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In this paper the structure of infinite determinants corresponding to linear periodic

ODE systems is investigated. Making use of the theory of Hilbert-Schmidt operators

and their determinants it can be shown that the infinite determinant characterizing the

stability of such an ODE system has polynomial structure. In the proof we use the fact

that the trace of the commutator of two specific operators vanishes. The knowledge of

the asymptotic structure of the finite section determinants enables us to improve the

convergence of the infinite determinant which is the basis for numerical applications.

1. Introduction

The aim of this paper is to describe the structure and convergence of the infinite
determinant corresponding to a linear periodic ODE system of the form

P (D,x) y(x) = 0(1.1)

with P (D,x) := Dm + A(m−1)(x)Dm−1 + . . . + A(1)(x)D + A(0)(x) where A(j)

are 1-periodic matrix valued functions and D := d
dx . Determinants connected

with periodic ordinary differential equations have a long history, starting with
the famous work of G. W. Hill [9]. Whereas for Hill’s equation a number of
results about the structure and convergence of the determinant is known (see
[11], [12], [13], for instance), the general form of system (1.1) has not yet been
investigated. From an operator theoretical point of view the determinant of system
(1.1) appears as a regularized determinant of some Hilbert-Schmidt operator. The
close connection between the stability of (1.1) and the regularized determinant
is known even for partial differential equations, see [10]. In order to make this
connection useful for applications one has to know more about the structure of the
regularized determinant. As we will see in Sections 2 and 3, in the case considered
here the structure is very simple and allows us to improve the convergence of the
corresponding finite section determinants. Thus the determinantal approach is not
only interesting in a theoretical sense but also for applications.

In order to simplify the notation we will not consider system (1.1) but the
corresponding equivalent first order system which we will write in the form

y′(x) = A(x) · y(x)(1.2)
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where A(·) ∈ L∞(IR,C n×n) is 1-periodic. (We will return to system (1.1) at the
end of Section 2.) First we want to fix some notations. In stands for the unit matrix
in C n×n and Y (x) for the fundamental solution of (1.2), i.e. the matrix solution
with the initial value Y (0) = In. In the following we will deal with functions on the
torus T := IR/ZZ with values in C n, the corresponding L2-space L2(T,C n) and
the Sobolev spaces W 1

p (T,C n) := {f ∈ L2(T,C n) : f absolutely continous, f ′ ∈
Lp(T,C n)}. As usual, we set H1(T,C n) := W 1

2 (T,C n).
Instead of L2(T,C n) we will frequently consider the isometrically isomorphic

Hilbert space `2(ZZ,C n) =: H, making use of the Fourier transform. Operators
in H will be written as infinite block matrices (with respect to the standard basis
in H). The operator of multiplication with a function Z is denoted by MZ . For
Z ∈ L∞(T,C n×n) this operator is an element of the class L(H) of all bounded
operators in H and has the form MZ = (Zk−l)k,l∈ZZ with

Zk :=
∫
T

Z(t) exp(−2π i kt) dt ∈ C n×n .(1.3)

The symbol Sp(H) stands for the Neumann-Schatten class of order p in L(H).
For a Hilbert-Schmidt operator B ∈ S2(H) we will consider the regularized de-
terminant ∆2(1 − B) (as a standard reference for Hilbert-Schmidt operators and
regularized determinants, we mention [8]).

The operator PN ∈ L(H) is defined as the orthogonal projection in H onto the
(2N + 1)n-dimensional subspace

{(ck)k∈ZZ ∈ H : ck = 0 for |k| > N} .

For B = (Bkl)k,l∈ZZ ∈ L(H) we set det(1−B) := limN det(PN (1−B)PN ), provided
the limit exists.

We now return to equation (1.2). The stability of this equation is characterized
by the so-called Floquet exponents which can be defined as the complex numbers
ν for which exp(ν) is an eigenvalue of Y (1). The following lemma summarizes
different possibilities to describe the Floquet exponents.

Lemma 1.1. For any ν ∈ C the following statements are equivalent:

(i) ν is a Floquet exponent of (1.2).

(ii) −ν is an eigenvalue of the operator L in L2(T,C n) defined by D(L) :=
H1(T,C n) and Lf := f ′ −Af .

(iii) The regularized determinant ∆2(1 − BL(ν)) is equal to zero, where BL is
defined by

BL(ν) := 1− (L + ν)F ∈ S2(H)

with

F := diag((2π i l + δ0,l)−1In)l∈ZZ ∈ S2(H) .



On Hilbert-Schmidt operators and determinants 3

Whereas the equivalence of (i) and (ii) is obvious, condition (iii) can be derived
from the more general considerations in [10], p. 110. Indeed, the explicit formula
for F is not crucial for the equivalence but for the following calculations.

Condition (i) of Lemma 1.1 leads in a direct way to a numerical method to
compute the Floquet exponents. Here we want to concentrate on condition (iii)
and study the properties of the regularized determinant mentioned there. As
we will see, ∆2(1 − BL(ν)) has a very simple structure which enables us to use
the determinantal approach in applications. Thus generalizations of well-known
algorithms in the context of Hill’s equation ([4], [11], [12], [16]) are obtained.

2. The structure of the regularized determinant

In order to obtain information about the regularized determinant ∆2(1−BL(ν))
which appears in Lemma 1.1 (iii) we investigate the behaviour of this determinant
under transformations of the operator L. First we will prove the following lemma
which is connected with the question under which conditions the commutator of
a bounded operator and a Hilbert Schmidt operator is a trace class operator and
seems to be of interest for itself (cf. also Remark 2.3).

Lemma 2.1. Let Z ∈ W 1
∞(T,C n×n) with det Z(x) 6= 0 for all x ∈ T. Then

F −MZFM−1
Z is a trace class operator with vanishing trace.

Proof. It is enough to show that PNFMZ −MZPNF converges (for N →∞) to
C := FMZ −MZF in S1. Indeed, in that case we have PNF −MZPNFM−1

Z →
F −MZFM−1

Z in S1 ([7], p. 107). But

tr (PNF −MZPNFM−1
Z ) = tr (PNF )− tr (MZPNFM−1

Z ) = 0

for every N ([8], p. 100) which shows that F −MZFM−1
Z has vanishing trace.

Let C = (Ckl)k,l∈ZZ. For k 6= 0 6= l we obtain

Ckl =
(

1
2π i k

− 1
2π i l

)
Zk−l = − 1

2π i l
· 1
2π i k

Z ′k−l

where MZ′ = (Z ′k−l) is bounded because the derivative Z ′ is an element of
L∞(T,C n×n) ([7], p. 567). Therefore, (1−P0)C(1−P0) = −(1−P0)FMZ′F (1−P0)
is an element of S1(H). The same is true for C which differs from this operator
only by a finite rank operator.

Now consider

DN := (DN
kl)k,l∈ZZ := C − (PNFMZ −MZPNF ) .
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We still have to show that ‖DN‖S1 → 0. To this end we decompose

DN = PNDNPN + (1− PN )DN (1− PN )(2.1)
+ PNDN (1− PN ) + (1− PN )DNPN .

The first term in this sum is equal to zero for all N . As we have seen above,
C ∈ S1(H) and thus DN ∈ S1(H). Therefore, the second term tends to zero in S1

([7], p. 107).
In order to estimate the third term in (2.1) we use ([14], p. 239)

‖PNDN (1− PN )‖S1 ≤
N∑

k=−N

( ∑
|l|>N

|DN
kl |2
)1/2

.(2.2)

We estimate the sum
N∑

k=1

( ∞∑
l=N+1

|DN
kl |2
)1/2

,(2.3)

the remaining parts of the sum in (2.2) can be treated analogously. Direct cal-
culations show that for |k| ≤ N and |l| > N we have DN

kl = −(2π i l)−1Zk−l. So
(2.3) can be estimated by

N∑
k=1

( ∞∑
l=N+1

∣∣∣∣Zk−l

2πl

∣∣∣∣2
)1/2

≤ 1
2π(N + 1)

N∑
k=1

( ∞∑
l=N+1

|Zk−l|2
)1/2

=
1

2π(N + 1)

N∑
k=1

( ∞∑
l=N+1−k

∣∣∣∣Z ′−l

2πl

∣∣∣∣2
)1/2

≤

(
1

2π(N + 1)

N∑
k=1

1
2π(N + 1− k)

)
· ‖Z ′‖L2

≤ 1
2π(N + 1)

1
2π

(1 + lnN) · ‖Z ′‖L2 → 0 .

Therefore, also the third term on the right-hand side of (2.1) converges to 0 in S1.
Instead of the last term of this sum we consider the adjoint operator PN (DN )∗(1−
PN ). The block coefficient at the position (k, l) ∈ ZZ2 of this operator is given by
−(2π i l)−1Z∗l−k if |k| ≤ N and |l| > N and by 0 else. (Z∗k denotes the adjoint
matrix of Zk.) From this we see that the estimate for the third term of (2.1) is also
valid for the last term if Z is replaced by Z∗. Therefore, we obtain ‖DN‖S1 → 0
which finishes the proof of this lemma. 2

Corollary 2.2. Let Z be as in Lemma 2.1. Then ∆2(1 − BL(ν)) and ∆2(1 −
BM−1

Z
LMZ

(ν)) are equal up to a constant nonvanishing factor which does not de-
pend on ν.



On Hilbert-Schmidt operators and determinants 5

Proof. Taking the definitions for BL(ν) and BM−1
Z

LMZ
(ν), respectively, and apply-

ing the product theorem for regularized determinants ([8], p. 169) we immediately
obtain

∆2(1−BM−1
Z

LMZ
(ν)) = ∆2(1−BL(ν)) ·∆2(F−1MZFM−1

Z )(2.4)

· exp(− tr [(1− LF )(1− F−1MZFM−1
Z )])

· exp(− tr [ν(F −MZFM−1
Z )]) .

In order to see that the right-hand side of (2.4) is well-defined we note that 1 −
F−1MZFM−1

Z = (MZF−1 − F−1MZ)FM−1
Z . But the commutator of MZ and

F−1 is (up to a finite rank operator) equal to −MZ′ and thus bounded. So
1 − F−1MZFM−1

Z ∈ S2(H). Lemma 2.1 tells us that the last factor in (2.4)
is equal to 1 while the second and third factors do not depend on ν. That the
second factor does not vanish follows from the invertibility of F−1MZFM−1

Z .
2

Remark 2.3. The proof of Lemma 2.1 uses the close connection between F
and the derivation. The results of this lemma are obvious if F is replaced by any
F̃ ∈ S1(H). In general, however, it is not clear under which conditions on F̃ and Z
the lemma remains true. At least it is not valid if F is replaced by any F̃ ∈ S2(H)
and MZ by an arbitrary invertible B ∈ L(H), as the following simple example
shows. Decompose H = H+⊕H− with H+ = `2(IN∪{0},C n), H− = `2(−IN,C n)
and define B and F with respect to this decomposition as the operator matrices

B =
(

1
2 idH− 0

0 idH+

)
, F =

(
0 F12

0 0

)
with F12 ∈ S2(H+,H−)\S1(H+,H−). Then F −B−1FB = −F 6∈ S1(H).

Now we want to investigate not the regularized determinant ∆2(1−BL(ν)) but
the matrix determinant det(1 − BL(ν)) as defined in Section 1. The well-known
formula which connects these determinants ([8], p. 169) leads (after straightforward
calculations) to the existence of det(1−BL(ν)). We obtain the relation

det(1−BL(ν)) = exp(−n(1− ν)− trA0) ·∆2(1−BL(ν))(2.5)

where A0 is defined analogously to (1.3). As an immediate consequence of this
equation, the Floquet exponents are exactly the zeros of det(1 − BL(ν)). The
following modification of this infinite determinant will turn out to be useful in the
proof of Theorem 2.5 but also in Section 3.

Lemma 2.4. For ν ∈ Λ := {z ∈ C : det sinh z−A0
2 6= 0} we set

BL(ν) :=
(
(1− δkl)Ak−l(2π i l + ν −A0)−1

)
k,l∈ZZ .

Then det(1−BL(ν)) exists for ν ∈ Λ, and we obtain



6 Denk

a) det(1−BL(ν)) = det(1−BL(ν)) · det(2 sinh ν−A0
2 ) for ν ∈ Λ,

b) det(1−BL(ν)) → 1 for |Re ν| → ∞.

Proof. Comparing the definitions of BL(ν) and BL(ν) we see for k, l ∈ ZZ and
ν ∈ Λ

(1−BL(ν))kl = (1−BL(ν))kl ·
2π i l + ν −A0

2π i l + δ0,l
.(2.6)

Therefore the finite section determinants fulfill

det(PN (1−BL(ν))PN )

= det(PN (1−BL(ν))PN ) ·
N∏

l=−N

det
(

2π i l + ν −A0

2π i l + δ0,l

)

= det(PN (1−BL(ν))PN ) · det

[
(ν −A0)

N∏
l=1

(
1 +

(
ν −A0

2πl

)2
)]

.

For N → ∞ the last determinant converges to det(2 sinh ν−A0
2 ) 6= 0 as we can

see from the product formula for the sinh-function applied to matrices. Thus
det(1 − BL(ν)) exists for ν ∈ Λ and equality a) holds. To obtain b), we use the
estimation

‖BL(ν)‖2S2
=
∑
k,l

|(BL(ν))kl|2

≤
∑
k 6=l

|Ak−l|2 · |(2π i l + ν −A0)−1|2

≤ ‖A‖2L2
·
∑

l

|(2π i l + ν −A0)−1|2

which shows BL(ν) ∈ S2(H) and ‖BL(ν)‖S2 → 0 for |Re ν| → ∞. From the
continuity of the regularized determinant we see

det(1−BL(ν)) = ∆2(1−BL(ν)) → 1 for |Re ν| → ∞ .
2

Theorem 2.5. The determinant det(1−BL(ν)) is (up to normalization) a poly-
nomial in exp(ν). More precisely, the following equality holds for every ν ∈ C :

det(1−BL(ν)) = (−1)n exp(− 1
2 (nν + trA0)) · det(Y (1)− exp(ν)In) .

Proof. Due to the theorem of Floquet-Lyapunov there exists a Z ∈ W 1
∞(T,C n×n)

with detZ(x) 6= 0 which transforms (1.2) to a constant system, i.e. we have
(M−1

Z LMZ)f = f ′−Kf for f ∈ H1(T,C n) where K ∈ C n×n is a constant matrix
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with expK = Y (1). From Corollary 2.2 we obtain the existence of some constant
c 6= 0, not depending on ν, with

det(1−BL(ν)) = exp(−n(1− ν)− trA0) ·∆2(1−BL(ν))
= c · exp(−n(1− ν)− trA0) ·∆2(1−BM−1

Z
LMZ

(ν))

= c · exp( trK − trA0) · det(1−BM−1
Z

LMZ
(ν)) .

We calculate the last determinant explicitly (BM−1
Z

LMZ
(ν) is block diagonal). Sim-

ilarly to the proof of Lemma 2.4 (or using this lemma) we get

det(1−BM−1
Z

LMZ
(ν)) = det(2 sinh ν−K

2 )

= det
[
exp(−ν+K

2 ) · (exp(ν)In − expK)
]

= (−1)n exp(− 1
2 (nν + tr K)) · det(Y (1)− exp(ν)In) ,

and therefore

exp( 1
2 (nν + trA0)) · det(1−BL(ν))(2.7)

= (−1)n c exp( 1
2 ( tr K − trA0)) · det(Y (1)− exp(ν)In)

= (−1)n c̃ · det(Y (1)− exp(ν)In) .

Here c̃ := c exp( 1
2 ( tr K − trA0)) is independent of ν.

It remains to compute c̃. The left-hand side of (2.7) can be written as (cf.
Lemma 2.4 a))

exp( 1
2 (nν + trA0)) · det(2 sinh ν−A0

2 ) · det(1−BL(ν))

= (−1)n det(expA0 − exp(ν)In) · det(1−BL(ν)) .

Due to Lemma 2.4 b) this expression tends to (−1)n det(expA0) for Re ν → −∞.
Using the formula of Liouville we get

det(expA0) = exp
(

tr
∫ 1

0

A(t) dt

)
= detY (1) .

Comparing the limits of both sides of (2.7) for Re ν → −∞ the constant c̃ is seen
to be equal to 1 which finishes the proof of the theorem. 2

Remark 2.6. a) In the proof of Theorem 2.5 the equivalence of (i) and (iii) in
Lemma 1.1 was not used. On the other hand, this equivalence follows immediately
from the formula of Theorem 2.5.
b) Due to Theorem 2.5 the Floquet exponents of (1.2) can be computed if the
value of det(1 − BL(ν)) is known for n − 1 different values of ν. (The leading
coefficient and the constant term of the polynomial appearing at the right-hand
side of Theorem 2.5 are known.) Therefore, it is important to investigate the
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convergence of this infinite determinant for fixed ν ∈ C . This will be done in
Section 3. In particular, in the case of Hill’s equation where n = 2 we obtain
the classical result that the Floquet exponents can be computed from the value of
det(1−BL(0)), for instance.

We now return to equation (1.1) and assume the dimension of the matrices
A(j)(x) to be equal to ñ. If we transform this system to the equivalent first order
system (1.2) and apply the results above we obtain the determinant of an infinite
block matrix whose coefficients have dimension mñ. This dimension, however,
can be reduced to ñ (what means an important improvement with respect to
computational aspects) as we can see from the following lemma. In this lemma
the Fourier coefficients Pk(t) of the polynomial P (D,x) (cf. equation (1.1)) are
defined by

Pk(t) := δ0,kIntm + A
(m−1)
k tm−1 + . . . + A

(1)
k t + A

(0)
k (k ∈ ZZ) .

Lemma 2.7. Define 1−B
(m)
L (ν) :=

(
(2π i l + δ0,l)−mPk−l(2π i l + ν)

)
k,l∈ZZ. Then

the Floquet exponents of (1.1) are exactly the zeros of det(1 − B
(m)
L (ν)). The

function exp( 1
2mñν) ·det(1−B

(m)
L (ν)) is a polynomial in exp(ν) of degree mñ with

constant term (−1)mñ exp( 1
2 trA

(m−1)
0 ) and leading coefficient exp(− 1

2 trA
(m−1)
0 ).

Proof. Transforming (1.1) to a first order system and applying Theorem 2.5 we
obtain an infinite block matrix whose (k, l)-coefficient is equal to

1
2π i l + δ0,l



αlδklIn −δklIn

. . . . . .

αlδklIn −δklIn

A
(0)
k−l A

(1)
k−l · · · αlδklIn + A

(m−1)
k−l


where we have set αl := 2π i l + ν. Straightforward calculations show that this
determinant can be reduced by elementary column transformations to det(1 −
B

(m)
L (ν)) as defined in the lemma. 2

The determinant of Lemma 2.7 is important for applications of the determinantal
approach to the mechanics of vibrations ([1], [2]). For classical Hill systems we
have A(1)(x) = 0 and no complex computation is necessary (if the input data are
real) because in this case

1−B
(2)
L (ν) =

(
1

(2πl)2 − δ0,l

[
(2πl + i ν)2δklIn −A

(0)
k−l

])
k,l∈ZZ

which is a real matrix function for ν ∈ i IR (for a more detailed analysis of Hill
systems, cf. also [5]).
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3. On the convergence of the infinite determinant

In Section 2 the calculation of the Floquet exponents of (1.2) was reduced to the
evaluation of det(1−BL(ν)) for a finite number of different ν ∈ C . In this section
we want to investigate the convergence of the finite section determinants appearing
in the definition of det(1−BL(ν)). From now on we will restrict ourselves to the
case where the matrix function A(·) is a trigonometric polynomial, i.e. we have
Ak = 0 for |k| > b with some b ∈ IN0. In the following let ν ∈ C be fixed. We
tacitly assume that all factors and determinants which appear in the formulas
below are different from zero. We will use the abbreviations Bkl and Bkl instead
of (BL(ν))kl and (BL(ν))kl, respectively, and set δN := det(PN (1 − BL(ν))PN )
and δN := det(PN (1−BL(ν))PN ). The first and second lemma of this section deal
with the asymptotic behaviour of the sequence (δN )N and (δN )N , respectively.

Lemma 3.1. Define the complex numbers γN for N ∈ IN by

γN := det

[
In −

b∑
p=1

B−N,−N+pB−N+p,−N(3.1)

−
b∑

p,q=1
p6=q

B−N,−N+pB−N+p,−N+qB−N+q,−N

]

· det

[
In −

b∑
p=1

BN,N−pBN−p,N

−
b∑

p,q=1
p6=q

BN,N−pBN−p,N−qBN−q,N

]
.

Then δN − γNδN−1 = O(N−4) for N →∞.

Proof. We make use of the transformation of BL(ν) to a onesided infinite matrix
C := (Ckl)∞k,l=0 given by

Ckl :=
(

B−k,−l B−k,l

Bk,−l Bkl

)
(k, l ∈ IN)

(and obvious modifications for k = 0 or l = 0), cf. [12], p. 16. Now we will use the
fact that
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det(1− C)N − det
(
I2n −

b∑
p=1

CN,N−pCN−p,N(3.2)

−
b∑

p,q=1
p6=q

CN,N−pCN−p,N−qCN−q,N

)
det(1− C)N−1 = O(N−4) ,

where (1 − C)N := (δklIn − Ckl)N
k,l=0. To prove (3.2), one has to generalize Satz

6.11 in [13] where the analogue of (3.2) for scalar-valued Ckl can be found. The
generalization to matrix-valued Ckl can be made using the main ideas from [13]
and some technical estimates for submatrices and subdeterminants of (1 − C)N .
We want to omit the complicated but straightforward calculations; the details can
be found in [3]. From (3.2) the desired result follows, because det(1− C)N = δN

for all N , and for N large enough the second determinant in (3.2) is equal to γN .
2

Remark 3.2. The convergence order of N−4 appearing in Lemma 3.1 can be
improved if the definition of γN is modified by additional sums. In principle it
is possible to describe the asymptotics of the sequence (δN ) up to an arbitrary
order. This can be seen from a generalization of Satz 5.11 in [13] to the matrix
case; again we refer to [3] for the details. For the application to the methods of
convergence improvement which will be discussed later in this section, the order
given in Lemma 3.1 is sufficient.

Lemma 3.3. We have δN − γNδN−1 = O(N−4) for

γN := 1 +
tr (ν −A0)2

(2πN)2
+ 2

b∑
p=1

tr (ApA−p)
(2π)2N(N − p)

.

Proof. Substituting the definition of Bkl into the expression for γN as given in
Lemma 3.1 we see that the first and second factor in (3.1) is equal to

det
(
∓2π iN + ν −A0

∓2π iN

)−1

· det

[
∓2π iN + ν −A0

∓2π iN
(3.3)

−
∑

p

A∓p

∓2π iN

(
∓2π i (N − p) + ν −A0

∓2π i (N − p)

)−1
A±p

∓2π i (N − p)

+
∑
p,q

A∓p

∓2π iN

(
∓2π i (N − p) + ν −A0

∓2π i (N − p)

)−1 A∓(q−p)

∓2π i (N − p)(
∓2π i (N − q) + ν −A0

∓2π i (N − q)

)−1
A±q

∓2π i (N − q)

]
,
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where the upper sign corresponds to the first and the lower sign to the second
factor in (3.1). First we want to rewrite the product of the second factors in (3.3)
with different signs up to an accuracy of O(N−4). We make use of det(In + A) =
1 + trA + O(N−4) for A = O(N−2) and of(

In ∓
ν −A0

2π i (N − p)

)−1

= In ±
ν −A0

2π i (N − p)
+ O(N−2) .

Elementary calculations show

γN = det
(
In +

(ν −A0

2πN

)2)−1

(3.4)

·

[
1 +

tr (ν −A0)2

(2πN)2
+
∑

p

2 tr (ApA−p)
2πN · 2π(N − p)

+
∑

p

(
1

(2π iN)22π i (N − p)
− 1

2πiN(2π i (N − p))2

)
· tr
[
(ν −A0)(ApA−p −A−pAp)

]
+
∑
p6=q

tr (ApAq−pA−q)− tr (A−pAp−qAq)
2π iN · 2π i (N − p) · 2π i (N − q)

]
+ O(N−4) .

For α, β ∈ C one obviously has

1
N(N − α)(N − β)

− 1
N3

= O(N−4) .

Therefore, the first sum in (3.4) is of order N−4 and can be omitted. The second
sum is equal to

1
(2π iN)3

∑
p6=q

[
tr (ApAq−pA−q)− tr (A−pAp−qAq)

]
+ O(N−4) ,

and a simple change of the summation index shows that the value of this sum is
equal to zero. So we have shown

γN = det
(
In +

(ν −A0

2πN

)2)−1

· (γN + O(N−4)) .

But from the connection between δN and δN (see (2.6)) and Lemma 3.1 we can
conclude δN − γNδN−1 = O(N−4), and the proof is complete. 2

The preceding lemmas allow us to describe the order of convergence for the
determinants det(1 − BL(ν)) and det(1 − BL(ν)) (Theorem 3.4) and to improve
this order (Theorem 3.5).
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Theorem 3.4. For N → ∞ we have δN − δN−1 = O(N−2) and δN − δN−1 =
O(N−2). In general, the exponent −2 cannot be replaced by any smaller number.

Proof. From Lemma 3.3 and 1 − γN = O(N−2) we know δN − δN−1 = (δN −
γNδN−1)− (1− γN )δN−1 = O(N−2). We write

δN − δN−1 =
N∏

l=−N

det
(2π i l + ν −A0

2π i l + δ0,l

)−1

·
[
δN − det

(
In +

(ν −A0

2πN

)2)
δN−1

]
.

Due to the general asumptions at the beginning of this section, the product∏N
l=−N . . . remains bounded for N → ∞ whereas the last factor is equal to

δN − δN−1 + O(N−2) and thus of order N−2.
The following examples show that the estimation of the theorem cannot be

improved without additional asumptions. If BL(ν) is block diagonal, i.e. Ak = 0
for k 6= 0 then

δN − δN−1 = det
[
(ν −A0)

N−1∏
l=1

(
In +

(ν −A0

2πl

)2)]
·
(

det
(
In +

(ν −A0

2πN

)2)
− 1
)

has exactly convergence order N−2. To see the same for δN is more complicated.
We take n = 1, A0 = 0, A1 = A−1 = −1. Then direct calculations show

δN = δN−1 −
( 1

2π iN − ν

1
2π i (N − 1)− ν

+
1

2π iN + ν

1
2π i (N − 1) + ν

)
δN−2 + O(N−3)

= δN−1 +
1

2π2N(N − 1)
δN−2 + O(N−3) .

If we take ν with |det(1−BL(ν))| > 2ε the finite section determinant δN−2 fulfills
|δN−2| > ε for N large enough and thus

|δN − δN−1| ≥
ε

2π2N(N − 1)
+ O(N−3)

which shows that the estimation for δN cannot be improved. 2

Theorem 3.5. Let f0( tr (ν−A0)2) 6= 0 and fp(2 tr (ApA−p)) 6= 0 for p = 1, . . . , b
where the auxiliary functions fp are defined by

fp(z) :=


sinh

(√
z

2

)
·
(

2√
z

)
if p even,

cosh
(√

z
2

)
if p odd.
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Let the modified sequence (δ̃N )N be given by

δ̃N := δN ·
N∏

m=1

[(
1 +

tr (ν −A0)2

(2πm)2

) b∏
p=1

p<2m

(
1 +

2 tr (ApA−p)
π2(2m− p)2

)]−1

.

Then δ̃N − δ̃N−1 = O(N−4) and

det(1−BL(ν)) = lim
N→∞

δ̃N · f0( tr (ν −A0)2)
b∏

p=1

fp(2 tr (ApA−p)) .

Proof. From the definition of δ̃N we immediately see δ̃N − δ̃N−1 = (δN − γ̃NδN−1)∏N
m=1[. . .]

−1 where the product is the same as in the theorem and

γ̃N :=
(

1 +
tr (ν −A0)2

(2πN)2

) b∏
p=1

(
1 +

2 tr (ApA−p)
π2(2N − p)2

)
.

It is easy to see that γ̃N − γN = O(N−4) and thus δ̃N − δ̃N−1 = O(N−4). On the
other hand,

det(1−BL(ν)) = lim
N

δN = lim
N

δ̃N ·
∞∏

m=1

γ̃m ,

and the value for the infinite product can be calculated from the well-known prod-
uct formulas for the sinh- and cosh-function. 2

Remark 3.6. The possibility to apply the determinantal approach to numerical
problems always depends on methods of convergence acceleration. From this point
of view Theorem 3.5 is important. While in this theorem the convergence order is
N−4, for Hill systems the order can be improved up to N−8 and in special cases
even N−12 ([5], [15], [16]). In this sense Hill’s equation was not only the first
equation for which infinite determinants have been defined but also the equation
for which this method works best. But even the order N−4 which can be achieved
for general systems of the form (1.1) is enough to ensure the comparability of the
determinantal method with standard methods. This can be seen from numerical
examples. Because we do not want to go into details concerning numerical aspects
we just want to state one typical result. The following table contains a comparison
of computing time and relative error for the determinantal method with and with-
out acceleration of convergence. The system considered in this example was some
model problem of the form (1.1) with m equal to 2 and the dimension of the ma-
trices A(j)(x) equal to 2. So there are four essentially different Floquet exponents,
and the relative error stated in the table is the maximum of the relative errors of
these exponents. The calculation was done in Fortran 77 on a SUN workstation,
and the computing time is given in CPU-seconds.
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Block dimension N Using (δN ) Using (δ̃N )
error time error time

5 1.6 · 10−1 0.03 2.2 · 10−3 0.03
10 8.7 · 10−2 0.05 2.9 · 10−4 0.05
20 4.5 · 10−2 0.10 3.7 · 10−5 0.11
40 2.3 · 10−2 0.27 4.6 · 10−6 0.27

Table 1: Relative error and computing time for the determinantal method.

As we can see from the table, the acceleration of convergence as described in
Theorem 3.5 has almost no influence on the computational time but is crucial
for the accuracy of the method. That the determinantal approach is considerably
faster than numerical integration can be seen from the corresponding data for
the solution of the initial value problem: The computing time needed to obtain a
relative error of 2.7 · 10−2, 2.4 · 10−3 and 1.0 · 10−5 was in this example 1.55, 2.02
and 3.13 CPU-seconds, respectively! Thus using infinite determinants is more than
ten times faster than solving the initial value problem. This comparison confirms
earlier results on the determinantal method vs. numerical integration, see [5], [15]
and others. Finally, we want to remark that the determinantal approach which
was discussed here can be used as a first step in a two-step algorithm (where
the second step is an eigenvalue method). For Hill systems, first results in this
direction can be found in [6].
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