rd with d ≥ 2. This follows from the results in [20, Sect. 4.8.1]
(with a slightly different subspace EM). For general (nonrectangular) domains the satisfiability
of (1.4b) is still an interesting open question.
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We are now ready to present one typical explicit oblique projection feedback control operator.
For every given pair of constants λ1 > 0 and λ2 > 0, we consider the control function u defined by

M∑
i=1

ui1ωMi = Kλ
UM y := P

E⊥M
UM

(
(−ν∆+1)y + ς ∂∂ty + (a−1)y − λ1y − λ2ẏ

)
. (1.5)

To present our main results for both Dirichlet, G = 1, and Neumann, G = ∂
∂n , boundary conditions

we define the Hilbert spaces

V = VG = V1 := H1
0 (Ω) := {f ∈ H1(Ω) | f |Γ = 0},

V = VG = V ∂
∂n

:= H1(Ω).

For both of the boundary conditions we also set H := L2(Ω).

Theorem 1.1. Let d ∈ {1, 2, 3} and a real number 1 < r ≤ 3. Under the conditions in (1.4), there
exists M ∈ N large enough such that the system

∂2

∂t2 y + (−ν∆ + 1)y + ς ∂∂ty + (a− 1)y − |y|r−1
R y = Kλ

UM y, Gy|Γ = 0, (1.6a)

y(0) = y0,
∂
∂ty(0) = y1. (1.6b)

is locally exponentially stable in V ×H, with rate −µ2 . That is, there are positive constants ε > 0,
µ > 0, and C ≥ 1, such that

|(y0, y1)|V×H < ε =⇒
∣∣(y(t), ∂∂ty(t))

∣∣2
V×H ≤ Ce−µt |(y0, y1)|2V×H . (1.7)

Theorem 1.1 is a corollary of a more abstract result that we will present later on. However,
the particular class of nonlinearities in (1.6) is interesting in the stabilization context, because the
corresponding free dynamics (uncontrolled) solutions are unstable and may blow-up in finite time.
The task of our feedback here is to drive the solution exponentially to zero. In particular, the
feedback must be able to avoid the blow-up of the solutions, provided the initial condition is small
enough.

The goal (1.7) will follow from the global stability of the corresponding linear closed-loop system
(system (1.6) without the nonlinear term). Hence, we will start by proving the following.

Theorem 1.2. Under conditions in 1.4, there exists M ∈ N large enough such that the system

∂2

∂t2 y + (−ν∆ + 1)y + ς ∂∂ty + (a− 1)y = Kλ
UM y, Gy|Γ = 0, (1.8a)

y(0) = y0,
∂
∂ty(0) = y1. (1.8b)

is (globally) exponentially stable in V ×H, with rate −µ. That is, there are positive constants µ > 0
and C ≥ 1, such that

for all (y0, y1) ∈ V ×H,
∣∣(y(t), ∂∂ty(t))

∣∣2
V×H ≤ Ce−µt |(y0, y1)|2V×H . (1.9)

Then we will use a suitable fixed point argument to prove that (1.7) holds true for the solution
of (1.6).

1.2. State of the art concerning oblique projection feedback controls. The oblique projec-
tion based feedback in (1.5) was introduced in [20] in the setting of linear parabolic-like equations.
The assumptions in [20] are clearly motivated by the latter type of equations and it is not difficult
to see that they are not fulfilled by linear wave-like equations. Namely, the results in [20] concern
the stability of linear evolutionary system in the general (abstract) form

ż + Az + Arcz =

M∑
i=1

uiΦi, (1.10)
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where our M actuators are now the Φis. Attempting to write the “linearized” (i.e., with N = 0)
nonautonomous damped wave equation (1.2) in the abstract form (1.10), we obtain by defining

zw :=

[
y
∂
∂t
y

]
that

Aw =

[
0 −1

−ν∆ + 1 ς1

]
, Aw

rc =

[
0 0

a− 1 0

]
, and Φi =

[
0

1ωMi

]
. (1.11)

Unfortunately, the operator Aw in (1.11) does not satisfy the symmetry assumption required for
the “diffusion-like” operator in [20, 21]. Therefore, we cannot directly use the results in [20] for our
damped wave equation with the operators Aw and Aw

rc defined in (1.11), and we are not making any
further attempt on this direction. Instead, we are dealing directly with the damped wave equation.

There exists however a particular property shared by both of the operator Aw and the opera-
tor −ν∆ + 1 (taking the role of A in the parabolic case), namely both dynamical systems

żw + Awzw = 0 and ż + (−ν∆ + 1)z = 0

are stable. It is this property that will allow us to extend the results in [20] for linear weakly-damped
wave equations. Of course, for such extension we will also have to deal with the regularity differences
between the two types of equations.

Finally, concerning the local stabilization of the nonlinear systems, we follow a standard, but
nontrivial, fixed point argument. Here, we follow mainly the ideas from [27, 21].

1.3. On the stabilization of linear nonautonomous equations. Up to now, results on stabi-
lization of nonautonomous systems with a finite number of actuators, concern mainly parabolic-like
equations. The development of appropriate mathematical tools to tackle this problem was initiated
in [6] for the Navier–Stokes equations. This fact is also mentioned in [12, Sect. 7.1]. Indeed, the
standard spectral properties used to investigate the stability of autonomous systems are not appro-
priate for dealing with nonautonomous systems, as shown by the examples in [38]. In [6], appropriate
truncated observability inequalities were proven and used to derive the internal stabilizability result.
Truncated observability inequalities were also used in [30, 31] to derive the boundary stabilizability
result. These inequalities were also used in [2] to derive the internal stabilizability result for weakly
damped wave equations.

A different approach was proposed in [19] (see also [18]) for a one-dimensional domain Ω ⊂ R. This
approach relies on an appropriate direct finite-dimensional approximation of an infinite-dimensional
internal control which drives the solution to zero at a fixed finite time T > 0. One advantage
of this approach is that it allows to easily derive estimates on the number of actuators needed to
guarantee the stabilization result. Later, the same idea was used to derive the internal and boundary
stabilization results for higher dimensions Ω ⊂ Rd with d ≥ 2, see [9, 27].

The above stabilizability results also include a feedback control which is given through the so-
lution of a differential Riccati operator. Since solving a differential Riccati equation for accurate
approximations (fine discretizations, large number of degrees of freedom) and a relatively long time-
horizon can be a difficult numerical task, a new tool has been proposed recently in [20] to tackle
parabolic equations. Namely, the explicit oblique projection feedback as in (1.5), whose numerical
computation amounts essentially to the computation of the inverse of an M ×M matrix. Thus its
numerical difficulty is essentially independent of the degrees of freedom of the discretized equations.

Here, we shall show that a similar explicit feedback is able to stabilize weakly damped linear wave
equations.

1.4. Further comments on stabilization of partial differential equations. Stabilization of
nonautonomous systems appear in applications when we want to stabilize our system to one of its
trajectories. If such targeted trajectory is time-dependent then the problem can be rewritten as the
stabilization (to zero) of a nonautonomous system, by considering the dynamics of the difference
to the target (see, e.g., [6, Sect. 2.2], [27]). The most studied case is the case where the targeted
trajectory is time-independent, that is, a steady state (an equilibrium). Since such steady states
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will not exist if our dynamical system is subject to time-dependent external forces, we conclude that
stabilization to time-dependent trajectories is no less important than stabilization to steady states.
Of course, in the particular case where steady states exist, such time-independent trajectories are
“naturally” desirable targets. Stabilization to steady states reduces to the stabilization (to zero)
of autonomous systems, where usually the spectral properties of the (linearized) dynamics operator
are the main tool used to derive the stabilization results. For works dealing with such autonomous
systems, and finite-dimensional controls we refer the reader to [7, 5, 24, 22, 4, 29] and references
therein.

The above results concern the stabilization of parabolic-like equations. Concerning wave-like
equations, for stabilization results by using a finite number of actuators we refer the reader to [2,
17, 23]. In these works the nonlinearity is such that the solutions of the uncontrolled systems do
not blow-up in finite time. We are interested in finite-dimensional controls, because in applications
we will have only a finite number of actuators at our disposal. Though infinite-dimensional controls
are not practical for real world applications, an impressive amount of research has been devoted to
the stabilization by using such controls. This is still an interesting mathematical problem and could
be seen as a first step towards the construction of a practical finite-dimensional control. For results
on the stabilization of wave-like equations, by means of infinite-dimensional controls, and on the
stability of damped wave-like equations, we refer the reader to [3, 15, 1, 40, 39, 36, 14]. We refer
also to [28] and references therein, for analogous stabilization results concerning the Navier–Stokes
equations (which is parabolic like) and to [8], concerning the stabilization of a coupled parabolic-ode
system.

1.5. Contents and general notation. The rest of the paper is organized as follows. In Section 2
we consider damped wave-like equations in an abstract form and introduce the general properties
required for the operators involved in the dynamics. Further, we investigate a relaxed form of the
set of conditions (1.4) for the oblique projection feedback operator. In Section 3 we prove our main
global stability result for the linear case. Then this result is strengthened to the local stability result
for the nonlinear case in Section 4. Section 5 presents numerical experiments which validate the
theoretical results in the previous sections. Short final comments are given in Section 6. Finally, the
appendix gathers proofs of auxiliary results used in the main text.

Concerning the notation, we write R and N for the sets of real numbers and nonnegative integers,
respectively, and we define Rr := (r, +∞) and Rr := [r, +∞), for r ∈ R, and N0 := N \ {0}.

For an open interval I ⊆ R and two Banach spaces X, Y , we write W (I, X, Y ) := {y ∈ L2(I, X) |
ẏ ∈ L2(I, Y )}, where ẏ := d

dty is taken in the sense of distributions. This space is endowed with the

natural norm |y|W (I,X, Y ) :=
(
|y|2L2(I,X) + |ẏ|2L2(I, Y )

)1/2
.

If the inclusions X ⊆ Z and Y ⊆ Z are continuous for a Hausdorff topological space Z, then we can
define the Banach spaces X×Y , X∩Y , and X+Y , endowed with the norms defined as |(a, b)|X×Y :=(
|a|2X + |b|2Y

) 1
2 , |a|X∩Y := |(a, a)|X×Y , and |a|X+Y := inf(aX , aY )∈X×Y

{
|(aX , aY )|X×Y | a = aX +

aY
}

, respectively. In case we know that X ∩ Y = {0}, we say that X + Y is a direct sum and we
write X ⊕ Y instead.

If the inclusion X ⊆ Y is continuous, we write X ↪−→ Y . We write X
d
↪−→ Y , respectively X

c
↪−→ Y ,

if the inclusion is also dense, respectively compact.
The space of continuous linear mappings from X into Y is denoted by L(X,Y ). In case X = Y

we write L(X) := L(X,X). The continuous dual of X is denoted X ′ := L(X,R).
The space of continuous functions from X into Y is denoted by C(X,Y ).
The orthogonal complement to a subset S ⊆ H of a Hilbert space H, with scalar product (·, ·)H ,

is denoted by S⊥ := {h ∈ H | (h, s)H = 0 for all s ∈ S}.
By C [a1,...,an] we denote a nonnegative function that increases in each of its nonnegative argu-

ments ai, 1 ≤ i ≤ n.
Finally, C, Ci, i = 0, 1, . . . , stand for unessential positive constants.
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2. Assumptions

As we will recall later on, with either Dirichlet or Neumann boundary conditions, system (1.2)
can be rewritten as the evolutionary system

ÿ +Ay + ςẏ +Ary +N (y) = h, (2.1a)

y(0) = y0, ẏ(0) = y1, (2.1b)

evolving in a suitable Hilbert space. Here we have taken a general external forcing h in the place of
the control.

2.1. Assumptions on the dynamical operators. Let H and V be separable Hilbert spaces,
with V ⊆ H. We will consider H as pivot space, that is, H ′ = H.

Assumption 2.1. A ∈ L(V, V ′) is an isomorphism from V onto V ′, A is symmetric, and (y, z) 7→
〈Ay, z〉V ′,V is a complete scalar product on V.

From now on we suppose that V is endowed with the scalar product (y, z)V := 〈Ay, z〉V ′,V , which
still makes V a Hilbert space. Therefore, A : V → V ′ is an isometry.

Assumption 2.2. The inclusion V ⊆ H is continuous, dense, and compact.

Necessarily, we have that the operator A is densely defined in H, with domain D(A) := {u ∈ V |
Au ∈ H} endowed with the scalar product (y, z)D(A) := (Ay,Az)H , and the inclusions

D(A)
d,c
↪−−→ V

d,c
↪−−→ H

d,c
↪−−→ V ′

d,c
↪−−→ D(A)′.

Further, A has compact inverse A−1 : H → D(A), and we can find a nondecreasing system of
(repeated) eigenvalues (αi)i∈N0

and a corresponding complete basis of eigenfunctions (ei)i∈N0
:

0 < α1 ≤ α2 ≤ · · · ≤ αi ≤ αi+1 → +∞ and Aei = αiei.

For the time-dependent operators we assume the following:

Assumption 2.3. For (almost) all t > 0 we have Ar(t) ∈ L(H), and there is a nonnegative
constant Cr such that, |Ar|L∞(R0,L(H)) ≤ Cr.

Assumption 2.4. There exist constants CN ≥ 0, ζ ≥ 0, and η ≥ 1 such that for (almost) all t ≥ 0,

ζ + η > 1 and |N (t, y)−N (t, z)|H ≤ CN
(
|y|ζV + |z|ζV

)
|y − z|ηV . (2.2)

Remark 2.5. We can also consider nonlinearities satisfying, for some integer n > 1, |N (t, y)−N (t, z)|H ≤

CN
n∑
i=1

(
|y|ζiV + |z|ζiV

)
|y − z|ηiV , with ηi ≥ 1 and ζi + ηi > 1. For the sake of simplicity of the exposi-

tion, we restrict ourselves to the case n = 1.

2.2. Assumptions on the feedback control construction. Looking at conditions (1.4), we
consider sequences of subspaces

E{1}, E{1,2}, . . . , E{1,2,3,...,M} and U1, U2, . . . , UM , (2.3)

where the Mth term of each sequence is an M -dimensional space, that is, dimEM = M = dimUM .
Motivated by the results in [20, Sect. 4.8] (see also [20, Rem. 3.9]), in order to prove the bound-

edness of the norm
∣∣∣PE⊥MUM

∣∣∣
L(H)

≤ CP , uniformly on M , it may be convenient to consider different

sequences.
To simplify the exposition, we denote by #Z ∈ N the number of elements of a given finite

set Z ⊆ Y , see [13, Sect. 13]. For N ∈ N0, #Z = N simply means that there exists a one-to-one
correspondence from {1, 2, . . . , N} onto Z. Of course #Z = 0 means that Z = ∅, the empty set. We
also denote the collection

PN (Y ) = {Z ⊆ Y | #Z = N}.
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Now instead of (2.3), for every M ∈ N0 we consider the following more general sequences

E{σ1
1 ,σ

1
2 ,...,σ

1
n(1)
}, E{σ2

1 ,σ
2
2 ,...,σ

2
n(2)
}, . . . , E{σM1 ,σM2 ,...,σM

n(M)
},

and

Un(1), Un(2), . . . , Un(M).

For each M ∈ N0, we denote Mσ := {σM1 , σM2 , . . . , σMn(M)} where the notation “Mσ” underlines the

association with M . The set Mσ is specified by an injective sequence σM : {1, 2, . . . , n(M)} →
N0 which, in particular, gives us the cardinality of Mσ, #Mσ = n(M). That is, we have the
bijection σM : {1, 2, . . . , n(M)} →Mσ ∈ P#Mσ (N0) defined by i 7→ σMi . Further, we define

EMσ := span{ei | i ∈Mσ} and U#Mσ := Un(M), (2.4)

with the property that dimEMσ = #Mσ = dimU#Mσ = n(M).
With this notation, #Mσ will correspond to the number of actuators.
For each M ∈ N0, we also consider the two particular eigenvalues defined as

αMσ := max{αi | i ∈Mσ}, αMσ+ := min{αi | i /∈Mσ}. (2.5)

Notice that, the sequence (2.3) is the particular case of (2.4) where σMi = i, #Mσ = M , Mσ = M =
{1, . . . ,M}, αMσ = αM , and αMσ+ = αM+1.

The results in [20] tell us that the linear closed-loop parabolic-like system

ż +Az +Ar(t)z − K̂
F̂Mσ
U#Mσ

(t, z) = 0, z(0) = z0 ∈ H, (2.6)

is globally exponentially stable, with the explicit feedback control

z 7→ K̂
F̂Mσ
U#Mσ

(t, z) = P
E⊥Mσ
U#Mσ

(
Az +Ar(t)z − F̂Mσz)

)
,

provided (a corollary of) (1.4) holds true, with (Mσ, F̂Mσ ) = (M, λ1).
In [32], dealing with parabolic equations and suitable nonlinearities, it was observed that we

(may) need to take F̂Mσ 6= λ1, namely F̂Mσ = A + λ1. This is the reason why we will consider in
this section (see Assumption 2.6) a general linear bounded operator FMσ ∈ L(EMσ × EMσ , EMσ ).

We are going to show that also the linear wave like-system

ÿ +Ay + ςẏ +Ary = K
FMσ
U#Mσ

y, (2.7a)

y(0) = y0, ẏ(0) = y1, (2.7b)

is globally exponentially stable, with the analogous explicit feedback control

y 7→ K
FMσ
U#Mσ

(t, y) := P
E⊥Mσ
U#Mσ

(
Ay +Ar(t)y + ςẏ −FMσ (PEMσ

y, PEMσ
ẏ)
)
, (2.8)

provided conditions analogous to (1.4) are satisfied. To introduce such conditions, first we consider
the following dynamical equation

q̈ = −FMσ (q, q̇), (q(s), q̇(s)) = (q0,s, q1,s) ∈ EMσ × EMσ , t > s, (2.9)

evolving in the finite-dimensional space EMσ×EMσ ⊂ H×H for an initial time s ≥ 0. The dynamics
of (2.9) will be required to be exponentially stable. This fact motivates the following requirements
for the triple (EMσ , U#Mσ ,FMσ ) defining the feedback operator.
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Assumption 2.6. For the sequence of triples (EMσ , U#Mσ ,FMσ )M∈N0 it holds:

• FMσ ∈ L(EMσ × EMσ , EMσ ); (2.10a)

• There are CF ≥ 1 and λ > 0, independent of s ≥ 0, such that the

solution of (2.9) satisfies: for all s ≥ 0 and all (q0,s, q1,s) ∈ EMσ × EMσ ,

|(q(t), q̇(t))|V×H ≤ CFe−λ(t−s) |(q0,s, q1,s)|V×H ; (2.10b)

• lim
M→+∞

αMσ+ → +∞; (2.10c)

• L2(Ω) = U#Mσ ⊕ E⊥Mσ ; (2.10d)

•
∣∣∣∣PE⊥MσU#Mσ

∣∣∣∣
L(H)

≤ CP < +∞, with CP > 0 independent of M. (2.10e)

As we will see, while for the parabolic system (2.6) the operator F̂Mσ imposes the dynamics of
the component qz := PEMσ

z, for the wave system (2.7) the operator FMσ imposes the dynamics of

the component (qy, q̇y) := (PEMσ
y, PEMσ

ẏ). In particular, for the choice of F̂MσPEMσ
z = λ1PEMσ

z
for (2.6), we obtain the following stable dynamical system

q̇z(t) = −λqz(t) t ≥ s, qz(s) = qs. (2.11)

For every solution of (2.11), we have qz(t) = e−λ(t−s)qz(s) for t ≥ s ≥ 0. Analogously, for the linear
wave-like system (2.7), by setting

FMσ (PEMσ
y, PEMσ

ẏ) = λ11PEMσ
y + λ21PEMσ

ẏ, (2.12)

we come up with the following stable dynamical system

q̈y = −λ1qy − λ2q̇y t ≥ s, (qy(s), q̇y(s)) = (q0,s, q1,s). (2.13)

Note that, with A := λ11, H := EMσ =: V, and ς := λ2, system (2.13) takes the form of a damped
wave-like equation as

q̈ +Aq + ςq̇ = 0 t ≥ 0, (q(0), q̇(0)) = (q0, q1) ∈ V ×H, (2.14)

which is stable provided that Assumptions 2.1–2.2 hold with (A,V,H) in the place of (A, V,H).
More precisely, we have the following.

Lemma 2.7. There are constants Cw ≥ 1 and µw > 0 such that for all (y0, y1) ∈ V ×H the solution
of (2.14) satisfies

|(q(t), q̇(t))|V×H ≤ Cwe−µwt |(q0, q1)|V×H . (2.15)

Therefore, we have the exponential stability of system (2.13).
Proofs of Lemma 2.7 can be found in [37, 35]. The rate −µw depends on ς, for example in [37,

Ch. IV, Sect. 1.2] we find that µw ≤ min{ ς4 ,
α1

2ς }, while in [35, Ch. 3, Sect. 3.8.4, Cor. 38.8] we

find µw ≤ min{1, ς2 ,
α1

1+ς }, where α1 > 0 is the first (smallest) eigenvalue of A. Those different

estimates also suggest that the “best” possible µw := sup{µw | (2.15) holds true for some Cw} is not
trivial question. In particular, a large ς does not necessarily lead to a large µw, see [11].

3. The linear system

In this section, we prove Theorem 1.2.
First of all, observe that by setting Q := PE⊥Mσ

y, the dynamics of (2.7) can be rewritten as

q̈ = −FEMσ
(q, q̇), (3.1a)

Q̈+ PE⊥Mσ

(
Ay + ςẏ +Ary

)
= PE⊥Mσ

P
E⊥Mσ
U#Mσ

(
Ay + ςẏ +Ary −FMσ (q, q̇)

)
. (3.1b)
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Using the fact that 1− PE
⊥
Mσ

U#Mσ
= P

U#Mσ
E⊥Mσ

, system (3.1) can be expressed as

q̈ = −FEMσ
(q, q̇), (3.2a)

Q̈+ P
U#Mσ
E⊥Mσ

(
Ay + ςẏ +Ary

)
= −PE⊥MσP

E⊥Mσ
U#Mσ

FMσ (q, q̇). (3.2b)

Now since ξ := FMσ (q, q̇) ∈ EMσ , we have

PE⊥Mσ
P
E⊥Mσ
U#Mσ

ξ = PE⊥Mσ
P
E⊥Mσ
U#Mσ

PEMσ
ξ = (1− PEMσ

)P
E⊥Mσ
U#Mσ

PEMσ
ξ = P

E⊥Mσ
U#Mσ

ξ − ξ

= −PU#Mσ
E⊥Mσ

ξ

and, as a consequence, due to (3.2), we can rewrite (2.7) as

q̈ = −FEMσ
(q, q̇), (3.3a)

q(s) = q0 ∈ EMσ , q̇(s) = q1 ∈ EMσ , (3.3b)

Q̈+ P
U#Mσ
E⊥Mσ

(
Ay + ςẏ +Ary

)
= P

U#Mσ
E⊥Mσ

FMσ (q, q̇), (3.3c)

Q(s) = Q0 ∈ V
⋂
E⊥Mσ , Q̇(s) = Q1 ∈ E⊥Mσ . (3.3d)

Since the dynamics of (1.8) can be written as (2.7), and hence as (3.3), then Theorem 1.2 shall
follow as a corollary of the following result.

Theorem 3.1. Let Assumptions 2.1–2.3 and 2.6 hold true. Then system (2.7) is exponentially
stable, for M large enough. There are constants C = C [CF ] ≥ 1 and 0 < µ < 2λ such that for

all (y0, y1) ∈ V ×H, we have (y, ẏ) ∈ C(R0;V ×H) and

|y(t), ẏ(t)|V×H ≤ Ce−
µ
2 (t−s) |y(s), ẏ(s)|V×H , t ≥ s ≥ 0. (3.4)

The constants C and µ may also depend on M .

For the proof of Theorem 3.1 we will need the following proposition, whose proof is given in the
Appendix, Section A.1.

Proposition 3.2. Let µ1 > 0 and µ2 > 0. For every 0 ≤ µ0 ≤ min{µ1, µ2}, with max{µ1, µ2} > µ0,
we have the inequality ∫ t

s

e−µ1(t−τ)e−µ2(τ−s) dτ ≤ C[
1

max{µ1,µ2}−µ0

]e−µ0(t−s).

Another auxiliary result is the following, whose proof can be found in [20].

Lemma 3.3. Let E⊥,V
′

Mσ ⊂ V ′ be the orthogonal complement to U#Mσ ⊂ V ′ in V ′. Then the oblique

projection, in V ′ onto U#Mσ along E⊥,V
′

Mσ , P
E⊥,V

′
Mσ

U#Mσ
∈ L(V ′) is an extension of the analogous oblique

projection in H, P
E⊥Mσ
U#Mσ

= P
E⊥,HMσ
U#Mσ

∈ L(H). That is, P
E⊥,V

′
Mσ

U#Mσ
h = P

E⊥Mσ
U#Mσ

h, for all h ∈ H.

Hereafter, for simplicity, as in [20] we shall still denote P
E⊥,V

′
Mσ

U#Mσ
by P

E⊥Mσ
U#Mσ

.

3.1. Proof of Theorem 3.1. The existence and uniqueness of the solution y to (2.7) follows from
standard arguments for linear wave equations, see [37, Sect. 4] for the details. Here we restrict
ourselves to the formal derivation of suitable a priori-like estimates leading us to the stability result.

Observe that we can write system (3.3c)–(3.3d) as a damped wave system

Q̈+AQ+ ςQ̇+ P
U#Mσ
E⊥Mσ

ArQ = h(q, q̇), (3.5a)

Q(s) = Q0 ∈ V
⋂
E⊥Mσ , Q̇(s) = Q1 ∈ E⊥Mσ , (3.5b)
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for time t ≥ s ≥ 0, with the external forcing

h(q, q̇) := −PU#Mσ
E⊥Mσ

(
Aq + ςq̇ +Arq

)
+ P

U#Mσ
E⊥Mσ

FMσ (q, q̇). (3.5c)

Some of the following arguments are a slight variation of standards ones. We start by looking at the
dynamics of W := Q̇+ εQ, with ε ∈ (0, ς),

Ẇ = Q̈+ εQ̇ = −AQ− (ς − ε)Q̇− PU#Mσ
E⊥Mσ

ArQ+ h

= −AQ− (ς − ε)W + ε(ς − ε)Q− PU#Mσ
E⊥Mσ

ArQ+ h

and, by taking the duality product 〈·, ·〉V ′,V with W , we obtain

d
dt |W |

2
H = −2(Q,W )V − 2(ς − ε) |W |2H

+ 2ε(ς − ε)(Q,W )H − 2(P
U#Mσ
E⊥Mσ

ArQ,W )H + 2(h,W )H .

Recalling (2.5) and using the fact that |Q|H ≤ α
− 1

2

Mσ+ |Q|V , we find

d
dt

(
|W |2H + |Q|2V

)
≤ −2ε |Q|2V − 2(ς − ε) |W |2H + 2ε(ς − ε)α−

1
2

Mσ+ |Q|V |W |H

+ 2
∣∣∣PU#Mσ
E⊥Mσ

Ar

∣∣∣
L(H)

α
− 1

2

Mσ+ |Q|V |W |H + 2 |h|H |W |H .

Next, by using the appropriate Young inequalities, we find that, for an arbitrary γ = (γ1, γ2, γ3) ∈
(0,+∞)3,

d
dt

(
|W |2H + |Q|2V

)
≤ −ΨQ |Q|2V −ΨW |W |2H + γ−1

3 |h|
2
H , (3.6a)

with

ΨQ =

(
2ε− γ−1

1 ε2(ς − ε)2α−1
Mσ+ − γ

−2
2

∣∣∣PU#Mσ
E⊥Mσ

Ar

∣∣∣2
L(H)

α−1
Mσ+

)
, (3.6b)

ΨW = (2(ς − ε)− γ1 − γ2 − γ3). (3.6c)

Since ς > 0, it is clear that we can choose a quadruple (ε, γ1, γ2, γ3) ∈ (0,+∞)4, with small enough
coordinates, such that

0 < ε < ς and ΨW > 0.

Then for such a fixed quadruple and for M large enough it follows that ΨQ > 0, due to (2.10c)
and (2.10e). Thus, we obtain

d
dt

(
|W |2H + |Q|2V

)
≤ −µ

(
|W |2H + |Q|2V

)
+ γ−1

3 |h|
2
H , (3.7)

with µ := min{ΨW ,ΨQ}.
From (3.5c) and (2.10b), we have that

|h(q(t), q̇(t))|H ≤ C1 |(q(t), q̇(t))|V×H ≤ C2e−λ(t−s) |(q(s), q̇(s))|V×H .

By the Gronwall inequality it follows that, with Z(t) := |W (t)|2H+|Q(t)|2V and z(t) := |(q(t), q̇(t))|2V×H ,

Z(t) ≤ e−µ(t−s)Z(s) +

∫ t

s

e−µ(t−τ)γ−1
3 |h(τ)|2H dτ

≤ e−µ(t−s)Z(s) + γ−1
3 C2

2z(s)

∫ t

s

e−µ(t−τ)e−2λ(τ−s) dτ.

Hence, by Proposition 3.2 it follows that, for any given µ < min{µ, 2λ} and a suitable constant D =
D(µ, µ, 2λ) > 0,

Z(t) ≤ e−µ(t−s)Z(s) +Dγ−1
3 C2

2z(s)e
−µ(t−s).
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Now, from W = Q̇+ εQ, we have that the norm (|Q|2V + |W |2H)
1
2 + |(q, q̇)|V×H is equivalent to the

norm
∣∣∣(Q+ q, q̇ + Q̇)

∣∣∣
V×H

, that is, there are constants C3 > 0 and C4 > 0 such that

C3

∣∣∣(q +Q, q̇ + Q̇)
∣∣∣
V×H

≤ (|Q|2V + |W |2H)
1
2 + |(q, q̇)|V×H

≤ C4

∣∣∣(q +Q, q̇ + Q̇)
∣∣∣
V×H

.

Thus, using (2.10b), we conclude that

|(y(t), ẏ(t))|V×H =
∣∣∣(q(t) +Q(t), q̇(t) + Q̇(t))

∣∣∣
V×H

≤ C−1
3

(
Z(t)

1
2 + z(t)

1
2

)
≤ C−1

3 max
{

1, D
1
2 γ
− 1

2
3 C2, CF

}
e−

µ
2 (t−s)

(
Z(s)

1
2 + z(s)

1
2

)
≤ C4C

−1
3 max

{
D

1
2 γ
− 1

2
3 C2, CF

}
e−

µ
2 (t−s) |y(s), ẏ(s)|V×H , (3.8)

since CF ≥ 1. This finishes the verification of (3.4).
It remains to show that (y, ẏ) ∈ C(R0;V × H), which is equivalent to showing that (y, ẏ) ∈

C([0, T ];V ×H) for arbitrary T > 0. Here, we follow the argument given in [37, Ch. II, Thm. 4.1]. For

that purpose, we fix an arbitrary T > 0 and start by showing that ÿ ∈ L2([0, T ];V ′) and |(y, ẏ)|2V×H ∈
C([0, T ];R).

Observe that from (y, ẏ) ∈ L∞(R0;V ×H), it follows that Ay+Ary+ςẏ ∈ L∞(R0;V ′). By (2.10a)
we also have that FMσ ∈ L(H × H,H) which implies that FMσ ∈ L(V × H,H), because EMσ is
finite-dimensional.

Thus by (2.7), (2.8), H ↪−→ V ′, and Lemma 3.3, we derive that ÿ ∈ L∞(R0;V ′).

Note that κ := K
FMσ
U#Mσ

y ∈ L∞([0, T ], H), since κ ∈ L∞([0, T ], V ′) and U#Mσ ⊂ H is finite-

dimensional. Hence we find

(y, ẏ, ÿ, κ) ∈ L∞((0, T );V ×H × V ′ ×H), (3.9a)

ÿ +Ay ∈ L∞((0, T );H). (3.9b)

By multiplying (2.7) with ẏ (cf. [37, Ch. II, Lem. 4.1]), we arrive at

d
dt |(y, ẏ)|2V×H = d

dt

(
|y|2V + |ẏ|2H

)
= −2ς |ẏ|2H − 2(Ary + κ, ẏ)H (3.9c)

which gives us d
dt |(y, ẏ)|2V×H ∈ L1((0, T ),R) and |(y, ẏ)|2V×H ∈ C([0, T ],R).

The continuity of the norm |(y, ẏ)|V×H together with the weak continuity of (y, ẏ) from [0, T ]
to V ×H, which can be derived from [37, Ch. II, Lem. 3.3], lead us to (y, ẏ) ∈ C([0, T ], V ×H). �

3.2. Proof of Theorem 1.2. Observe that we can write (1.8) as (2.7) by setting

A = −ν∆ + 1; Ar = (a− 1)1;

H = L2(Ω); D(A) = {z ∈ H2(Ω) | Gz |∂Ω = 0};

and with

V = {z ∈ H1(Ω) | z |∂Ω = 0} when G = 1 (Dirichlet boundary conditions);

V = H1(Ω) when G = n · ∇ (Neumann boundary conditions).

Therefore, Theorem 1.2 will follow from Theorem 3.1 with XG = V × H, provided that Assump-
tions 2.1–2.3 and also conditions (2.10a)–(2.10c) in Assumption 2.6 are satisfied. It is straightforward
to check that Assumptions 2.1–2.2 are indeed satisfied. It is also straightforward to check that As-
sumption 2.3 is satisfied for a ∈ L∞(R0 ×Ω). Condition (2.10a) is clearly satisfied with Mσ = M =
{1, 2, . . . ,M} and FMσ (q, q̇) = λ1q+λ2q̇. Then condition (2.10b) also follows, with a suitable λ > 0,
because q̈ = −λ1q−λ2q̇ is a damped wave-like equation (recall system (2.13) and take λ = µw as in
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Lemma 2.7). Condition (2.10c) now reads lim
M→+∞

αM+1 → +∞, which is known to be true for the

ordered eigenvalues of −ν∆ + 1.
Finally, notice that the assumption (1.4) in Theorem 1.2 corresponds to assumptions (2.10d)–

(2.10e). �

3.3. On the best achievable decreasing rate. A natural question now could be what is the best
exponential decreasing rate that we can achieve with such explicit oblique projection feedback.

Theorem 3.4. Let an arbitrary µ̂ with 0 < µ̂ < ς be given. If 2λ > ς, then there exist M large
enough and Ĉ ≥ 1 so that for all (y0, y1) ∈ V ×H, the solution of system (3.3) satisfies

|y(t), ẏ(t)|V×H ≤ Ĉe−
µ̂
2 (t−s) |y(s), ẏ(s)|V×H , t ≥ s.

Proof. Let ε ∈ (0, ς) be arbitrary given. Looking at (3.6), we can infer that for any given δ > 0,
we can choose the coordinates of γ ∈ (0,+∞)3 small enough, and then M large enough so that
ΦW ≥ 2(ς − ε) − δ and ΦQ ≥ 2ε − δ. Hence, with 0 < δ < min{2(ς − ε), 2ε} we can take µ :=
min{2(ς − ε)− δ, 2ε− δ} in (3.7), and an arbitrary

µ < min{2(ς − ε)− δ, 2ε− δ, 2λ}

in (3.8). Since 2λ > ς, choosing ε = ς
2 and δ = ς−µ̂

2 < ς − µ̂, we have that we may take µ <

min{ς − δ, 2λ} = ς − δ = ς+µ̂
2 . Thus, we may take µ = µ̂, because µ̂ < ς+µ̂

2 . �

Theorem 3.5. With the oblique projection feedback, we cannot obtain an exponential stabilization
rate strictly better than − ς

2 . That is, we cannot take µ̂ > ς in Theorems 3.1 and 3.4.

Proof. Let us consider the particular case of a constant reaction term Ar = −ρ1, with ρ > 0. In this
case with an initial condition (y0, y1) ∈ (V

⋂
E⊥Mσ )× E⊥Mσ we observe that system (3.3) reads

q̈ = −FEMσ
(q, q̇), q(s) = 0 = q̇(s),

Q̈+ P
U#Mσ
E⊥Mσ

(
A(Q+ q) + ς(Q̇+ q̇)− ρ(Q+ q)

)
= P

U#Mσ
E⊥Mσ

FMσ (q, q̇),

Q(s) = Q0 = y0 ∈ V
⋂
E⊥Mσ , Q̇(s) = Q1 = y1 ∈ E⊥Mσ .

From (2.10b) it follows that (q, q̇) = (0, 0), thus (y, ẏ, ÿ) = (Q, Q̇, Q̈) and

Q̈+AQ+ ςQ̇− ρQ = 0, (Q(s), Q̇(s)) ∈ (V
⋂
E⊥Mσ )× E⊥Mσ , (3.10)

whose dynamics can be written, by setting Z = Q̇, as

d

dt

[
Q
Z

]
= A

[
Q
Z

]
, with A :=

[
0 1

−A+ ρ1 −ς1

]
.

Following an argument as in [11], we observe that every eigenvalue ζ of A, and one of its associated

eigenvectors

[
V1

V2

]
, must satisfy

V2 = ζV1 and −AV1 + ρV1 − ςV2 = ζV2,

which implies that −ζ(ζ + ς) + ρ must be an eigenvalue of A, as

AV1 = (−ζ(ζ + ς) + ρ)V1.

That is, there exists i ∈ N0 with i /∈Mσ, such that −ζ(ζ + ς) + ρ = αi. From

ζ2 + ςζ − ρ+ αi = 0 ⇐⇒ ζ = ζ± =
−ς±
√
ς2−4(αi−ρ)

2 , (3.11)

we conclude that the real part Re(ζ) of ζ satisfies

Re(ζ+) > − ς
2 , if 4(αi − ρ) < ς2,

Re(ζ±) = − ς
2 , if 4(αi − ρ) ≥ ς2.
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Hence, independently of αi, we have always eigenvalues ζ with Re(ζ) ≥ − ς
2 .

Therefore the best exponential decreasing rate that we can expect is − ς
2 . �

3.4. Further remarks on the case of a constant reaction. For the constant reaction example
in the proof of Theorem 3.5, from (3.11) we can see that Re(ζ+) > 0 if αi < ρ for i /∈ Mσ. In this
case, system (3.10) is not stable. Also Re(ζ) = 0 ⇐⇒ ζ = ζ+ = 0 ⇐⇒ αi = ρ and in this case the

eigenvectors associated to ζ are of the form

[
ei
0

]
where Aei = αiei with i /∈Mσ. Such an eigenvector

is a steady state for system (3.10), therefore the system is not exponentially stable (with a strictly
negative rate −µ2 < 0).

Exponential stability of system (3.10) will follow if αi > ρ for all i /∈ Mσ, that is, if αMσ+ > ρ.
Because in this case for any αi ≥ αMσ+ > ρ, we will have that Re(ζ±) < 0. As a consequence also
system (3.3) is exponentially stable.

In other words, αMσ+ > ρ is a necessary and sufficient condition for the exponential stability of
system (3.3) with a suitable rate −µ2 < 0.

By taking a larger M , so that ς2 − 4(αi − ρ) < 0, system (3.10) is exponentially stable with
rate − ς

2 . Then, if (2.10b) holds with λ > − ς
2 , it follows that also system (3.3) is exponentially

stable with (the best possible) rate − ς
2 .

3.5. Short comparison to parabolic equations. Note that due to Theorem 3.5, the exponential
rate µ̂ in Theorem 3.4 for weakly damped wave-like equations (2.7) is bounded from above by ς.

This fact highlights a difference to parabolic-like equations (2.6), in which F̂Mσ ∈ L(EMσ ) is chosen

such that the dynamics q̇ = −F̂Mσq is stable,

|q(t)|H ≤ CFe−λ(t−s) |q(s)|H (cf. Assumption 2.6).

Indeed, for system (2.6) under Assumptions 2.1–2.3 and (2.10c)–(2.10e), any a priori given expo-

nential stability rate µ
2 can be achieved, provided that λ > µ

2 and M is large enough.

Moreover, for parabolic-like equations (2.6), setting F̂Mσ = −λ1 will clearly guarantee the ex-

ponential stability of the dynamics q̇ = −F̂Mσq. However, for damped wave-like equations (2.7)
it is not enough to set FMσ ∈ L(EMσ × EMσ , EMσ ) as FMσ (q, q̇) = −λq because this would imply

that q̈ = −q and that |q̇(t)|2EMσ
+ |q(t)|2EMσ

= |q̇(0)|2EMσ
+ |q(0)|2EMσ

. Therefore condition (2.10b) will

not be satisfied.
Analogously it is not enough to set FMσ (q, q̇) = −λq̇ because this would imply q̇(t) = e−λtq̇(0), q(t) =

q(0) + (1−e−λt)
λ q̇(0), and lim

t→+∞
|q(t)|EMσ

=
∣∣∣q(0) + q̇(0)

λ

∣∣∣
EMσ

. Hence, condition (2.10b) will not hold.

4. The nonlinear system

In this section we prove Theorem 1.1. We shall prove the result for a general class of weakly
damped wave-like equations of the form

ÿ +Ay + ςẏ +Ary +N (y) = K
FMσ
U#Mσ

(y, ẏ), (4.1a)

y(s) = y0, ẏ(s) = y1, s ≥ 0. (4.1b)

with a nonlinearity N = N (t, y) satisfying Assumption 2.4. We will consider (4.1) as a perturbation
of the linear system (2.7), where the nonlinear perturbation N satisfies (2.2).

Theorem 4.1. Let Assumptions 2.1–2.4 and 2.6 hold true. Then system (4.1) is locally exponen-
tially stable, for M large enough. There are constants ε > 0, C = C [CN ] ≥ 1, and 0 < µ < 2λ such

that for all (y0, y1) ∈ V × H, satisfying |(y0, y1)|V×H < ε, for the solution (y, ẏ) ∈ C(Rs;V × H)
to (4.1) it holds

|(y(t), ẏ(t))|V×H ≤ Ce−
µ
2 (t−s) |y0, y1|V×H t ≥ s ≥ 0. (4.2)
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The constants C and µ may also depend on M . Furthermore, the solution (y, ẏ) is unique in the
vector space L∞(Rs, V ×H).

Proof. We follow a standard fixed point argument. Let us consider the subspace of essentially
bounded functions from Rs = (s,+∞) into V ×H defined by

Zµ :=
{

z ∈ L∞(Rs, V ×H) | e
µ
2 (·−s)z(·) ∈ L∞(Rs, V ×H)

}
and endowed with the norm

|z|Zµ :=
∣∣∣eµ2 (·−s)z(·)

∣∣∣
L∞(Rs,V×H)

= ess sup
t>s

∣∣∣eµ2 (t−s)z(t)
∣∣∣
V×H

.

Further, for any % > 0 we define the set

Zµ% :=
{
z ∈ Zµ | |z|Zµ ≤ % |(y0, y1)|V×H

}
,

and the mapping

Ψ : Zµ% → Zµ, (z1, z2) 7→ Ψ(z1, z2),

for a suitable value of %, where Ψ(z1, z2) = Ψ(z1) := (y, ẏ) is the solution of

ÿ +Ay + ςẏ +Ary −K
FMσ
U#Mσ

(y, ẏ) = −N (z1), (4.3a)

y(s) = y0, ẏ(s) = y1. (4.3b)

Next, we will show that, for a suitable (large enough) % > 0, we can choose ε > 0 small enough so
that the mapping Ψ is a contraction in the subset Zµ% provided that |(y0, y1)|V×H < ε. Note that a
fixed point of Ψ solves system (4.1).

Let C and µ be as in Theorem 3.1 and set % > C.

s© Step 1: for small ε, Ψ maps Zµ% into itself. Let us fix an arbitrary z ∈ Zµ% . We denote by y the
solution of the linear wave system (2.7) for time t ≥ τ ≥ s, and W(t, s) stands for evolution operator
which takes (y0, y1), at initial time s, to (y0(t), y1(t)), at time t ≥ s. For simplicity, we write

y0 := (y0, y1) and y(t) := (y(t), ẏ(t)) = W(t, s)y0 = W(t, τ)y(τ).

Note that (4.3) is a perturbation of (2.7), and by Duhamel formula we have

|y(t)|V×H =

∣∣∣∣W(t, s)y0 +

∫ t

s

W(t, τ)
(
0,−N (τ, z1(τ))

)
dτ

∣∣∣∣
V×H

,

≤ Ce−
µ
2 (t−s) |y0|V×H + C

∫ t

s

e−
µ
2 (t−τ) |N (τ, z1(τ))|H dτ. (4.4)

Due to (2.2) from Assumption 2.4, we obtain that

|N (τ, z1(τ))|H ≤ CN |z1(τ)|ζ+ηV = CN e−(ζ+η)µ2 (τ−s)
∣∣∣eµ2 (τ−s)z1(τ)

∣∣∣ζ+η
V

,

which, together with (4.4) and z ∈ Zµ% , give us

|y(t)|V×H ≤ Ce−
µ
2 (t−s) |y0|V×H+CCN

∫ t

s

e−
µ
2 (t−τ)e−(ζ+η)µ2 (τ−s)%ζ+η |y0|ζ+ηV×H dτ

= Ce−
µ
2 (t−s) |y0|V×H+CCN %

ζ+η |y0|ζ+ηV×H

∫ t

s

e−
µ
2 (t−τ)e−(ζ+η)µ2 (τ−s) dτ.

Hence, using Proposition 3.2 and (2.2), we infer that there exists a constant D = C[ 1
ζ+η−1 ] > 0 such

that

|y(t)|V×H ≤ Ce−
µ
2 (t−s) |y0|V×H + CCN %

ζ+η |y0|ζ+ηV×H De−
µ
2 (t−s),
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which gives us ∣∣∣eµ2 (t−s)y(t)
∣∣∣
V×H

≤ C
(

1 + CN %
ζ+η |y0|ζ+η−1

V×H D
)
|y0|V×H .

We can see now that if |y0|V×H ≤ ε where

C
(
1 + CN %

ζ+ηDεζ+η−1
)
≤ % ⇐⇒ εζ+η−1 ≤ %−C

CN %ζ+ηDC

⇐⇒ ε ≤
(

%−C
CNDC

) 1
ζ+η−1

%−
ζ+η
ζ+η−1 , (4.5)

then

|Ψ(z)|Zµ = |y|Zµ = ess sup
t>s

∣∣∣eµ2 (t−s)y(t)
∣∣∣
V×H

≤ % |y0|V×H ,

and we can conclude that Ψ(Zµ% ) ⊆ Zµ% .

s© Step 2: for smaller ε, Ψ is a contraction in Zµ% . Note that, given (z,w) ∈ Zµ% ×Zµ% , we find that
the difference DΨ := Ψ(z)− Ψ(w) solves (4.3) with N (w1)−N (z1) in the place of −N (z1). Again,
due to Duhamel formula and Assumption 2.4, we arrive at

|DΨ (t)|V×H =

∣∣∣∣∫ t

s

W(t, τ)
(

0,N (τ,w1(τ))−N (τ, z1(τ))
)

dτ

∣∣∣∣
V×H

≤ CCN
∫ t

s

e−
µ
2 (t−τ)

(
|w1(τ)|ζV + |z1(τ)|ζV

)
|w1(τ)− z1(τ)|ηV dτ

= CCN

∫ t

s

e−
µ
2 (t−τ)e−(ζ+η)µ2 (τ−s)Ξ(w1,w1)

∣∣∣eµ2 (τ−s)d1(τ)
∣∣∣η
V

dτ, (4.6)

with

Ξ(w1,w1) :=

(∣∣∣eµ2 (τ−s)w1(τ)
∣∣∣ζ
V

+
∣∣∣eµ2 (τ−s)z1(τ)

∣∣∣ζ
V

)
,

d := z−w, and d1 := z1 −w1.

From (z,w) ∈ Zµ% ×Zµ% , we obtain that

Ξ(w1,w1) =

(∣∣∣eµ2 (τ−s)w1(τ)
∣∣∣ζ
V

+
∣∣∣eµ2 (τ−s)z1(τ)

∣∣∣ζ
V

)
≤ 2%ζ |y0|ζV×H (4.7)

and, since η ≥ 1, using the triangle inequality and [26, Prop. 2.6] we obtain∣∣∣eµ2 (τ−s)(w1(τ)− z1(τ))
∣∣∣η−1

V
≤
(∣∣∣eµ2 (τ−s)z1(τ)

∣∣∣
V

+
∣∣∣eµ2 (τ−s)w1(τ)

∣∣∣
V

)η−1

≤ (1 + 2η−2)

(∣∣∣eµ2 (τ−s)z1(τ)
∣∣∣η−1

V
+
∣∣∣eµ2 (τ−s)w1(τ)

∣∣∣η−1

V

)
≤ (2 + 2η−1)%η−1 |y0|η−1

V×H . (4.8)

Note also that

M := ess sup
τ>s

∣∣∣eµ2 (τ−s)(w1(τ)− z1(τ))
∣∣∣
V
≤ |z−w|Zµ . (4.9)

From (4.6), (4.7), (4.8), (4.9), and Proposition 3.2, it follows

|DΨ (t)|V×H ≤ (4 + 2η)CCN %
ζ+η−1 |y0|ζ+η−1

V×H M
∫ t

s

e−
µ
2 (t−τ)e−(ζ+η)µ2 (τ−s) dτ

≤ (4 + 2η)CCN %
ζ+η−1 |y0|ζ+η−1

V×H De−
µ
2 (t−s) |z−w|Zµ .
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which implies

|Ψ(z)− Ψ(w)|Zµ = ess sup
t>s

∣∣∣eµ2 (t−s)DΨ (t)
∣∣∣
V×H

≤ κ |z−w|Zµ ,

with

κ = (4 + 2η)CCN %
ζ+η−1 |y0|ζ+η−1

V×H D.

We see that if |y0|V×H ≤ ε where

(4 + 2η)CCN %
ζ+η−1εζ+η−1D < 1 ⇐⇒ ε <

(
1

(4+2η)CCND

) 1
ζ+η−1

%−1, (4.10)

we find that |Ψ(z)− Ψ(w)|Zµ < κ |z−w|Zµ with κ < 1.

Hence, if ε satisfies both (4.5) and (4.10), then Ψ is a contraction in Zµ% .

s© Step 3: verification of (y, ẏ) ∈ C(Rs;V ×H) . We can follow a similar argument as in the proof
of Theorem 3.1. For that we just need to observe that, for arbitrary T > s,

|N (y)|L∞([s,T ],H) ≤ CN |y|
ζ+η
L∞([s,T ],V ) ,

which allows us to obtain (3.9) with κ̂ := κ+N (y), in the place of κ = K
FMσ
U#Mσ

y.

s© Step 4: the solution exists, and is unique, in L∞(Rs, V × H). By the contraction mapping
principle there exists one fixed point ẑ ∈ Zµ% for Ψ . This means that ŷ := Ψ(ẑ) = ẑ solves (4.1).

It remains to prove that such fixed point ŷ =: (ŷ, ˙̂y) is the unique solution for (4.1) in L∞(Rs, V ×
H). Note that the contraction mapping principle also tells us that ŷ is unique in the set Zµ% , but it
does not guarantee uniqueness in the entire vector space L∞(Rs, V ×H).

Let ỹ ∈ L∞(Rs, V × H) =: (ỹ, ˙̃y) be another solution for (4.1). The difference d := ŷ − ỹ =

(ŷ − ỹ, ˙̂y − ˙̃y) =: (δ, δ̇) solves

δ̈ +Aδ + ςδ̇ +Arδ +N (ŷ)−N (ỹ) = K
FMσ
U#Mσ

(δ, δ̇),

δ(s) = 0, δ̇(s) = 0,

and setting w := δ̇ + εδ, with ε ∈ (0, ς), we find

ẇ = δ̈ + εδ̇ = −Aδ − (ς − ε)δ̇ +Arδ + K
FMσ
U#Mσ

(δ, δ̇)−N (ŷ) +N (ỹ),

from which we obtain

d
dt |w|

2
H = −2(δ, w)V − 2(ς − ε) |w|2H + (Arδ, w)H

+ 2ε(ς − ε)(δ, w)H + 2(K
FMσ
U#Mσ

(δ, δ̇), w)H + 2(N (ỹ)−N (ŷ), w)H ,

and consequently,

d
dt

(
|w|2H + |δ|2V

)
≤ −2ε |δ|2V − 2(ς − ε) |w|2H + 2ε(ς − ε)α−

1
2

1 |δ|V |w|H

+ 2Cr |δ|H |w|H + 2

∣∣∣∣PE⊥MσU#Mσ

∣∣∣∣
L(H)

∣∣∣PEMσ

(
Aδ + ςδ̇

)∣∣∣
H
|w|H

+ 2Cr

∣∣∣∣PE⊥MσU#Mσ

∣∣∣∣
L(H)

α
− 1

2
1 |δ|V |w|H

+ 2

∣∣∣∣PE⊥MσU#Mσ

∣∣∣∣
L(H)

|FMσ |L(H×H,H)

∣∣∣(δ, δ̇)∣∣∣
H×H

|w|H

+ 2 |N (ỹ)−N (ŷ)|H |w|H . (4.11)
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Next, due to the definition of w we have the estimates∣∣∣PEMσ

(
Aδ + ςδ̇

)∣∣∣
H

=
∣∣∣(APEMσ

δ + ςPEMσ
δ̇
)∣∣∣
H
≤ αMσ |δ|H + ς

∣∣∣δ̇∣∣∣
H

≤ αMσ |δ|H + ς |w|H + ςε |δ|H
≤ α−

1
2

1 (αMσ + ςε) |δ|V + ς |w|H . (4.12)

and ∣∣∣(δ, δ̇)∣∣∣
H×H

≤ |δ|H +
∣∣∣δ̇∣∣∣

H
≤ |δ|H + |w|H + ε |δ|H ≤ Θ

1
2
1 |δ|V + |w|H , (4.13)

where Θ1 := α−1
1 (1 + ε)2, with α1 the first eigenvalue of A. Further, we observe that, due to

Assumption 2.4, we have

|N (ỹ)−N (ŷ)|2H ≤ C
2
N

(
|ỹ|ζV + |ŷ|ζV

)2

|δ|2ηV ≤ Θ2 |δ|2V (4.14a)

with

Θ2 := 2C2
N

(
|ỹ|2ζV + |ŷ|2ζV

)
|δ|2(η−1)
V . (4.14b)

Combining (4.11), (4.12), (4.13), (4.14), and (2.10e), and using the Young inequality, we can conclude
that

d
dt

(
|w|2H + |δ|2V

)
≤ −2ε |δ|2V − 2(ς − ε) |w|2H + ε(ς − ε)α−

1
2

1

(
|δ|2V + |w|2H

)
+ α−1

1 C2
r |δ|

2
V + |w|2H + C2

Pα
−1
1 (αMσ + ςε)2 |δ|2V + |w|2H

+ 2CP ς |w|2H + C2
rC

2
Pα
−1
1 |δ|

2
V + |w|2H

+ C2
P |FMσ |

2
L(H×H,H) Θ1 |δ|2V + 2CP |FMσ |L(H×H,H) |w|

2
H

+ |w|2H + Θ2 |δ|2V + |w|2H . (4.15)

Therefore, we arrive at

d
dt

(
|w|2H + |δ|2V

)
≤ Θ3 |w|2H + Θ4 |δ|2V ≤ max{Θ3,Θ4}

(
|w|2H + |δ|2V

)
,

with

Θ3 :=− 2(ς − ε) + ε(ς − ε)α−
1
2

1 + 2CP

(
ς + |FMσ |L(EMσ×EMσ ,EMσ )

)
+ 5,

Θ4 :=− 2ε+ ε(ς − ε)α−
1
2

1 + α−1
1

(
C2

r + C2
rC

2
P + C2

P (αMσ + ςε)2
)

+ C2
P |FMσ |

2
L(EMσ×EMσ ,EMσ ) Θ1 + Θ2.

Since Θ := max{Θ3,Θ4} is locally integrable, by the Gronwall inequality we obtain

|w(t)|2H + |δ(t)|2V ≤ e
∫ t
s

Θ(τ),dτ
(
|w(s)|2H + |δ(s)|2V

)
= 0, 0 < s ≤ t ∈ R.

which implies that (δ(t), δ̇(t)) = 0, for all t ≥ s, and thus also

ỹ(t) = (ỹ(t), ˙̃y(t)) = (ŷ(t), ˙̂y(t)) = ŷ(t), for all t ≥ s.

This finishes the proof. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Observe that we can write (1.6) as (4.1). Since we already know, from Sec-
tion 3.2, that Assumptions 2.1–2.3 and (2.10a)–(2.10c) in Assumption 2.6 are satisfied, it remains
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to check that also Assumption 2.4 holds. Observe that (see, e.g., [32, Sect. 5.2.1]), for a bounded
domain Ω ⊂ Rd with d ∈ {1, 2, 3} we have that∣∣∣|y|r−1

R y − |z|r−1
R z

∣∣∣
H

=
∣∣∣|y|r−1

R y − |z|r−1
R z

∣∣∣
L2
≤ C1

(
|y|r−1

L2r + |y|r−1
L2r

)
|y − z|L2r

≤ C2

(
|y|r−1

L6 + |y|r−1
L6

)
|y − z|L6 ≤ C3

(
|y|r−1

V + |y|r−1
V

)
|y − z|V .

Assumption 2.4 follows with ζ = r − 1 and η = 1. Note that ζ + η = r > 1 and this completes the
proof. �

5. Numerical simulations

In this section, we report on the numerical experiments which validate our theoretical findings in
the previous sections. We investigate the performance of the oblique feedback control for both of
the linear system (1.8) and the nonlinear system (1.6), both under homogeneous Dirichlet boundary
conditions. For the discretization of the state we write the equation as a system of first order
equations in time. The spatial domain Ω = (0, 1) × (0, 1) was discretized by a conforming linear
finite element scheme using continuous piecewise linear basis functions over the triangulations given
by Figure 1.
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(a) 1 actuator
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(b) 4 actuators
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(c) 9 actuators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 16 actuators

Figure 1. Geometry of the domain and actuators.

This figure illustrates the meshes and also the placements and supports of the actuators for the
cases in which 1, 4, 9, and 16 actuators are used. The actuators are indicator functions, U#Mσ =
span{1ωi | 1 ≤ i ≤ #Mσ}, whose supports are the (interior) rectangular domains ωis depicted in
Figure 1. For the temporal discretization, we applied the Crank-Nicolson time stepping method
with step-size 10−3. For both systems (1.8) and (1.6), we have set

ν = ς = 1,

and chosen, for x = (x1, x2) ∈ Ω,

a(t, x) := −30− 30| sin(t+ x1)|, (5.1a)

(y0(x), y1(x)) := δ(e(−20((x1−0.5)2+(x2−0.5)2)), 0), (5.1b)

where the scaling parameter δ > 0 will be specified in each example below.
For the set of eigenfunctions EMσ we have chosen

EMσ := span {ei | i = (i1, i2) ∈ {1, 2, . . . ,M} × {1, 2, . . . ,M}} , (#Mσ = M2),

with
ei(x) := 2 sin(πi1x1) sin(πi2x2).

These functions are normalized eigenfunctions of the Laplacian with homogeneous Dirichlet bound-
ary conditions on the unit square (cf. [20, Sect. 4.8.1]). Further, the operator FMσ within the

feedback control K
FMσ
U#Mσ

(see (2.8)) have been chosen as in (2.12) with

λ1 = λ2 = 1.
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For the discretization and implementation of the oblique projection based feedback K
FMσ
U#Mσ

we fol-

lowed the approach given in [33, Sect. 8.1]. We have run every numerical simulation for time t ∈
[0, 10]. All numerical simulations have been carried out on the matlab platform.

Remark 5.1. The initial condition in (5.1b) is not in V ×H = H1
0 (Ω)× L2(Ω) as required in the

theoretical results. However, the Dirichlet boundary trace has relatively small values y0(x)|∂Ω ≤
e−5 ≈ 0.007. We have neglected these values in the simulations by setting the initial numerical
data y0 as y0(pi) := y0(pi) at interior mesh points pi ∈ Ω, and y0(pi) := 0 at boundary mesh
points pi ∈ ∂Ω.

Example 5.2 (Linear case). We deal with the linear system (1.8). We set δ = 2 in (5.1). For this
choice the uncontrolled state yun is exponentially unstable with approximately rate 10. This fact is
illustrated in Figure 2(a), where the evolution of log(|(yun(t), ∂∂ty

un(t))|V×H) is shown by the curve
labeled “Uncont”.
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Figure 2. Example 5.2: Logarithmic evolution of energy for states.

We have applied the oblique feedback control to stabilize the system around zero with differ-
ent numbers of actuators. The performance of the feedback controls is reported in Figure 2(a),
which demonstrates the logarithmic evolution of the energy for the controlled states. In Fig-
ure 2(b), we replotted the curves corresponding to the cases 4, 9, and 16 actuators in order to
clearly see the behaviors of the corresponding energies and to make comparison to the energy
of the finite-dimensional component of the solution, (PEMσ

y(t), PEMσ
∂
∂ty(t)). The evolution of

log(|(PEMσ
y(t), PEMσ

∂
∂ty(t))|V×H), depicted in Figure 2, corresponds to the dotted curve assigned

with “FinDyn”. Recall that the finite-dimensional component satisfies the dynamical system (2.13).
It can be observed from Figure 2, that the feedback control is able to steer the system exponentially

to zero for the cases we take 4, 9, and 16 actuators, whereas for the case of 1 actuator (as in Figure 1)
the feedback control fails to stabilize the system and the corresponding state is exponentially unstable
with approximately rate 1.8. Clearly, for the larger number of actuators, a better stabilization
rate was obtained. This is related to (2.10c), estimate (3.6b), and the fact that the norm of the
oblique projection is bounded. This boundedness follows from [20, Lem. 4.4 and Cor. 2.9] and
[33, Thm. 4.4]. On the other hand, we can see from Figure 2(b) that the curves corresponding
to 9 and 16 actuators almost overlap each other. This means that the rate of stabilization is
bounded from above and at some point it cannot be further improved by using more actuators. This
observation is in accordance with the statement of Theorem 3.5. Observe that |(y(t), ∂∂ty(t))|V×H ≥
|(PEMσ

y(t), PEMσ
∂
∂ty(t))|V×H for all of the cases. In particular, |(y(t), ∂∂ty(t))|V×H can not decrease

exponentially faster than |(PEMσ
y(t), PEMσ

∂
∂ty(t))|V×H .
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The evolution of the values of the feedback control components for the choice of 9 actuators is
plotted in Figure 3.
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Figure 3. Example 5.2: Evolution of the ui(t)s, for i = 1, . . . , 9, corresponding
to 9 actuators

Next, we present snapshots of the state y. Figure 4 depicts some snapshots of the uncontrolled
state yun. Figure 5 shows the controlled state at different times for the choice of 9 actuators.

(a) t = 0 (b) t = 2.5 (c) t = 5 (d) t = 7.5

(e) t = 10

Figure 4. Example 5.2: Snapshots of the uncontrolled state.
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(a) t = 0 (b) t = 2.5 (c) t = 5 (d) t = 7.5

(e) t = 10

Figure 5. Example 5.2: Snapshots of the controlled state with 9 actuators.

Example 5.3 (Nonlinear case). Here we are concerned with the nonlinear system (1.6) where r = 2
has been chosen in the nonlinearity. We investigate the performance of the oblique feedback control
with 16 actuators for the different values of δ in (5.1). The logarithmic evolution of the uncontrolled
states are depicted in Figure 6(b) for the choice of δ ∈ {0.5, 1, 1.5, 2}.
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Figure 6. Example 5.3 : Logarithmic evolution of energy for states for different
values of δ.

As can be seen from Figure 6(b), the energy of the uncontrolled states blows up in finite time for
all δ ∈ {0.5, 1, 1.5, 2}. After applying the feedback control we observe that the control is not able to
stabilize the system for large initial condition (δ = 2). This fact is depicted by Figure (6(a)), which
presents the evolution of the controlled |(y(t), ∂∂ty(t))|V×H for the same values of δ. However, we
can also see that for smaller δ ∈ {0.5, 1, 1.5} the feedback control is able to exponentially stabilize
the system to zero. These observations agree with (1.7) in Theorem 1.1. That is, stability holds for
small enough initial conditions.
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6. Final remarks

We have shown that an explicit oblique projection feedback globally stabilizes weakly damped
linear wave equations, and locally stabilizes weakly damped semilinear wave equations. The recent
work [32] suggests that it may be possible to improve the latter local stability result. Namely, by using
an appropriate nonlinear explicit oblique projection feedback and a larger number of actuators, M =
M(|(y0, y1)|V×H), then we will likely be able to get rid of the smallness condition |(y0, y1)|V×H < ε
in (1.7). There are however nontrivial details that must be checked. The possibility of getting rid
of the smallness condition is of course of paramount importance in applications, since ε can be very
small for linear feedbacks, as we have seen in Figure 6(a). Thus such possibility is an interesting
subject for a future work.

Existence and regularity of solutions for (damped) wave like equations have been extensively
studied by many researchers and for several types of nonlinearities, see e.g., [34, 16, 15, 40, 25].
Here it is not our goal to investigate the performance of the oblique projection under all possible
nonlinearities. We are rather interested in giving some examples where the free dynamics is unstable
and even blowing up in finite time. These situations are natural challenges for any given stabilizing
feedback operator.

Appendix

A.1. Proof of Proposition 3.2. We split the proof into the cases µ0 < min{µ1, µ2} and µ0 =
min{µ1, µ2}.

We consider first the case 0 ≤ µ0 < min{µ1, µ2}. Direct computations give us

e−µ1(t−τ)e−µ2(τ−s) = e−µ1(t−τ)eµ0(t−τ)e−µ0(t−τ)e−µ0(τ−s)eµ0(τ−s)e−µ2(τ−s)

= e−(µ1−µ0)(t−τ)e−µ0(t−s)e−(µ2−µ0)(τ−s)

and find ∫ t

s

e−µ1(t−τ)e−µ2(τ−s) dτ = e−µ0(t−s)
∫ t

s

e−(µ1−µ0)(t−τ)e−(µ2−µ0)(τ−s) dτ

≤ e−µ0(t−s) min
{

1−e−(µ1−µ0)(t−s)

µ1−µ0
, 1−e−(µ2−µ0)(t−s)

µ2−µ0

}
= C[

min
{

1
µ1−µ0

, 1
µ2−µ0

}]e−µ0(t−s)

= C[
1

max{µ1,µ2}−µ0

]e−µ0(t−s), in case 0 ≤ µ0 < min{µ1, µ2}.

Finally we consider the case 0 ≤ µ0 = min{µ1, µ2}, and µ1 6= µ2. Without lack of generality, we
assume that 0 < µ1 < µ2. That is, µ0 = µ1 and we find∫ t

s

e−µ1(t−τ)e−µ2(τ−s) dτ = e−µ1(t−s)
∫ t

s

e−µ1(s−τ)e−µ2(τ−s) dτ

= e−µ1(t−s)
∫ t

s

e−(µ2−µ1)(τ−s) dτ = 1−e−(µ2−µ1)(t−s)

µ2−µ1
e−µ1(t−s)

= C[
1

max{µ1,µ2}−µ0

]e−µ0(t−s), in case 0 ≤ µ0 = µ1 < µ2.

This finished the proof of Proposition 3.2. �
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Altenbergerstraße 69, 4040 Linz, Austria.
(behzad.azmi@ricam.oeaw.ac.at and sergio.rodrigues@ricam.oeaw.ac.at)

http://dx.doi.org/10.3934/eect.2020027
http://dx.doi.org/10.1093/imamci/dny045
http://dx.doi.org/10.3233/ASY-131208
http://dx.doi.org/10.1007/978-1-4757-5037-9
http://dx.doi.org/10.1006/jdeq.1998.3416
http://dx.doi.org/10.1007/978-1-4684-0313-8
http://dx.doi.org/10.1109/TAC.1974.1100529
http://dx.doi.org/10.3233/ASY-1988-1205
http://dx.doi.org/10.1080/03605309908820684

	1. Introduction
	1.1. Main results
	1.2. State of the art concerning oblique projection feedback controls
	1.3. On the stabilization of linear nonautonomous equations
	1.4. Further comments on stabilization of partial differential equations
	1.5. Contents and general notation

	2. Assumptions
	2.1. Assumptions on the dynamical operators
	2.2. Assumptions on the feedback control construction

	3. The linear system
	3.1. Proof of Theorem 3.1
	3.2. Proof of Theorem 1.2
	3.3. On the best achievable decreasing rate
	3.4.  Further remarks on the case of a constant reaction
	3.5. Short comparison to parabolic equations

	4. The nonlinear system
	5. Numerical simulations
	6. Final remarks
	Appendix
	A.1. Proof of Proposition 3.2

	References

