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Abstract

We consider the class of law invariant convex risk measures with robust representa-

tion ρh,p(X) = supf

∫

1

0
[AV@Rs(X)f(s) − fp(s)h(s)]ds, where 1 ≤ p < ∞ and h is

a positive and strictly decreasing function. The supremum is taken over the set of
all Radon Nikodym derivatives corresponding to the set of all probability measures
on (0, 1] which are absolutely continuous with respect to the Lebesgue measure. We
provide necessary and sufficient conditions for the position X such that ρh,p(X) is
real-valued and the supremum is attained. Using variational methods, an explicit for-
mula for the maximizer is given. We exhibit two examples of such risk measures and
compare them to the average value at risk.
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1 Introduction

Risk assessment is a fundamental activity for both regulators and agents in financial mar-
kets. A formal and axiomatic characterization of coherent risk measures has been initiated
by Artzner, Delbaen, Eber and Heath [1, 2]. Since then, risk measures have been gen-
eralized in several directions. Föllmer and Schied [13] as well as Frittelli and Rosazza
Gianin [15] introduced the concept of convex risk measures, which naturally appear in
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pricing and hedging problems in incomplete markets and serve as building blocks for the
variational preferences [20]. Moreover, there exist characterization and representation re-
sults for risk measures which satisfy additional properties such as law invariance, comono-
tonicity, additivity for independent random variables, first and second order stochastic
monotonicity, et cetera. For instance, law invariant coherent and convex risk measures
have been investigated by Kusuoka [19], Frittelli and Rosazza Gianin [16], Kunze [18] and
Jouini et al. [17] and have a robust representation of the form

ρ(X) = sup
µ

{
∫

AV@Ru(X)µ(du) − β(µ)

}

. (1)

The risk of a position, which is here modeled as a random variable X, is understood as the
minimal amount of money which has to be added to the position to make it acceptable and
can therefore be seen as a capital requirement. We first discuss some special cases of this
robust representation. The simplest case reduces to the average value at risk AV@Ru with
risk aversion coefficient u ∈ (0, 1] corresponding to the penalty function β, whose domain
is concentrated at the Dirac measure µ = δu. Another subclass of (1) are the distortion
risk measures of the form ρ(X) =

∫

AV@Ru(X)µ(du). There, the penalty function β is
concentrated on the probability measure µ, which corresponds to an average over different
average value at risks weighted according to the measure µ. Distortion risk measures
are widely used in practice and in addition have an intuitive representation of the form
ρ(X) = −

∫

R
xd(ψ ◦ FX)(x), where ψ is a concave distortion function which is in one-to-

one relation with the measure µ, and
∫

R
xd(ψ ◦ FX)(x) is the expectation of the distorted

distribution function ψ ◦ FX . Any distortion risk measure ρµ(X) =
∫

AV@Ru(X)µ(du)
is positive homogeneous, that is, the capital requirement ρµ(λX) for the position λX is
equal to λρµ(X) for any λ > 0.

For general risk measures of the form (1) the optimal weighting measure µX (if it
exists) for which ρ(X) =

∫

AV@Ru(X)µX (du) − β(µX) depends on X. In this paper, we
study a class of convex risk measures for which the weighting measures µX are absolutely
continuous with respect to the Lebesgue measure and can be computed by use of variational
methods. More precisely, we consider the subclass of risk measures of the form (1) with
robust representation

ρh,p(X) = sup
f

{∫

AV@Ru(X)f(u)du −

∫

fp(u)h(u)du

}

,

for the penalty function β(f) =
∫

fp(u)h(u)du. The supremum is taken over all probability
densities on (0, 1]. This class is parameterized by a constant 1 < p <∞ and a decreasing
function h : (0, 1] → R+. We provide growth conditions on h at the origin such that
ρh,p(X) is real-valued. For instance, in case that h(s) = s−α for some α > 1 it follows
that the respective risk measure is real-valued on the vector space of all integrable random
variables. Moreover, we derive conditions on the function h such that the supremum
is attained at some density fX . It turns out, that for increasing potential losses of X
the respective weighting density fX typically concentrates more and more at zero. The
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sensitivity of the weighting measure fX in terms of the size of the potential losses of X
can be controlled by the constant p and the function h : (0, 1] → (0,∞).

The risk measures ρh,p are convex, second order stochastically monotone (Corollary 4.59
in [14]) and law invariant. As a consequence of Theorem 3.2 below, the class is in gen-
eral not strictly convex, but its penalty functions are strictly convex, which is useful
for uniqueness considerations. Any risk measure ρh,p can be viewed as a distortion risk
measure whose distortion function depends on the size of the evaluated position. Under
adequate technical conditions, these weighting measures are given in closed form solutions.
This makes the class analytically tracktable and extends the well-known examples of law
invariant convex risk measures such as the entropic risk measure, the optimized certainty
equivalents [3] and some parametric families of risk measures [6].

While the classical risk measure theory is developed for bounded random variables,
Filipović and Svindland [12] and Cheridito and Li [5] studied extensions of convex risk
measures from bounded to unbounded random variables. By definition, the risk measures
ρh,p are well-defined for unbounded positions, for which the negative part is integrable.
For technical simplifications the main results are however stated for integrable random
variables.

The paper is organized as follows. In Section 2, we provide necessary and sufficient
conditions such that ρh,p(X) is real-valued. The conditions immediately provide vector
spaces on which ρh,p is real-valued. From the computational point of view, we are inter-
ested in the existence and the shape of the maximizer of (2) because it allows for explicit
computation of ρh,p. In Section 3, we give a simple sufficient condition, which guarantees
the existence of such a maximizer, provided that ρh,p(X) is real-valued. Once the exis-
tence of a maximizer is assured, we compute it by use of variational methods and provide
a closed form solution. The class of risk measures (2) is fairly broad and includes, for
instance, all ρh,p for the two-parameter family h(u) = u−α(1 − u)η, α > 0, η ≥ 0. This
subclass is treated in detail in Subsection 2.2, and the cases p = 1 and p = 2 are computed
and illustrated in Section 4 for families of normal random variables.

2 Finiteness of the Risk Measure ρh,p

In this section, we give necessary and sufficient condition on the position X such that
ρh,p(X) ∈ R. We then determine vector spaces on which ρh,p is real-valued and illustrate
the results with some examples. We first introduce the formal setting for our results. Let
(Ω,F ,P) be an atomless probability space. We identify random variables which coincide
almost surely. Inequalities between random variables are understood in the almost sure
sense. L0(Ω) consists of the set of all real-valued random variables on (Ω,F). For 1 ≤
p ≤ ∞, we denote by Lp(Ω) the set of random variables X ∈ L0(Ω) with finite Lp-norm
||X||p := E[|X|p]1/p for 1 ≤ p < ∞ and ||X||∞ := ess inf{m ∈ R | m ≥ |X|}. We
will also deal with the probability space ((0, 1],B(0, 1], λ), where B(0, 1] denotes the Borel
sigma-algebra on the interval (0, 1] and λ is the Lebesgue measure. M1(0, 1] denotes
the set of all probability measures on B(0, 1]. Throughout, h : (0, 1] → R+ is a strictly
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decreasing function. By Lp(λ) and Lp(h) we denote the vector spaces of all functions
on (0, 1] with finite Lp-norm with respect to the measures λ and h(x)λ(dx), respectively.
Further, FX(x) := P[X ≤ x] denotes the cumulative distribution function of X ∈ L0(Ω)
with respective (upper) quantile function qX(s) := inf {x | FX(x) > s}. Note that X on
(Ω,F ,P) and qX on ((0, 1],B(0, 1], λ) have the same law. For X ∈ L1(Ω), the average
value at risk with risk aversion coefficient u ∈ (0, 1] is defined as

AV@Ru(X) := −
1

u

∫ u

0
qX(s)ds,

so that the function u 7→ AV@Ru(X) is decreasing and AV@R1(X) = E[−X].
The risk measures studied in this paper have a robust representation of the form

ρh,p(X) = sup
f∈Ma(0,1]∩Lp(h)

∫ 1

0
[AV@Ru(X)f(u) − fp(u)h(u)] du − C, X ∈ L1(Ω), (2)

where 1 ≤ p < ∞ and Ma(0, 1] denotes the set of all probability measures µ ∈ M1(0, 1]
which are absolutely continuous with respect to the Lebesgue measure λ. Absolutely
continuous measures µ ∈ Ma(0, 1] are identified with their Radon-Nikodym densities
dµ/dλ. Finally, C ∈ R is a normalizing constant guaranteeing ρh,p(0) = 0.

Theorem 2.1 Let X ∈ L1(Ω), h : (0, 1] → (0,∞) strictly decreasing and 1 < p <∞ with
conjugate q = p/(p − 1). Then, ρh,p(X) ∈ R if and only if

∫ 1−ε

0
h(u)1−q |AV@Ru(X)|q du <∞, for some 0 < ε < 1. (3)

Proof. Step 1. Since ρh,p(X +m) = ρh,p(X) −m, AV@Ru(X +m) = AV@Ru(X) −m
for all m ∈ R and AV@Ru(X) ≥ E [−X], we may assume w.l.o.g. that AV@Ru(X) ≥ 0
for all u ∈ (0, 1]. The vector space E := Lp(h) ∩ L1(λ) endowed with the norm

|||X||| = ||X||Lp(h) + ||X||L1(λ), X ∈ E,

is a Banach space. The mapping i : E → Lp(h) × L1(λ), f 7→ (f, f) shows that E is
isometric isomorph to a closed subspace of Lp(h)×L1(λ). The dual space of Lp(h)×L1(λ)
is isometric isomorph to Lq(h) × L∞(λ). Hence, the elements of the dual space of i(E)
are (k1, k2) ∈ Lq(h) × L∞(λ) where (k1, k2) and (k̃1, k̃2) are identified if

∫ 1

0
[k1(u)h(u) + k2(u)]f(u)du =

∫ 1

0
[k̃1(u)h(u) + k̃2(u)]f(u)du, for every f ∈ E.

This shows that the dual E∗ of E is a quotient space with elements k(u) = k1(u)h(u) +
k2(u), k1 ∈ Lq(h), k2 ∈ L∞(λ). Any k ∈ E∗ defines a linear mapping on E given by
∫ 1
0 k(u)f(u)du, f ∈ E. The dual norm of k ∈ E∗ is

|||k|||∗ = inf
k=k1·h+k2

(

||k1||Lq(h) + ||k2||L∞(λ)

)

= inf
k2∈L∞(λ)

{

(∫ 1

0

(

|k(u) − k2(u)|

h(u)

)q

h(u)du

)1/q

+ ||k2||L∞(λ)

}

.
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In the case that k ≥ 0 the dual norm simplifies to

|||k|||∗ = inf
s>0

{

(∫ 1

0
h(u)1−q(k(u) − s)q+du

)1/q

+ s

}

. (4)

Step 2. We show that (3) holds if and only if the mapping A : f(u) 7→ AV@Ru(X)f(u)
is a bounded function from E to L1(λ).

Indeed, suppose that (3) holds for some 0 < ε < 1. Then, there is K ∈ R such that
∫ 1−ε
0 h(u)1−qAV@Ru(X)qdu ≤ Kq and ||AV@Ru(X)||L∞(1−ε,1) ≤ K. Hölder’s inequality

implies the boundednes of A as

||Af ||L1(λ) =

∫ 1−ε

0
|f(u)|AV@Ru(X)du+

∫ 1

1−ε
|f(u)|AV@Ru(X)du

≤

∫ 1−ε

0
|f(u)|

1

h(u)
AV@Ru(X)h(u)du +K||f ||L1(λ)

≤

(
∫ 1−ε

0
|f(u)|p h(u)du

)1/p (∫ 1−ε

0

(

1

h(u)
AV@Ru(X)

)q

h(u)du

)1/q

+K||f ||L1(λ)

≤ K||f ||Lp(h) +K||f ||L1(λ) = K|||f |||.

Conversely, suppose that A : E → L1(λ) is bounded. Hence, its adjoint A∗ : L∞(λ) →
E∗ is bounded. By definition of the adjoint operator A∗,

∫ 1

0
g(u)[Af(u)]du =

∫ 1

0
[A∗g(u)]f(u)du, for all f ∈ E, g ∈ L∞(λ),

it follows
A∗g(u) = g(u)AV @Ru(X), g ∈ L∞(λ).

Since A∗ is bounded, there is K ∈ R+ such that

|||A∗g|||∗ ≤ K||g||L∞(λ), for all g ∈ L∞(λ). (5)

In particular, for g = 1 we have A∗g ≥ 0 so that by (4) and (5) it follows

inf
s>0

{

(
∫ 1

0
h(u)1−q (AV@Ru(X) − s)q+ du

)1/q

+ s

}

≤ K,

and therefore (3).
Step 3. We finally show that ρh,p(X) ∈ R if and only if (3) holds.
Indeed, suppose that (3) is satisfied. Due to Step 2, the mapping A is bounded, whence

there is K ∈ R such that for all f ∈ Ma(0, 1] ∩ L
p(h)

∫ 1

0
[AV@Ru(X)f(u) − fp(u)h(u)]du ≤ K|||f ||| − ||f ||pLp(h)

= K
(

||f ||Lp(h) + ||f ||L1(λ)

)

− ||f ||pLp(h). (6)
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Choose a maximizing sequence fk ∈ Ma(0, 1] ∩ L
p(h) for the right hand side of (2). The

sequence (fk) is bounded in Lp(h). Indeed, if not, it follows ||fk||Lp(h) → ∞ for k → ∞.
Then, K||fk||Lp(h)−||fk||

p
Lp(h) tends to minus infinity, which in view of (6) contradicts the

fact that fk is a maximizing sequence for (2). Hence, ||fk||Lp(h) is bounded and (6) yields
ρh,p(X) ∈ R.

Conversely, let us assume that (3) does not hold. Due to Step 2, A is not bounded.
Hence, there exists a sequence fk ∈ E with |||fk||| → 0 and

∫ 1
0 AV@Ru(X)fk(u)du → ∞

for k → ∞. We can assume that fk ≥ 0, otherwise we replace fk by |fk|. There is a
subsequence (fk), still denoted by (fk), such that ||fk||L1(λ) ≤ 2−k and ||fk||Lp(h) ≤ 2−k.
For the normalized sequence

Fk :=

∑k
j=1 fj

||
∑k

j=1 fj||L1(λ)

∈ Ma(0, 1],

it follows

sup
k∈N

{∫ 1

0
F p

k (u)h(u)du

}

≤ sup
k∈N







1

||f1||
p
L1(λ)





k
∑

j=1

||fj ||Lp(h)





p




<∞, (7)

showing that Fk ∈ Lp(h). Moreover,

∫ 1

0
AV@Ru(X)Fk(u)du =

1

||
∑k

j=1 fj||L1(λ)

k
∑

j=1

∫ 1

0
AV@Ru(X)fj(u)du→ ∞ as k → ∞.

(8)
Hence, (2), (7) and (8) imply

ρh,p(X) ≥ lim inf
k→∞

(
∫ 1

0

[

AV@Ru(X)Fk(u) − F p
k (u)h(u)

]

du−C

)

= ∞.

This shows ρh,p(X) = ∞ ans the proof is completed. �

Remark 2.1 The set
{

X ∈ L1(Ω) : X satisfies (3)
}

is a convex cone. Moreover, in case

that
∫ 1
0 h(u)

1−qdu < ∞, the condition (3) is equivalent to
∫ 1
0 h(u)

1−q |AV@Ru(X)|q du <
∞, which for instance is satisfied if h is strictly bounded away from zero.

2.1 Sufficient conditions for (3)

While (3) is a condition in terms of AV@Ru(X), we present here sufficient conditions for
(3) involving only the quantile function qX . These sufficient conditions will be applied in
Subsection 2.2 below to derive vector spaces on which ρh,p is real-valued defined. The first
condition reads as follows.
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Proposition 2.2 Let X ∈ L1(Ω), h : (0, 1] → (0,∞) strictly decreasing and 1 < p < ∞
with conjugate q = p/(p− 1). A sufficient condition for (3) is

∫ 1−ε

0
|qX(u)|

(
∫ 1−ε

u
h(s)1−qs−qds

)1/q

du <∞ for some 0 < ε < 1. (9)

Proof. As shown in the proof of Theorem 2.1 condition (3) is equivalent to the bounded-
ness of the mapping A : f(u) 7→ AV@Ru(X)f(u) from E to L1(λ). We therefore have to
show that there exist constants c1, c2 ∈ R+ such that

∫ 1

0
|AV@Ru(X)f(u)| du ≤ c1||f ||Lp(h) + c2||f ||L1(λ), for all f ∈ E.

To this end, we decompose the integral in
∫ 1

0
|AV@Ru(X)f(u)| du =

∫ 1−ε

0
|AV@Ru(X)f(u)| +

∫ 1

1−ε
|AV@Ru(X)f(u)| .

Fubini’s theorem and Hölder’s inequality imply
∫ 1−ε

0
|AV@Ru(X)f(u)| du ≤

∫ 1−ε

0

(

1

s

∫ s

0
|qX(u)| du

)

|f(s)| ds

≤

∫ 1−ε

0
|qX(u)|

(
∫ 1−ε

u

|f(s)|

s
ds

)

du =

∫ 1−ε

0
|qX(u)|

(
∫ 1−ε

u

|f(s)|

h(s)s
h(s)ds

)

du

≤

∫ 1−ε

0
|qX(u)|

(∫ 1

0
h(s) |f(s)|p ds

)1/p (∫ 1−ε

u
h(s)1−qs−qds

)1/q

du

= ||f ||Lp(h)

∫ 1−ε

0
|qX(u)|

(∫ 1−ε

u
h(s)1−qs−qds

)1/q

du = c1||f ||Lp(h)

and
∫ 1

1−ε
|f(u)| |AV@Ru(X)| du ≤ ||f ||L1(λ)||AV@Ru(X)||L∞(1−ε,1) = c2||f ||L1(λ).

�

Based on the Muckenhoupt-Wheeden inverse Hölder theory, we provide another sufficient
condition for (3), stated in the following proposition.

Proposition 2.3 Let X ∈ L1(Ω), h : (0, 1] → (0,∞) strictly decreasing and 1 < p < ∞
with conjugate q = (p− 1)/p. Suppose

sup
0<u≤1−ε

1

uh(u)

∫ u

0
h(s)ds <∞, for some 0 < ε < 1. (10)

Then, there is K ∈ R such that
∫ 1−ε

0
h(u)1−q |AV@Ru(X)|q du ≤ K

∫ 1−ε

0
h(u)1−q |qX(u)|q du, (11)

i.e.,
∫ 1−ε
0 h(u)1−q |qX(u)|q du <∞ is a sufficient condition for (3).
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Proof. We first define a filtration (Fu)0≤u≤1−ε on ((0, 1−ε],B(0, 1−ε], λ̃), λ̃ := λ/(1−ε),
where the time is supposed to run backwards from 1 − ε to 0. For 0 < u ≤ 1 − ε, the
sigma-field Fu is generated by the atom (0, u) and the elements in B[u, 1 − ε]. At time
zero we define F0 := B(0, 1 − ε]. Let Y0 be an F0-measurable, λ̃-integrable function and
define the martingale

Yu(s) := Eλ̃[Y0(s) | Fu], 0 ≤ u ≤ 1 − ε,

with respective maximum function

Y ∗(s) = sup
0≤u≤1−ε

|Yu(s)| .

Let ν ≪ λ̃ denote a probability measure on B(0, 1 − ε] with respective density process

Zu := Eλ̃

[

dν
dλ̃

| Fu

]

. If sup0<u≤1−ε Zu−/Zu < ∞, then Proposition 1’ in [11] (see also [4])

yields

sup
0<u≤1−ε

Eλ̃

[

(

Zu

Z0

) 1

q−1

| Fu

]

<∞ implies Eν [(Y ∗)q] ≤ KEν [|Y0|
q] (12)

for some constant K ∈ R+. We will apply (12) on the λ̃-integrable function Y0 = qX(u)
and the density Z0 = c h(u)1−q , where c ∈ R+ is a normalizing constant guaranteeing
∫ 1−ε
0 c h(u)1−qdu = 1. Then

Zu(v) =

{

c
u

∫ u
0 h(s)

1−qds if v ∈ [0, u)
c h(v)1−q if v ∈ [u, 1 − ε]

and therefore
Zu

Z0
(v) =

{

1
uh(v)1−q

∫ u
0 h(s)

1−qds if v ∈ [0, u)

1 if v ∈ [u, 1 − ε]
.

This shows

(

Zu

Z0
(v)

)
1

q−1

=

{

h(v)
(

1
u

∫ u
0 h(s)

1−qds
)

1

q−1 if v ∈ [0, u)
1 if v ∈ [u, 1 − ε]

. (13)

Since u 7→ Zu(v) is left-continuous, it follows sup0<u≤1−ε Zu−/Zu ≤ 1. The inequality
h(s)1−q ≤ h(u)1−q for all 0 < s ≤ u and (13) imply

Eλ̃

[

(

Zu

Z0

) 1

q−1

| Fu

]

≤ max

{

(

1

u

∫ u

0
h(v)dv

)(

1

u

∫ u

0
h(s)1−qds

) 1

q−1

, 1

}

≤ max

{

1

uh(u)

∫ u

0
h(v)dv, 1

}
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which by (10) is bounded. Hence, for Z0 = c h(u)1−q the left hand side of (12) is verified.
For Y0 := qX with corresponding martingale

Yu(v) =

{

1
u

∫ u
0 qX(s)ds on [0, u)

qX(v) on [u, 1 − ε]
,

it follows

Y ∗(v) ≥

∣

∣

∣

∣

1

v

∫ v

0
qX(s)ds

∣

∣

∣

∣

= |AV@Rv(X)| ,

and (12) yields

Eλ̃

[

c h(s)1−q |AV@Rs(X)|q
]

≤ Eλ̃

[

c h(s)1−qY ∗(s)q
]

≤ KEλ̃

[

c h(s)1−q |qX(s)|q
]

.

This shows

∫ 1−ε

0
h(u)1−q |AV@Ru(X)|q du ≤ K

∫ 1−ε

0
h(u)1−q |qX(u)|q du.

�

2.2 The example h(u) = u−α (1 − u)η

In the following we consider the example h(u) = u−α (1 − u)η, where α > 0, η ≥ 0. By use
of Proposition 2.2 and Proposition 2.3, we derive vector spaces on which ρh,p is real-valued.
Troughout, we assume that 1 < p <∞ with conjugate q = p/(p − 1).

Corollary 2.4 Suppose h(u) = u−α (1 − u)η, α > 1, η ≥ 0, and X ∈ L1(Ω). Then
condition (3) holds.

Proof. We show that (9) holds and conclude by Proposition 2.2. There is a constant
K > 0 such that 0 < K ≤ (1 − s)η ≤ 1 on (0, 1 − ǫ). Since α(q − 1) − q > −1, it follows

∫ 1−ε

u
h(s)1−qs−qds =

∫ 1−ε

u

(

s−α (1 − s)η
)1−q

s−qds ≤ K1−q

∫ 1−ε

u
sα(q−1)−qds.

Hence supu∈(0,1−ε)

∫ 1−ε
u h(s)1−qs−qds <∞ and condition (9) follows. �

Corollary 2.5 Suppose h(u) = u−1 (1 − u)η, η ≥ 0, and let X belong to the Orlicz space

{

Z : E

[

|Z| (log(1 + |Z|))1/q
]

<∞
}

. (14)

Then condition (3) holds.
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Proof. We show that (9) holds and conclude by Proposition 2.2. Note that

∫ 1−ε

u
h(s)1−qs−qds =

∫ 1−ε

u

(

s−1 (1 − s)η
)1−q

s−qds ≤ K

∫ 1−ε

u
s(q−1)−qds

= K

∫ 1−ε

u
s−1ds ≤ K log

(

u−1
)

, (15)

for some constant K > 0. Fix K̃ > K and define the convex function Ψ : R+ → R+,

Ψ(x) := exp
(

1
K̃
xq
)

, with convex conjugate

Ψ∗(x) := sup
y∈R+

{xy − Ψ(y)} , x ∈ R+. (16)

For any x ∈ R+, the supremum in (16) is attained at y∗(x) and differentiation of (16)
yields

0 = x−
d

dy

∣

∣

∣

∣

y=y∗(x)

Ψ(y) = x− exp

(

y∗(x)
q

K̃

)

q

K̃
y∗(x)

q−1.

Hence, there exists a constant c > 0 such that y∗(x) ≤ c(1 + log(1 + x)1/q) for all x ∈ R+.
Since X belongs to (14) and Ψ∗(x) ≤ xy∗(x) for all x ∈ R+, it follows

E [Ψ∗(|X|)] ≤ E [|X| y∗(|X|)] ≤ c
(

E [|X|] + E

[

|X| log(1 + |X|)1/q
])

<∞. (17)

Condition (9) finally follows from (15), (17) and the inequality xy ≤ Ψ(x) + Ψ∗(y) for all
x, y ∈ R+. Indeed,

∫ 1−ε

0
|qX(u)|

(
∫ 1−ε

u
h(s)1−qs−qds

)1/q

du

≤

∫ 1−ε

0
|qX(u)|

(

K log(u−1)
)1/q

du

≤

∫ 1−ε

0
Ψ∗ (|qX(u)|) du+

∫ 1−ε

0
exp

(

K

K̃
log(u−1)

)

du

≤ E [Ψ∗ (|X|)] +

∫ 1−ε

0
u−K/K̃du <∞,

because K/K̃ < 1 and
∫ 1
0 Ψ∗(|qX(u)|)du = E [Ψ∗(|X|)] as the random variables X on

(Ω,F ,P) and qX on ((0, 1],B(0, 1], λ) have the same law. �

Corollary 2.6 Suppose h(u) = u−α (1 − u)η, 0 < α < 1, η ≥ 0 and X ∈ Lγ(Ω) with
γ = q

1+α(q−1) . Then condition (3) holds.

Proof. It is straightforward to check that h(u) satisfies condition (10) and Proposition 2.3
can be applied. Since

∫ 1−ε
0 |qX(u)|γ du < ∞, there is K̃ > 0 such that u |qX(u)|γ ≤ K̃ for
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all u ∈ (0, 1 − ε). Moreover, 0 < K ≤ (1 − s)η ≤ 1 on (0, 1 − ǫ) for some constant K > 0.
Hence

∫ 1−ε

0
h(u)1−q |qX(u)|q du ≤ K

∫ 1−ε

0
u−α(1−q) |qX(u)|q−γ |qX(u)|γ du

≤ K

∫ 1−ε

0
u−α(1−q)

(

K̃

u

)
q−γ

γ

|qX(u)|γ du

= KK̃
q−γ

γ

∫ 1−ε

0
|qX(u)|γ du <∞,

because −α(1 − q) − q−γ
γ = 0.

�

In the following table we summarize the results of the Corollaries 2.4–2.6 and provide
admissible vector spaces on which ρh,p is real-valued defined.

h(s) = s−α (1 − s)η admissible vector space

0 < α < 1 Lq/(1+α(q−1))(Ω)

α = 1 {Z : E[|Z|(log(1 + |Z|))1/q ] <∞}
α > 1 L1(Ω)

In the case η = 0, h(u) reduces to u−α which is considered in Section 4.

3 Existence and Characterization of the Maximizer in (2)

For computational aspects of the risk measure ρh,p it is important to know, for which
X ∈ L1(Ω) the supremum in (2) is attained. In the second part of this section, we
compute this maximizer fX ∈ Ma(0, 1]∩L

p(h) (if it exists) by use of variational methods.

Theorem 3.1 Let h : (0, 1] → (0,∞) be a strictly decreasing function and 1 < p < ∞.
For all X ∈ L1(Ω) satisfying (3) the supremum in (2) is attained by a unique maximizer
fX ∈ Ma(0, 1] ∩ L

p(h) if and only if

∫ 1

0
h(u)1−qdu <∞. (18)

Proof. Step 1. The identity mapping id : (Lp(h)∩L1(λ), || · ||Lp(h)) → L1(λ) is continuous
if and only if (18) is satisfied.

Indeed, in case that (18) holds, Hölder’s inequality implies

∫ 1

0
|f(u)| du =

∫ 1

0
|f(u)|

1

h(u)
h(u)du ≤

(
∫ 1

0
|f(u)|p h(u)du

)1/p (∫ 1

0
h(u)1−qdu

)1/q

,

showing that id is continuous. On the other hand, if id is continuous, it follows that its
adjoint id∗ : L∞(λ) → Lq(h) is continuous. Recall that the Hahn-Banach theorem implies
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that any linear continuous mapping from (Lp(h) ∩ L1(λ), || · ||Lp(h)) to R has a linear
continuous extension to Lp(h), showing that the dual space of (Lp(h) ∩ L1(λ), || · ||Lp(h))
can be identified with Lq(h). The adjoint id∗ satisfies

∫ 1

0
[id∗(f)(u)]g(u)h(u)du =

∫ 1

0
f(u)[id(g)(u)]du =

∫ 1

0
f(u)g(u)du,

for all f ∈ L∞(λ) and g ∈ Lp(h) ∩ L1(λ) showing that id∗(f)(u) = f(u)/h(u). Since id∗

is continuous there exists a constant K > 0 such that

K||g||L∞(λ) ≥ ||id∗(g)||Lq(h) =

(∫ 1

0
|g(u)|q h(u)−qh(u)du

)1/q

for all g ∈ L∞(λ),

from which we deduce (18).
Step 2. Let us now assume that (18) holds and fix X ∈ L1(Ω) for which (3) holds.

The goal is to show the existence of a maximizer for the right hand side of (2). Indeed,
let fk ∈ Ma(0, 1] ∩ Lp(h) be a maximizing sequence for (2). Following the arguments
given in the proof of Theorem 2.1 we derive from (6) that the sequence (fk) is bounded in
the reflexive Banach space Lp(h). Hence, there exists a subsequence such that fk ⇀ fX

weakly in Lp(h) for some fX ∈ Lp(h). According to Mazur’s lemma, there exists f̃k in
the convex hull conv{fl | l ≥ k} such that f̃k → fX strongly in Lp(h). The concavity
of the optimization problem (2) implies that f̃k remains a maximizing sequence. Due to
Step 1, the identity id : (Lp(h) ∩L1(λ), || · ||Lp(h)) → L1(λ) is continuous so that f̃k → fX

in L1(λ) and fX ∈ Ma(0, 1]. Hence, f̃k → fX in ||| · ||| and the continuity of the mapping
f(u) 7→ AV@Ru(X)f(u) from E to L1(λ) (see Step 2 in the proof of Theorem 2.1) implies
that fX is a maximizer for (2). The uniqueness of the maximizer fX follows because
f 7→

∫ 1
0 [AV@Ru(X)f(u) − fp(u)h(u)] du is strictly concave.

Step 3. Finally, we assume that (18) does not hold, i.e.,
∫ 1
0 h(u)

1−qdu = ∞ and show
that the right hand side of (2) does not have a maximizer for the random variable X = 0.
Indeed, due to Step 1, the identity id : (Lp(h)∩L1(λ), ||·||Lp(h)) → L1(λ) is not continuous.

Hence, there is a sequence gk ∈ Lp(h) with ||gk||Lp(h) ≤ 2−k and
∫ 1
0 gk(u)du → ∞ for

k → ∞. We can assume that gk is positive and increasing (otherwise, we replace gk by an
increasing rearrangement of |gk|). For the positive and increasing function

g :=
∑

k≥1

gk ∈ Lp(h)

it follows
∫ 1
0 g(u)du = ∞. Since

∫ 1−ε
0 g(u)du <∞ for all ε > 0 and

∫ 1
0 g(u)du = ∞, there

exists an increasing sequence xn ∈ (0, 1) with xn → 1 such that for fk(u) := g(u)11(xk,xk+1],

∫ 1

0
fk(u)du = 1, for all k ∈ N.

12



The sequence (fk) is bounded in Lp(h) but not uniformly integrable. For X = 0, we derive
for the right hand side of (2) that

sup
f∈Ma(0,1]∩Lp(h)

∫ 1

0
[AV@Ru(0)f(u) − h(u)fp(u)] du = sup

f∈Ma(0,1]∩Lp(h)

∫ 1

0
−h(u)fp(u)du

≥ lim sup
k→∞

∫ 1

0
−h(u)fp

k (u)du = lim sup
k→∞

∫ xk+1

xk

−h(u)gp(u)du = 0.

On the other hand, −
∫ 1
0 f

p(u)h(u)du < 0 for all f ∈ Ma(0, 1] ∩ L
p(h). Hence, for X = 0

the right hand side of (2) does not have a maximizer. �

Remark 3.1 For h(u) = u−α(1 − u)η, α > 0, η ≥ 0, the condition (18) is satisfied if
0 ≤ η < p− 1. Indeed, since η < p− 1 = 1/(q − 1) where q = p/(p − 1), it follows

∫ 1

0
h(u)1−qdu =

∫ 1

0

(

u−α(1 − u)η
)1−q

du ≤

∫ 1

0
(1 − u)η(1−q)du <∞.

In particular, for h(u) = u−α, α > 0, the condition (18) is always satisfied.

Remark 3.2 Theorem 3.1 is not valid for p = 1 as illustrated by the example in Subsec-
tion 4.1, below. The example shows that the supremum in

ρ(X) = sup
f∈Ma(0,1]∩L1(h)

∫ 1

0
[AV@Ru(X)f(u) − u−αf(u)] du,

is not attained in Ma(0, 1]∩L
1(h), even though the condition (18) is satisfied for all α > 0

by Remark 3.1.

Using variational methods we now compute the maximizer fX for (2).

Theorem 3.2 Let 1 < p < ∞ and h : (0, 1] → (0,∞) be a strictly decreasing function
for which (18) holds. For X ∈ L1(Ω) satisfying (3) the unique maximizer fX of (2) in
Ma(0, 1] ∩ L

p(h) is given by

fX(u) =

(

AV@Ru(X) − κ

ph(u)

)
1

p−1

+

, (19)

where κ is determined through
∫ 1
0 fX(u)du = 1.

Proof. Suppose that fX ∈ Ma(0, 1] ∩ L
p(h) is a maximizer for (2). For f ∈ Ma(0, 1] ∩

Lp(h), we consider the parameterized family ft := tfX + (1− t)f , t ∈ R. By construction,
ft ∈ Ma(0, 1] ∩ L

p(h) for all t ∈ [0, 1] and since fX is a maximizer it follows

d

dt

∣

∣

∣

∣

t=1

(∫ 1

0
[AV@Ru(X)ft(u) − fp

t (u)h(u)]du

)

≥ 0.

13



Hence,

∫ 1

0

(

AV@Ru(X) − ph(u)fp−1
X (u)

)

(fX(u) − f(u)) du ≥ 0, for all f ∈ Ma(0, 1] ∩ L
p(h).

(20)
For fixed u ∈ (0, 1), the mapping

k 7→

(

AV@Ru(X) − k

ph(u)

) 1

p−1

+

(21)

tends to zero and infinity as k tends to +∞ and −∞, respectively. Since 1/(p−1) = q−1,
(3) and (18) imply

∫ 1

0

(

AV@Ru(X)

ph(u)

)
1

p−1

+

≤ p1−q

∫ 1

0
h(u)1−q |AV@Ru(X)|q−1 du <∞,

∫ 1

0

(

1

ph(u)

)
1

p−1

du = p1−q

∫ 1

0
h(u)1−q du <∞.

Hence, the Lebesgue dominated and monotone convergence theorems yield

k 7→

∫ 1

0

(

AV@Ru(X) − k

ph(u)

)
1

p−1

+

du

is a continuous function with limits 0 and +∞ as k tends to +∞ and −∞, respectively.

This shows the existence of κ ∈ R such that
∫ 1
0 [(AV@Ru(X) − κ)/(ph(u))]

1/(p−1)
+ du = 1.

We finally show that

fX :=

(

AV@Ru(X) − κ

ph(u)

) 1

p−1

+

(22)

is the unique solution fX in Ma(0, 1] ∩ L
p(h) for the variational inequality (20) and is

therefore the unique maximizer for (2), which in view of Theorem 3.1 exists. Indeed, in
case that fX is of the form (22), the inequality (20) becomes

∫ 1

0
(AV@Ru(X) − (AV@Ru(X) − κ)+)

(

(

AV@Ru(X) − κ

ph(u)

) 1

p−1

+

− f(u)

)

du

=

∫ 1

0
((AV@Ru(X) − κ) − (AV@Ru(X) − κ)+)

(

(

AV@Ru(X) − κ

ph(u)

)
1

p−1

+

− f(u)

)

du

=

∫ 1

0
(AV@Ru(X) − κ)−f(u) du ≥ 0, for all f ∈ Ma(0, 1] ∩ L

p(h).

Moreover, suppose there exists another f̃X ∈ Ma(0, 1]∩L
p(h) such that f̃X 6= fX and for

which (20) is valid. Define

H(u) := (AV@Ru(X) − κ) − ph(u)(f̃X(u))p−1, u ∈ (0, 1],
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A> := {H > 0}, A0 := {H = 0} and A< := {H < 0}. Note that λ[A>] > 0 and λ[A<] > 0.
For the probability density

f(u) := c

(

2f̃X(u)11A> + f̃X(u)11A0
+

1

2
f̃X(u)11A<

)

, u ∈ (0, 1],

where c ∈ (0, 1) is a normalizing constant guaranteeing f ∈ Ma(0, 1] ∩ L
p(h), we deduce

H(u)(f̃X(u) − f(u)) =







< 0 on A> ∩ {f̃X > 0}

< 0 on A< ∩ {f̃X > 0}
= 0 else

,

which, in view of λ[(A> ∪A<) ∩ {f̃X > 0}] > 0, is a contradiction that f̃X is the solution
of the variational inequality (20). �

4 Examples

In this section we consider the risk measure ρh,p where h(s) = hα(s) = s−α for some α > 0.
The goal is to illustrate how the weighting measure µX depends on the position X and
how it concentrates more and more at zero with increasing potential losses of X. In case
that p = 1 the optimal weighting measure µX is a Dirac measure, while in the second
example p = 2 it follows from Theorem 3.2 that µX is absolutely continuous with respect
to the Lebesgue measure with density fX .

4.1 The case p = 1

We consider the example of the form (1) with penalty function β(µ) =
∫

(0,1] hα(s)µ(ds)−1.
In this case,

ρα(X) = sup
µ∈M1(0,1]

(

∫

(0,1]
[AV@Rs(X) − hα(s)] µ(ds) + 1

)

. (23)

We assume
lim
s→0

hα(s) −AV@Rs(X) = +∞, (24)

which for instance for normally distributed X is satisfied for all α > 0. Since the mapping
s 7→ AV@Rs(X) − hα(s) is differentiable, s 7→ AV@Rs(X), s 7→ hα(s) are decreasing
and AV@R1(X) − hα(1) ∈ R, the supremum in (23) is attained for a Dirac measure
µ = δs∗α ∈ M1(0, 1] \Ma(0, 1] at the maximal point s∗α of s 7→ AV@Rs(X) − hα(s). This
maximizing point is implicitly given by the solution of

0 =
d

ds
(AV@Rs(X) − hα(s)) = −

1

s
(qX(s) +AV@Rs(X)) + α

1

sα+1
.

Thus we determine s∗α, which is not unique in general, by the equation

α

(s∗α)α
= qX(s∗α) +AV@Rs∗α(X) .
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For the risk measure ρα in (23) we deduce ρα(X) = AV@Rs∗α(X)−hα(s∗α)+1. In Table
1 we list the values of s∗α, the average value at risk AV@R0.01(X) and the risk measure
ρα(X), X ∼ N (0, σ2), for the cases α = 1, 1/2, 1/4 and different standard deviations
σ. Figure 1 shows the AV@R0.01(X) and the risk measures ρ1(X), ρ1/2(X), ρ1/4(X)
depending on the standard deviation σ.

σ AV@R0.01 s∗1 ρ1 s∗1/2 ρ1/2 s∗1/4 ρ1/4

1 2.665 0.816 0.101 0.445 0.389 0.087 0.979

10 26.652 0.183 10.023 0.018 18.142 1.2·10−4 30.592

100 266.521 0.026 194.836 3.7·10−4 312.318 4.1·10−8 484.524

Table 1

20 40 60 80 100
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AV@R0.01

ρ1

ρ1/2

ρ1/4

Figure 1: Comparison of the AV@R0.01(X) with the risk measures ρ1(X), ρ1/2(X),
ρ1/4(X) for normally distributed X with mean zero and standard deviation σ. The plot
shows the dependence on σ which varies in the range of the values in Table 1.

4.2 The case p = 2

In the following proposition we demonstrate an example of a typical risk measure of the
form (2). We study the case p = 2 and h(s) = s−α for α > 0 which corresponds to the
risk measure

ρα(X) = ρs−α,2 = sup
f∈Ma(0,1]∩L2(h)

{
∫ 1

0
[AV@Rs(X)f(s) −

1

sα
f2(s)]ds− C

}

.

Let us denote the primitive of an arbitrary function f ∈ L1(λ) by f↑(s) :=
∫ s
0 f(u)du and

introduce the function QX(s) := sα−1q↑X(s).
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Proposition 4.1 Suppose that X ∈ L1(Ω) satisfies condition (3). Let

ϕ(s) := (α+ 1)(2 +Q↑
X(s)) − sQX(s)

and define s0 as the unique root ϕ(s0) = 0 if it exists in (0, 1) or as 1 if ϕ > 0 on (0, 1).
Then, for the risk measure ρα it follows C = −(α+ 1)/sα+1

0 and

fX(s) =
1

2

(

(α+ 1)sα

sα+1
0

(

2 +Q↑
X(s0)

)

−QX(s)

)

11{s≤s0}(s), (25)

leading to

ρα(X) = −
α+ 1

sα+1
0

(

Q↑
X(s0) +

3

4

(

Q↑
X(s0)

)2
)

+
3

4

∫ s0

0

Q2
X(s)

sα
ds. (26)

Proof. We have ϕ(0) = 2α + 2 and ϕ′(s) = sα−1(q↑X(s) − sqX(s)). For s > 0 the second

factor of ϕ′ is negative since (q↑X(s)− sqX(s))′ = −sq′X(s) < 0 and (q↑X(s)− sqX(s))|s=0 =

q↑X(0) = 0. Therefore ϕ is strictly decreasing and has at most one root in (0, 1]. By
Theorem 3.2 the maximizer is given by

fX(s) =

(

AV@Rs(X) − κ

2h(s)

)

11{s≤s̃}(s),

where s̃ is the unique (since h(u) ≥ 0 and AV@Rs(X) is decreasing) root of fX if it
exists in (0, 1] or s̃ = 1 otherwise. The parameter κ is adjusted in dependence of s̃ by the

condition f↑X(s̃) = 1:

f↑X(s̃) =

∫ s̃

0

sα(AV@Rs(X) − κ)

2
du =

∫ s̃

0

sα(−q↑X(s)/s− κ)

2
du

= −
κs̃α+1

2(α+ 1)
−
Q↑

X(s̃)

2
= 1 ⇔ κ = −

α+ 1

s̃α+1
(2 +Q↑

X(s̃))

⇒ fX(s) =
1

2

(

(α+ 1)sα

s̃α+1

(

2 +Q↑
X(s̃)

)

−QX(s)

)

11{s≤s̃}(s).

From fX(s̃) = 1
2s̃ϕ(s̃) we deduce s̃ = s0. Since ρα(X + m) = ρα(X) −m for m ∈ R, we

may assume w.l.o.g. that the expected value of the random variable X equals 0. Then we
have

∫ s0

0
AV@Rs(0)f0(s)ds = 0, Q0(s) = 0 and Q↑

0(s) = 0,

and the condition ρα(0) = 0 yields

C = −

∫ s0

0

1

sα
f2
0 (s)ds = −

α+ 1

sα+1
0

.
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The penalty function thus reads

β(fX) =

∫ s0

0

1

sα
f2

X(s)ds+ C = −
α+ 1

4sα+1
0

(

Q↑
X(s0)

)2
+

1

4

∫ s0

0

Q2
X(s)

sα
ds.

Furthermore

∫ s0

0
AV@Rs(X)fX(s)ds = −

∫ s0

0

q↑X(s)

2s

(

(α+ 1)sα

sα+1
0

(

2 +Q↑
X(s0)

)

−QX(s)

)

ds

= −
(α+ 1)Q↑

X(s0)

2sα+1
0

(

2 +Q↑
X(s0)

)

+
1

2

∫ s0

0

Q2
X(s)

sα
ds.

This leads to the following expression for the risk measure ρα:

ρα(X) =

∫ s0

0
AV@Rs(X)fX(s)ds+ β(fX)

= −
α+ 1

sα+1
0

(

Q↑
X(s0) +

3

4

(

Q↑
X(s0)

)2
)

+
3

4

∫ s0

0

Q2
X(s)

sα
ds.

�

Remark 4.1 For practical computation it may be useful to simplify the expression for fX

in the case that s0 < 1 by using the identity fX(s0) = 0, which leads to κ = s−α
0 Q(s0), so

that

fX(s) =
1

2

((

s

s0

)α

QX(s0) −QX(s)

)

11{s≤s̃}(s).

In what follows we apply Proposition 4.1 to normal distributions. Then X satisfies con-
dition (3) for all α > 0. The function fX for mean zero and different values of σ and α
is shown in Figure 2. Again, the maximizer concentrates at zero as the potential losses
increase, which for the normal distribution is characterized by increasing σ.
In Table 2 we list the values of s0 (denoted by s0,α corresponding to the different values
of α), the average value at risk AV@R0.01(X) and the risk measure ρα(X) given in (26)
for the cases α = 1, 1/2, 1/4 and normally distributed X with mean zero and different
standard deviations σ.

σ AV@R0.01 s0,1 ρ1 s0,1/2 ρ1/2 s0,1/4 ρ1/4

1 2.665 1 0.625 1 0.804 1 0.951

10 26.652 0.910 10.970 0.712 14.675 0.561 17.409

100 266.521 0.368 166.986 0.204 210.621 0.122 242.472

Table 2

Compared to the first example (p = 1) the risk adjusted value calculated by the method
in the second example (p = 2) is less sensitive to variations both of α and the standard
deviation σ. The graphs of AV@R0.01(X) and ρα(X) as functions in dependence of the
standard deviation σ look qualitatively the same as the corresponding graphs in Figure 1.
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Figure 2: Function fX given in (25) resulting from the quantile qX of the normal distribu-
tion with mean zero and different standard deviations σ. The plots cover the cases α = 1
and α = 1
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