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ABSTRACT

The concepts of a conditional set, a conditional inclusion relation and a con-
ditional Cartesian product are introduced. The resulting conditional set theory
is sufficiently rich in order to construct a conditional topology, a conditional
real and functional analysis indicating the possibility of a mathematical dis-
course based on conditional sets. It is proved that the conditional power set is
a complete Boolean algebra, and a conditional version of the axiom of choice,
the ultrafilter lemma, Tychonoff’s theorem, the Borel-Lebesgue theorem, the
Hahn-Banach theorem, the Banach-Alaoglu theorem and the Krein-Šmulian
theorem are shown.
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1 Introduction
Conditional set theory is an approach to study the local or dynamic behavior of structures whose local
or dynamic behavior is determined by the information encoded in a measure space, or more generally,
in a complete Boolean algebra. By constructing an analysis conditioned on a complete Boolean alge-
bra, conditional set theory makes available analytic tools for this purpose. In the case of the associated
measure algebra, it provides an alternative to measurable selection techniques, and extends the results in
topological L0-modules obtained in Filipović et al. [13] and Cheridito et al. [8], initially motivated by
dual representations of conditional risk measures [14].

In the following, we briefly introduce conditional set theory. A conditional set X is a collection of
objects x|a for x in a non-empty set X and a in a complete Boolean algebra A such that

• a = b whenever x|a = y|b,

• x|b = y|b implies x|a = y|a for all a, b ∈ A with a ≤ b, and

• for any partition of unity (ai) in A and a family (xi) of elements in X there exists exactly one
element x in X such that x|ai = xi|ai for all i.

In order to introduce a conditional inclusion relation, it is necessary to specify conditional subsets of a
conditional set X. A conditional subset of X is the collection of objects Y|b := {y|a : y ∈ Y, a ≤
b} for some b ∈ A and some non-empty subset Y of X that is stable under pasting of its elements
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along partitions of unity in A. A conditional subset Y|b is a conditional set on the relative algebra Ab.
A conditional subset Y|b of X is conditionally included in another conditional subset Z|c if Y|b ⊆
Z|c. It can be shown that the collection of all conditional subsets of X together with the conditional
inclusion relation forms a complete Boolean algebra. The induced operations of conditional intersection,
conditional union and conditional complement conserve the structure of a conditional set, and satisfy
the Boolean laws known from naïve set theory. By giving meaning to a conditional Cartesian product,
conditional relations and functions can be defined as conditional subsets of the conditional product of two
conditional sets, respectively.

A proof of a conditional version of a classical result is an adaptation of an existing classical proof. In
this adaptation process, it is helpful to recognize the following principles. The first principle is exhaustion
which establishes the largest condition a for which a conditional property is satisfied. The second princi-
ple is conditional negation which is stronger than classical negation. Conditional negation negates locally
a conditional property on all conditions a > 0. The third principle is localization. A conditional structure
on or a statement about a conditional set X can equivalently be stated on the conditional set X|b for any
b < 1 by passing from the complete Boolean algebra A to its complete relative algebra Ab. In particular,
the restriction of a true statement about X to X|b remains true. The forth principle is bottom-up. It
makes a relation between a conditional concept on a conditional set X and its classical counterpart on the
underlying set X . For instance, we analyze this relation for the concepts of continuity and convergence
in Section 3.

Conditional set theory is closely related to the topos of sheaves over a complete Boolean algebra or
Boolean-valued models of ZFC, respectively, see Mac Lane and Moerdijk [24] for an introduction to
sheaves in logic, see Bell [2] and Kusraev and Kutateladze [23] for an introduction to Boolean-valued
models and to Boolean-valued analysis, respectively, and see Jamneshan [20] for the connection of con-
ditional sets to sheaves and to Boolean-valued sets. Conditional set theory is an extension of the con-
ditional analysis’ results for topological L0-modules in [8, 10, 13, 27]. Conditional set operations on
(L0)d are introduced in Streckfuß [26]. In this article, it is shown that L0 is isomorphic to the conditional
real numbers when the complete Boolean algebra is the measure algebra associated to a σ-finite measure
space. Hence the conditional analysis’ results obtained in L0-theory are recovered in conditional set the-
ory, and conditional set theory provides a framework for further studies of stable L0-modules. In Guo
[18], conditional separation and duality results for topological L0-modules in [13] are related to the re-
spective results in randomly normed modules, see Haydon et al. [19] and its references for an introduction
to randomly normed spaces. In [11, 12], Eisele and Taieb prove a conditional version of some classical
theorems from functional analysis for modules over L∞. Recently, a Hahn-Banach theorem for modules
over Stonean algebras has been proved in Cerreia-Vioglio et al. [4]. A conditional version of Mazur’s
lemma for L0-modules is shown in Zapata-García [27]. Conditional analysis is successfully applied to
dynamic and conditional risk measures and decision theory in Filipović et al. [14], Bielecki et al. [3],
Frittelli and Maggis [17] and Jamneshan and Drapeau [9], to backward stochastic differential equations
in Cheridito and Hu [5] and Cheridito and Stadje [6], and to optimization problems in equilibrium and
principal-agent models in Horst et al. [7] and Horst and Backhoff [1].

This paper is organized as follows. Conditional sets, conditional set operations, conditional relations,
conditional families, conditional countability and a conditional axiom of choice are introduced in Section
2. In Section 3, conditional topological spaces and the concepts of conditional continuity, conditional
convergence and conditional compactness are defined with the aim to prove a conditional version of Ty-
chonoff’s theorem. In Section 4, the conditional real line is constructed, and conditional metric spaces
are defined the conditional compactness of which is characterized by a conditional Borel-Lebesgue the-
orem. In Section 5, conditional topological vector spaces are introduced and a conditional version of the
Hahn-Banach theorem, the Banach-Alaoglu theorem and the Krein-Šmulian theorem are shown. In the
last two sections, the main theorems are proved. A complete account can be found in Jamneshan [21] and
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Karliczek [22], respectively.

2 Conditional set theory
Let A = (A,∧,∨, c, 0, 1) be a complete Boolean algebra. Examples are the power set algebra of some set,
the measure algebra associated to a σ-finite measure space (Ω,F , µ),1 the quotient algebra B/I where
B is the Borel σ-algebra of a separable metric space and I the σ-ideal of meager sets, see [25, p. 182,
Proposition 12.9], and the Boolean algebra of all projective bands of a Riesz space, see [16, Volume 3,
p. 232, Theorem 352Q]. Recall that A together with the relation a ≤ b whenever a ∧ b = a is a complete
complemented distributive lattice. The relative algebra of A with respect to some a ∈ A is denoted by
Aa := {b ∈ A : b ≤ a}. For a family (ai) = (ai)i∈I of elements in A, its supremum is denoted by
∨ai = ∨i∈Iai and its infimum by ∧ai = ∧i∈Iai.2 A partition of a ∈ A is a family (ai) of elements of A
such that ai∧aj = 0 whenever i ̸= j and ∨ai = a. Denote by p(a) the set of all partitions of a. For every
family (ai)i∈I of elements in A there exists (bi)i∈I ∈ p(∨ai) such that bi ≤ ai for all i ∈ I . Indeed, by
the well-ordering theorem there exists a well-ordering on the index I , and define bi := ai ∧ (∨j<ibj)

c

for each i ∈ I . Equalities and inequalities between measurable functions are always understood in the
almost sure sense whenever a measure is fixed.

Definition 2.1. A conditional set X of a non-empty set X and a complete Boolean algebra A is a collec-
tion of objects x|a for x ∈ X and a ∈ A such that

(C1) if x|a = y|b, then a = b;3

(C2) if x, y ∈ X and a, b ∈ A with a ≤ b, then x|b = y|b implies x|a = y|a;

(C3) if (ai) ∈ p(1) and (xi) is a family of elements in X , then there exists exactly one element x ∈ X

such that x|ai = xi|ai for all i.

Condition (C2) is called consistency and (C3) is named stability. For (ai) ∈ p(1) and a family (xi) of
elements in X , the unique element x ∈ X such that x|ai = xi|ai for all i is the concatenation of the
family (xi) along the partition (ai), and denoted by

∑
xi|ai. For finite partitions, the concatenation is

denoted by x1|a1 + . . .+ xn|an.

Remark 2.2. Let x, y ∈ X and a ∈ A such that x|1 = y|a. Then it follows from (C1) that a = 1 and
from (C3) that x = y. In particular, X is in bijection with {x|1 : x ∈ X}. Furthermore, it follows from
(C3) that x|0 = y|0 for every x, y ∈ X . In particular, {x|0 : x ∈ X} consists of one element. ♦

Examples 2.3. 1) Every conditional set can be identified with the collection of equivalence classes on
the product X ×A for the equivalence relation (x, a) ∼ (y, b) whenever x|a = y|b.

2) Let A = {0, 1} be the trivial algebra and X a non-empty set. The collection X of objects x|1 = x

and x|0 = X × {0} for all x ∈ X , is a conditional set.

3) Let A be a complete Boolean algebra. Then X = A×A/∼ where (a, b) ∼ (c, d) whenever a∧b = c∧d
and b = d, is a conditional set with equivalence classes a|b.

1The associated measure algebra is the quotient Boolean algebra of F by the σ-ideal of µ-null sets, see [25, p. 233, Example
14.27]

2As usual, we apply the conventions ∨∅ = 0 and ∧∅ = 1.
3In the first version of this paper, the assumption "identity" was required. This condition was dropped during the revision process,

and we are grateful to José Miguel Zapata García for pointing out to us the lack of this condition in the current version and
suggesting the appropriate replacement.
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4) Let (Ω,F , µ) be a σ-finite measure space, A the associated measure algebra and L0 the set of all
equivalence classes of measurable functions X : Ω → R which coincide µ-almost everywhere. Denote
the equivalence classes in F by a = [A] and the equivalence classes in L0 by x = [X]. The collection
L0 of objects x|a = {y ∈ L0 : Y 1A = X1A} is a conditional set.

5) Conditional set of step functions: Let A be a complete Boolean algebra and E a non-empty set. We
consider the collection of all families (xi, ai) of elements in E×A where (ai) ∈ p(1). On this collection
we define the equivalence relation (xi, ai) ∼ (yj , bj) if ∨{ai : xi = z} = ∨{bj : yj = z} for all z ∈ E,
and we denote by X the respective set of equivalence classes [xi, ai]. Inspection shows that we can make
X into a conditional set X by considering the collection of objects

[xi, ai]|a := {[yj , bj ] ∈ X : ∨ {ai : xi = z} ∧ a = ∨{bj : yj = z} ∧ a for all z ∈ E} .

This construction can be seen as the conditional set of step functions on A with values in E. Indeed,
each [x, 1] can be uniquely identified with x ∈ E. Since by stability, elements in X can be written
as

∑
[xi, 1]|ai it justifies the notation

∑
xi|ai for the elements of X that can be interpreted as the step

function taking the value xi ∈ E on ai.

In case that E is either N or Q we denote the respective conditional set of step functions by N or Q,
and call them the conditional natural numbers and conditional rational numbers, respectively. The
corresponding generating sets are denoted by N = {

∑
ni|ai : (ai) ∈ p(1), (ni) is a family in N} and

Q = {
∑

qi|ai : (ai) ∈ p(1), (qi) is a family in Q}. ♢

Proposition 2.4. Let X be a conditional set.

(i) For all (ai), (bj) ∈ p(1) and families (xij) of elements in X , it holds∑
j

(∑
i

xij |ai
)
|bj =

∑
i,j

xij |ai ∧ bj .

(ii) For all b ∈ A, (ai) ∈ p(b) and families (xi) of elements in X , there exists x ∈ X such that
x|ai = xi|ai for all i, and if y ∈ X is such that y|ai = xi|ai for all i, then x|b = y|b.4

Proof. (i) Denote by yj :=
∑

xij |ai for each j and y :=
∑

yj |bj . Since y|bj = yj |bj , one has y|ai ∧
bj = yj |ai ∧ bj by consistency. Similarly, it follows from yj |ai = xij |ai that yj |ai ∧ bj = xij |ai ∧ bj .
Hence, y|ai ∧ bj = xij |ai ∧ bj for all i, j, and thus y =

∑
xij |ai ∧ bj .

(ii) Let x, y ∈ X be such that x|ai = xi|ai for all i and x|bc = w|bc, and y|ai = xi|ai for all i and
y|bc = z|bc for some w, z ∈ X . Let v := y|b + w|bc. Since v|b = y|b, it holds v|ai = y|ai for all
i due to consistency. Since y|ai = xi|ai = x|ai for all i, one has v = x by stability. By consistency,
x|b = v|b = y|b. □

Definition 2.5. Let X be a conditional set. A subset Y of X is called stable if it is non-empty and

Y =
{∑

yi|ai : (ai) ∈ p(1), (yi) is a family of elements in Y
}
.

Denote by S(X) the set of all Y ⊆ X which are stable.

4Whenever there is no risk of confusion, we denote by x|b =
∑

xi|ai.
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For every non-empty Y ⊆ X , the collection of those
∑

yi|ai, where (ai) ∈ p(1) and (yi) is a family
of elements in Y , is the smallest stable set containing Y due to Proposition 2.4, and is referred to as the
stable hull s(Y ) of Y .

Examples 2.6. 1) For a conditional set X of a non-empty set X and the trivial algebra A = {0, 1}, any
non-empty subset of X is stable.

2) For any conditional set X, every singleton {x}, x ∈ X , is stable.

3) For the conditional set L0, the set [x, y] := {z ∈ L0 : X ≤ Z ≤ Y } is stable for any x, y ∈ L0 with
X ≤ Y . Further examples of stable subsets of L0 can be found in [4, 8, 10, 13]. ♢

By stability, every Y ∈ S(X) generates a conditional set Y := {y|a : y ∈ Y, a ∈ A}.

Definition 2.7. Let X be a conditional set. Let P (X) be the collection of all conditional sets Y generated
by Y ∈ S(X) and define

P(X) := {Y|a = {y|b : y ∈ Y, b ≤ a} : Y ∈ P (X), a ∈ A} ,

which we call the conditional power set of X.

Inspection shows that P(X) is a conditional set of P (X). Note that every element Y|a in the conditional
power set of X is itself a conditional set of Y |a := {y|a : y ∈ Y } and the relative algebra Aa, for the
conditioning (y|a)|b := y|b, b ≤ a.

Definition 2.8. Let X and Y be two conditional sets of X,A and Y,B respectively. We say that Y is
conditionally included in X and write Y ⊑ X if B = Aa for some a ∈ A and Y = Z|a for some
Z ∈ P (X). We say that Y is a conditional subset of X on a.

Depending on the context, we write Y or Y|a for a conditional subset of X on a. Note that

P(X) = {Y ⊑ X : Y conditional set} .

By inspection, ⊑ is a partial order on P(X) with greatest element X = X|1 and least element X|0. Every
singleton {x}, x ∈ X , is stable and defines a conditional set x := {x|a : a ∈ A} called a conditional
element of X.5 Denote by s(Y ) ∈ P (X) the conditional set generated by the stable hull of some non-
empty subset Y ⊆ X .

Theorem 2.9. Let X be a conditional set. Then (P(X),⊑) is a complete complemented distributive
lattice.

Proof. First we prove completeness, second complementation and third distributivity.

Step 1 : Let (Yi|ai) be a non-empty family of conditional subsets of X. First we construct the supremum
of (Yi|ai) and second its infimum. Fix z ∈ X , and let

Y =
{∑

yi|bi + z| ∧ aci : (bi) ∈ p(∨ai) with bi ≤ ai, yi ∈ Yi for each i
}

where we used the well-ordering theorem to find a partition (bi) ∈ p(∨ai) with bi ≤ ai for all i, and
Proposition 2.4 to construct each of the concatenations

∑
yi|bi + z| ∧ aci . We want to show that Y is

5Although the conditional elements x of X are formally sets, they are atoms among the conditional subsets of X on 1, and are in
one-to-one relation with x ∈ X . In the case that Y is a conditional set on a, a conditional element y of Y is on a.

5



stable. To this end, let (cj) ∈ p(1) and (xj) be a family of elements in Y where xj =
∑

yij |bij + z| ∧ aci
for each j. For each i, define bi = ∨bij ∧ cj and yi =

∑
yij |cj . Inspection shows that (bi) ∈ p(∨ai)

with bi ≤ ai. By stability, one has yi ∈ Yi for each i. From Proposition 2.4 it follows that∑
xj |cj =

∑
yi|bi + z| ∧ aci ∈ Y.

With Y being the conditional set generated by the stable set Y , we show that

⊔Yi|ai := Y| ∨ ai (2.1)

is the supremum of (Yi|ai). Indeed, for any i, yi ∈ Yi and some arbitrary y ∈ Y , it holds w :=

yi|ai + y|aci ∈ Y due to Proposition 2.4. Since w|ai = yi|ai, it follows that Y| ∨ ai is an upper bound
due to consistency. For any other upper bound W|c, it must hold ai ≤ c for each i, and therefore ∨ai ≤ c.
Moreover, for all i and every yi ∈ Yi there is w ∈ W such that yi|ai = w|ai. By Proposition 2.4, for all
y ∈ Y there is w ∈ W with y| ∨ ai = w| ∨ ai. By consistency, Y| ∨ ai is the least upper bound.

We want to show that there exists an infimum of (Yi|ai). Let

M = {a : a ≤ ∧ai, there exists x ∈ X such that for all i there is yi ∈ Yi with x|a = yi|a},

and b = ∨M . We show that b is attained. Let (cj) be a family of elements in M with ∨cj = b, that is for
each j there exists xj ∈ X and for all i there exists yij ∈ Yi with xj |cj = yij |cj . By the well-ordering
theorem, there is (dj) ∈ p(b) such that dj ≤ cj for all j. By consistency, dj ∈ M for each j. By
Proposition 2.4, one has

∑
xj |dj =

∑
yij |dj for all i, and thus b ∈ M . Next we show that

Y := {x ∈ X : for all i there exists yi ∈ Yi with x|b = yi|b}

is stable. To this end, let (cj) ∈ p(1) and (xj) be a family of elements in Y . For all j and every i there is
yij ∈ Yi with xj |b = yij |b. Set yi =

∑
yij |cj for each i. By Proposition 2.4, it holds yi|b = xj |b, and

thus (
∑

xj |cj)|b = yi|b. By construction,

⊓Yi|ai := Y|b (2.2)

is a lower bound of (Yi|ai). For any other lower bound W|c, it holds c ≤ ai for all i. Moreover, for all
w ∈ W and every i there exists yi ∈ Yi such that w|c = yi|c. Therefore c ≤ b. By consistency, it holds
{w|d : w ∈ W,d ≤ c} ⊆ {y|d : y ∈ Y, d ≤ c}. Thus ⊓Yi|ai is the greatest lower bound of (Yi|ai).

Step 2 : We want to show that for all conditional subsets Y|a of X it holds

Y|a ⊓ (Y|a)⊏ = X|0 and Y|a ⊔ (Y|a)⊏ = X|1,

where
(Y|a)⊏ := ⊔{Z|c ∈ P(X) : Z|c ⊓Y|a = X|0} (2.3)

is the complement. By completeness which has been proved in Step 1, it holds (Y|a)⊏ ∈ P(X). Suppose
(Y|a)⊏ is of the form W|b for some W ∈ P (X) and b ∈ A.

As for the first statement, by way of contradiction, we may assume that Y|a ⊓ W|b = Z|c for some
c > 0. Thus there exists y ∈ Y and w ∈ W such that y|c = w|c. However, this implies y|c satisfies
y|c ⊓Y|a ̸= X|0 which is contradictory. Hence c = 0, and thus Y|a ⊓W|b = X|0.

As for the second statement, we may assume that Y|a ̸= X|1, since otherwise Y|a⊔W|b = X|1⊔X|0 =

X|1. Suppose Y|a ⊔ W|b = Z|a ∨ b for some Z ∈ P (X), and let x ∈ X . Then x ⊓ Y|a = y|c for
some y ∈ Y and c = ∨{a′ : a′ ≤ a, there exists y ∈ Y with x|a′ = y|a′} and x ⊓W|b = w|d for some
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w ∈ W and d = ∨{b′ : b′ ≤ b, there exists w ∈ W with x|b′ = w|b′}. Since Y|a⊓W|b = X|0, it must
hold c ∧ d = 0 and c ∨ d = 1.6 It follows from the construction of the supremum ⊔ that a ∨ b = 1 and
x = x|c+ x|d ∈ Z. Thus Z|a ∨ b = X|1.

Step 3 : Let Yk|ak ∈ P(X) for k = 1, 2, 3. Since it has already been shown that (P(X),≤) is a lattice,
both distributive laws are equivalent, see [25, p. 15, Lemma 1.17]. It remains to prove that

(Y1|a1 ⊓Y2|a2) ⊔ (Y1|a1 ⊓Y3|a3) = Y1|a1 ⊓ (Y2|a2 ⊔Y3|a3).

On the one hand, in every lattice it holds

(Y1|a1 ⊓Y2|a2) ⊔ (Y1|a1 ⊓Y3|a3) ≤ Y1|a1 ⊓ (Y2|a2 ⊔Y3|a3).

On the other hand, suppose (Y1|a1 ⊓ Y2|a2) ⊔ (Y1|a1 ⊓ Y3|a3) = V|c for some V ∈ P (X) and
c ∈ A. Without loss of generality, we may assume that Y1|a1 ⊓ (Y2|a2 ⊔ Y3|a3) is of the form
W|1 for some W ∈ P (X). By the construction of the infimum ⊓, this immediately implies a1 = 1 and
Y2|a2⊔Y3|a3 = Z|1 for some Z ∈ P (X). Moreover, for every w ∈ W there are y ∈ Y1 and z ∈ Z such
that w|1 = y|1 = z|1. By the construction of the supremum ⊔, there exists (b, bc) ∈ p(1) with b ≤ a2
and bc ≤ a3, and v ∈ Y2 and u ∈ Y3 such that z = v|b + u|bc. By consistency, w|b = y|b = z|b = v|b
and w|bc = y|bc = z|bc = u|bc. Since w = w|b+ w|bc, it follows w ∈ V and c = 1. Thus W|1 ⊑ V|1
which finishes the proof. □

The operations ⊔,⊓ and ⊏, given in (2.1), (2.2) and (2.3), are named conditional union, intersection and
complement, respectively. As a consequence of standard results on complete complemented distributive
lattices and Boolean algebras, see [25, p. 14], we have:

Corollary 2.10. For every conditional set X,

P(X) = (P(X),⊔,⊓,⊏,X|0,X)

is a complete Boolean algebra.

Remark 2.11. The complete Boolean algebra P(X) is atomic if, and only if, A is atomic. Indeed, let A
be the set of atoms of A. Then the set of atoms of P(X) is {x|a : a ∈ A, x ∈ X}. Conversely, if A is
atomless then for each a > 0 there exists 0 < b < a such that x|b ⊑ x|a and x|b ̸= x|a for all x ∈ X .
Analogously, one can verify that the distributivity law of P(X) coincides with the distributive law of A.♦

Corollary 2.12. Let X be a conditional set.

(i) De Morgan’s law: For any non-empty family (Yi) of conditional subsets of X, it holds

(⊔Yi)
⊏ = ⊓(Yi)

⊏.

(ii) Distributivity: For any non-empty family (Yij)i∈I, j∈J of conditional subsets of X where J is
arbitrary and I is finite, it holds

⊓i∈I ⊔j∈J Yij = ⊔
{
⊓i∈IYif(i) : f ∈ JI

}
.

6By inspection, the negation of either of the two conditions leads immediately to a contradiction to the construction of the infimum
⊓ and the complement ⊏.
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(iii) Associativity: For any non-empty family (Yij)i∈I, j∈J of conditional subsets of X where I, J are
arbitrary, it holds

⊔i∈I(⊔j∈JYij) = ⊔i∈I, j∈JYij .

Proof. All three properties are satisfied in every complete Boolean algebra, see [25, p. 22, Lemma 1.33].□

Lemma 2.13. Let X be a conditional set.

(i) For Y1,Y2 ⊑ X such that Y1 ⊓Y2 is on 1, one has Y1 ∩ Y2 ̸= ∅.

(ii) For Y1,Y2 ⊑ X on 1 such that Y1 ⊑ Y2, one has Y1 ⊆ Y2 and Y1 ⊆ Y2.

(iii) Let (Yi) be a stable collection of conditional subsets of X each on 1. Then one has ⊔Yi = W

where W = ∪Yi.

Proof. The first two statements are immediate from the definitions. As for the third one, let

W =
{∑

yj |aj : (aj) ∈ p(1), yj ∈ Yij for some ij

}
.

It follows that ∪Yi ⊆ W . Conversely, let y =
∑

yj |aj ∈ W , so that y ∈
∑

Yij |aj . By stability,∑
Yij |aj = Yik for some ik and therefore y ∈ ∪Yi showing that W = ∪Yi. By definition of the

conditional union, it holds ⊔Yi = W. □

2.1 Conditional relation and function
Definition 2.14. Let I be a non-empty index set and Xi be a conditional set for each i ∈ I . The collection
of objects (xi)i∈I |a := (xi|a)i∈I for (xi)i∈I ∈

∏
i∈I Xi and a ∈ A is called the conditional product of

the Xi, and is denoted by
∏

i∈I Xi.

Note that the conditional product is a conditional set. For a conditional set X and a non-empty index set
I , we write XI :=

∏
i∈I X and Xn :=

∏
1≤k≤n X for any n ∈ N.

Definition 2.15. Let X and Y be conditional sets. A conditional binary relation on X ×Y is a condi-
tional subset T of X×Y on 1.7 We say that x|a and y|a for two conditional elements x,y of X×Y are in
relation if (x|a, y|a) ∈ T and write x|aTy|a. A conditional binary relation T on X×X is conditionally
antisymmetric, reflexive, symmetric or transitive whenever T is antisymmetric, reflexive, symmetric or
transitive in the classical sense. A conditional partial order ⩽ is a conditionally antisymmetric, reflexive
and transitive binary relation. Given a conditional partial order ⩽, we define x|a < y|a if x|a ⩽ y|a and
x|b ̸= y|b for every 0 < b ≤ a.8 A conditional partial order ⩽ is conditionally total if for every x, y ∈ X

there exists (a, b, c) ∈ p(1) such that x|a < y|a, y|b < x|b and x|c = y|c. A conditional equivalence
relation is a conditionally symmetric, reflexive and transitive binary relation.

Conditional extrema of a conditionally partially ordered set are defined as classical extrema. For instance,
a conditional direction is a conditionally reflexive and transitive binary relation with the property that
every pair x, y ∈ X has an upper bound.

Examples 2.16. 1) On Q define
∑

pi|ai ≤
∑

qj |bj whenever pi ≤ qj for all i, j with ai ∧ bj > 0. It is
immediate from the definition, that the previous binary relation is a stable subset of Q × Q. The related
conditional relation ⩽ on the conditional rational numbers Q is a conditionally total partial order.

7A conditional binary relation T is a classical relation T ⊆ X × Y such that
∑

(xi, yi)|ai = (
∑

xi|ai,
∑

yi|ai) ∈ T for all
(ai) ∈ p(1) and every family (xi, yi) of elements in T .

8By consistency, if x|a ⩽ y|a it holds x|b ⩽ y|b for every b ≤ a.
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2) On L0 define x ≤ y whenever X ≤ Y . By inspection, this binary relation is a stable subset of L0×L0.
The related conditional relation ⩽ on L0 is a conditionally total partial order. ♢

Definition 2.17. Let X and Y be conditional sets. A function f : X → Y is stable if

f
(∑

xi|ai
)
=

∑
f(xi)|ai, for all (ai) ∈ p(1) and every family (xi) of elements in X.

A conditional subset Gf of X×Y on 1 is the graph of a conditional function f : X → Y whenever Gf

is the graph of a stable function f : X → Y .
For U|b ⊑ X, the conditional image f(U|b) is defined as Z|b ⊑ Y where Z = {f(x) : x ∈ U}. For

V|c ⊑ Y, the conditional preimage f−1(V|c) is defined as W|d ⊑ X where9

d = ∨{a : a ≤ c, there are x ∈ X, y ∈ V such that f(x)|a = y|a}
W = {x ∈ X : there is y ∈ V with f(x)|d = y|d}.

A conditional function f : X → Y is conditionally injective if x, x′ ∈ X with x|a ̸= x′|a for all
a ̸= 0 implies f(x)|a ̸= f(x′)|a for all a ̸= 0; it is conditionally surjective if f is surjective; and it is
conditionally bijective if it is conditionally injective and surjective.

Examples 2.18. 1) Let X and Y be non-empty sets and f : X → Y an injective function. Let X, Y
and Gf be the conditional sets generated by X,Y and the graph Gf of f .10 Then the conditional function
f : X → Y is conditionally injective.

2) Let
∏

Xi be the conditional product of a family of conditional sets. The j-th projection prj :
∏

Xi →
Xj is a stable function, and prj :

∏
Xi → Xj is called the j-th conditional projection.

3) Let X be a conditional set and Y a conditional subset of X on 1. The embedding Y ↪→ X is stable,
and the conditional function Y ↪→ X is called a conditional embedding.

4) We call the conditional function |·| : Q → Q+ = {q : 0 ⩽ q} generated by q =
∑

qi|ai 7→
∑

|qi| |ai
on Q, the conditional absolute value. ♢

The assertions in the following proposition follow from Theorem 2.9.

Proposition 2.19. Let X and Y be two conditional sets and f : X → Y a conditional function. For a
non-empty family (Ui) of conditional subsets of X, a non-empty family (Vj) of conditional subsets of Y,
conditional subsets Z1,Z2 of X with Z1 ⊑ Z2 and conditional subsets W1, W2 of Y with W1 ⊑ W2,
and Z ⊑ X and W ⊑ Y, it holds

f(Z1) ⊑ f(Z2), f−1(W1) ⊑ f−1(W2), (2.4)

f(⊔Ui) = ⊔f(Ui), f−1(⊔Vi) = ⊔f−1(Vi), (2.5)

f(⊓Ui) ⊑ ⊓f(Ui), f−1(⊓Vi) = ⊓f−1(Vi), (2.6)

f(Z)⊏ ⊓ f(X) ⊑ f(Z⊏), f−1(W⊏) = f−1(W)⊏, (2.7)

Z ⊑ f−1(f(Z)), f(f−1(W)) ⊑ W. (2.8)

It holds equality on the left-hand side of (2.8) if f is conditionally injective, and on its right-hand side if
W ⊑ f(X).

9The stability of W follows from the stability of f . Note that d = c whenever f(X|c) = Y|c.
10In the sense of Example 2.3 5).
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2.2 Conditional family and axiom of choice
Definition 2.20. Let X and I be conditional sets. A stable family (xi) of elements in X is the graph
Gf = {(f(i), i) : i ∈ I} where f : I → X is a conditional function. In particular,

∑
xij |aj = x∑

ij |aj

for every (aj) ∈ p(1) and every family (ij) of elements in I . A conditional family (xi) of conditional
elements of X is the conditional graph Gf .

A conditional family (xi) is a conditional element of
∏

i∈I Xi where Xi = X for each i ∈ I . By
Proposition 2.4, the collection of all stable families (xi) is a stable subset of

∏
i∈I Xi, and we denote

by XI the conditional set corresponding to it. For a conditional natural number n, we write Xn for
X{1⩽l⩽n}. Note that

{1 ⩽ l ⩽ n} = s
({∑

li|ai : 1 ≤ li ≤ ni, for each i
})

where n =
∑

ni|ai ∈ N . In particular, stability implies Xn =
∑

Xni |ai.

Example 2.21. Let X be a conditional set and (I,⩽) be a conditional direction. A conditional family
(xi) of conditional elements of X is called a conditional net. In case that (I,⩽) equals to (N,⩽), a
conditional family (xn) is called a conditional sequence of conditional elements of X. ♢

Lemma 2.22. Let X be a conditional subset of N on 1. Suppose that x ⩽ k for every conditional
element x of X and for some conditional element k of N. Then there exists a conditional bijection
f : X → {1 ⩽ l ⩽ n} for a unique conditional element n of N.

Proof. Suppose that k =
∑

ki|bi. For each i, let Ji be the set of non-empty subsets of {1, . . . , ki}.
For each Mi ∈ Ji, define aMi = ∨{a : a ≤ bi and {n ∈ N : x|a = n|a for some x ∈ X} = Mi}.
Then one has (aMi) ∈ p(bi) for each i. Define n =

∑
i,Mi∈Ji

card(Mi)|aMi where card(Mi) denotes
the cardinality of Mi. Choose x =

∑
mj |dj ∈ X . On every aMi ∧ dj > 0 it holds mj ∈ Mi, the

position11 of which in the ordered set Mi is denoted by mj,Mi . Define f(x) =
∑

mj,Mi |ai,Mi ∧ dj .
Then f : X → {1 ⩽ l ⩽ n} is stable by Proposition 2.4. By construction, n ∈ N is unique and
f : X → {1 ⩽ l ⩽ n} a conditional bijection. □

Definition 2.23. A conditional set X is conditionally countable if there exists a conditional injection
f : X → N. It is conditionally finite if there exists a conditional bijection f : X → {1 ⩽ l ⩽ n} for
some conditional element n of N.

Example 2.24. The conditional rational numbers Q are conditionally countable since every injection
f : Q → N generates a conditional injection f : Q → N by Example 2.18 1). ♢

Proposition 2.25. Let X be a conditional set and (Yn) be a conditional sequence of conditional subsets
of X. Then it holds:12

(i)
⊔1⩽l⩽nYl =

∑(
⊔ni

li=1Yli

)
|ai and ⊓1⩽l⩽n Yl =

∑(
⊓ni

li=1Ylm

)
|ai ∧ bi

where n =
∑

ni|ai and ⊓ni

li=1Yli is a conditional subset on bi for each i.

(ii) If Yl is conditionally finite for each 1 ⩽ l ⩽ n, then ⊔1⩽l⩽nYl is conditionally finite.

11Each Mi is an ordered set of the form {nMi
1 , . . . , n

Mi
kMi

} and mj,Mi
is the index such that mj = n

Mi
mj,Mi

.
12⊔1⩽l⩽n and ⊓1⩽l⩽n are understood as the conditional union and intersection over all conditional elements l such that 1 ⩽ l ⩽

n.
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(iii) If Yn is conditionally countable for each n, then ⊔Yn is conditionally countable.

Proof. The statements are implied by Proposition 2.4. □

We close this section by a conditional axiom of choice.

Theorem 2.26. Let X be a conditional set and (Yi) be a conditional family of conditional subsets of
X. Then there exists a conditional family (yi) of conditional elements of X such that yi is a conditional
element of Yi for each i.

Proof. Let
H := {(yj)j∈J : yj ∈ Yj for each j ∈ J, J ∈ S(I)} .

The set H is non-empty since it includes every one-element family. Define an ordering on H by

(yj)j∈J ≤ (ȳj)j∈J̄ whenever J ⊆ J̄ and yj = ȳj for all j ∈ J.

Let (yj)j∈Jα be a chain in H , and put

J =
{∑

jβ |aβ : (aβ) ∈ p(1), jβ ∈ Jαβ
for each β

}
.

By Proposition 2.4, one has J ∈ S(I). For j =
∑

jβ |aβ ∈ J , define yj =
∑

yjβ |aβ . Since (Yi) is
a conditional family, it holds (yj)j∈J ∈ H . Inspection shows that (yj)j∈Jα ≤ (yj)j∈J for each α. By
Zorn’s lemma, there exists a maximal element (yj)j∈J∗ in H . By way of contradiction, suppose there
exists i0 ∈ I such that yj ⊓Yi0 on some bj < 1 for all j ∈ J∗. Let Ĵ = {j|a+ i0|ac : a ∈ A, j ∈ J∗},
pick some yi0 ∈ Yi0 and define yj = yj |a + yi0 |ac for each j ∈ Ĵ . Then (yj)j∈Ĵ is an element in H .
However, one has (yj)j∈J∗ < (yj)j∈Ĵ which is the desired contradiction. □

3 Conditional topology
Let X be a conditional set. From the construction of the conditional power set it follows that

• P(P(X)) is a conditional set of P (P(X));

• P (P(X)) are the conditional subsets of P(X) on 1;

• elements in P (P(X)) are generated by S(P(X));

• S(P(X)) are stable subsets of P (X).

Hence, an element in P(P(X)) is a conditional collection of conditional subsets of X and an element
in S(P(X)) is a stable collection of conditional subsets of X on 1. A stable collection B of conditional
subsets of X on 1 is in one-to-one relation to a stable collection B of stable subsets of X , the relation
being given by B = {Y : Y ∈ B} and B = {Y : Y ∈ B}.

Definition 3.1. Let X be a conditional set and T a conditional collection of conditional subsets of X. T
is called a conditional topology on X whenever

(i) X ∈ T ,

(ii) if O1,O2 ∈ T , then O1 ⊓O2 ∈ T ,

(iii) if (Oi) is a non-empty collection in T , then ⊔Oi ∈ T .

11



The pair (X, T ) is called a conditional topological space. A conditional set O ∈ T is called conditionally
open. A conditional subset F of X is called conditionally closed whenever F⊏ ∈ T .13 Given two
conditional topologies T1 and T2, T1 is said to be conditionally weaker than T2 whenever T1 ⊑ T2. A
conditional collection B of conditional subsets of X is a conditional topological base whenever

(i) ⊔B = X,

(ii) if O1,O2 ∈ B and x is a conditional element of O1 ⊓O2, then there exists O3 ∈ B such that x is
a conditional element of O3 and O3 ⊑ O1 ⊓O2.

The conditional topology conditionally generated by a conditional collection G of conditional subsets of
X is

T G := ⊓{T : T conditional topology, G ⊑ T } .
For a conditional topological base B, inspection shows

T B = {⊔Oi : (Oi) non-empty collection in B}.

Example 3.2. For conditional elements q, r of Q such that r > 0, define the conditional set14

Br(q) := {p : |q− p| < r} .

The conditional collection B of conditional sets generated by the stable collection

{Br(q) : q, r of Q with r > 0}

is a conditional topological base of T B called the conditional Euclidean topology on Q. ♢

Definition 3.3. Given a conditional topological space (X, T ) and a conditional subset Y of X, the con-
ditional interior of Y is defined by

int(Y) := ⊔{O : O conditionally open, O ⊑ Y} ,

and its conditional closure by

cl(Y) := ⊓{F : F conditionally closed, Y ⊑ F}.

By the duality principle, one has

cl(Y)⊏ = int
(
Y⊏) and int(Y)⊏ = cl

(
Y⊏) .

Definition 3.4. Let (X, T ) be a conditional topological space and x a conditional element of X. A
conditional subset U of X is a conditional neighborhood of x, if there exists a conditionally open set O
such that x is a conditional element of O and O ⊑ U.15 Let

U(x) = {U : U conditional neighborhood of x}

denote the stable collection of all conditional neighborhoods of x. A conditional neighborhood base of
x is a stable collection V of conditional subsets of X on 1 such that for every conditional neighborhood
U of x there exists V ∈ V such that x is a conditional element of V and V ⊑ U.
13 Due to the duality principle in Boolean algebras, see [25, p. 13], the conditional collection of all conditionally closed sets satisfies

the dual properties of the conditional collection of all conditionally open sets.
14See Example 2.18 4) for the definition of the conditional absolute value.
15In particular, U is on 1.
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A conditional topological space (X, T ) is conditionally first countable if every conditional element x
of X has a conditionally countable neighborhood base. It is conditionally second countable if T is
conditionally generated by a conditionally countable topological base. It is conditionally Hausdorff if for
every pair x,y of conditional elements of X with x ⊓ y = X|0 there exists a conditional neighborhood
U of x and a conditional neighborhood V of y such that U ⊓ V = X|0. A conditional subset Y of
X is conditionally dense if cl(Y) = X, and (X, T ) is conditionally separable if X has a conditionally
countable dense subset.

Let B be a classical topological base on X . We denote by T B the classical topology generated by
B. Furthermore, denote by cl(Y ) the closure and by int(Y ) the interior of some Y ⊆ X with respect to
T B.

Proposition 3.5. Let X be a conditional set, B a stable collection of stable subsets of X and B the
corresponding conditional collection of conditional subsets of X. Then B is a conditional topological
base on X if, and only if, B is a classical topological base on X . Moreover, it holds

{O ∈ T B : O ∈ S(X)} = {O ∈ S(X) : O ∈ T B}.

Proof. First assume that B is a conditional topological base. By Lemma 2.13, one has ∪B = X . Let
O1, O2 ∈ B and x ∈ O1 ∩ O2. By the definition of conditional intersection, x is a conditional element
of O1 ⊓O2. Hence there exists O3 ∈ B such that x is a conditional element of O3 and O3 ⊑ O1 ⊓O2.
By Lemma 2.13, one concludes x ∈ O3 and O3 ⊆ O1 ∩ O2. Second assume that B is a classical base.
By Lemma 2.13, it holds ⊔B = X. Let O1,O2 ∈ B, suppose O1 ⊓O2 is a conditional subset of X on b,
and let x|b be a conditional element of O1 ⊓O2. Since ∪B = X , there exists O ∈ B such that x ∈ O.
Since B is stable, it holds O1|b+O|bc, O2|b+O|bc ∈ B. Moreover, x ∈ (O1|b+O|bc)∩(O2|b+O|bc).
Hence there exists O3 ∈ B such that x ∈ O3 and O3 ⊆ (O1|b + O|bc) ∩ (O2|b + O|bc). By (C2) and
Lemma 2.13, x|b is a conditional element of O3|b and O3|b ⊑ O1 ⊓O2. □

Example 3.6. Let L0
++ := {x ∈ L0 : X > 0}. Then for every x ∈ L0 and each r ∈ L0

++,

Br(x) :=
{
y ∈ L0 : |X − Y | < R

}
is a stable subset of L0. The stable collection

B :=
{
Br(x) : x ∈ L0, r ∈ L0

++

}
generates the L0-topology introduced in [13]. According to Proposition 3.5, the corresponding condi-
tional collection B of conditional subsets of L0 is a conditional topological base generating T B which is
conditionally Hausdorff and separable, see [21, Lemma 5.3.2]. ♢

Proposition 3.7. Let (X, T ) be a conditional topological space and Y a conditional subset of X on 1.
Then it holds

int(Y) = ⊔{x|b : U|b ⊑ Y for some conditional neighborhood U of x} ,
cl(Y) = ⊔{x : U ⊓Y is on 1 for every conditional neighborhood U of x}

where b = ∨{a : O ⊑ Y for some conditional open set O on a}.

Proof. The first assertion is immediate from the definitions. As for the second one, assume that x is
a conditional element of F for all conditionally closed sets F with Y ⊑ F. Suppose, for the sake of
contradiction, that there exists a conditional open neighborhood O of x such that O ⊓ Y is on a < 1.
Then x|ac ⊑ Y⊏|ac. Since O⊏|ac is conditionally closed, O⊏|ac + X|a is conditionally closed with
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Y ⊑ O⊏|ac +X|a, which is the desired contradiction. Conversely, assume that x is such that U ⊓Y is
on 1 for every conditional neighborhood U of x. Suppose, for the sake of contradiction, that there exists
a conditionally closed set F with Y ⊑ F such that x ⊓ F = x|c for some c < 1. Then x|cc ⊑ F⊏|cc.
Since F⊏|cc is a conditionally open neighborhood of x|cc, it follows that F⊏|cc +X|c is a conditionally
open neighborhood of x. By assumption, (F⊏|cc+X|c)⊓Y is on 1. However, this contradicts Y ⊑ F.□

3.1 Conditional continuity
Definition 3.8. Let (X, T ) and (X′, T ′) be conditional topological spaces. A conditional function f :

X → X′ is said to be conditionally continuous at the conditional element x of X if f−1(U) is a condi-
tional neighborhood of x for all conditional neighborhoods U of f(x). If f is conditionally continuous
at every conditional element x of X, then f is said to be conditionally continuous. Let (Xi, Ti)i∈I be
a non-empty family of conditional topological spaces and (fi)i∈I be a family of conditional functions
fi : X → Xi. The conditional initial topology on X for the family (fi)i∈I is the conditional topology
generated by s(G) where G := {f−1

i (Oi) : f
−1
i (Oi) on 1,Oi ∈ Ti, i ∈ I}.16

Examples 3.9. 1) Let (X, T ) be a conditional topological space, Y a conditional subset of X on 1 and
f : Y → X a conditional embedding, see Example 2.18 3). The conditional relative topology of T with
respect to Y is the conditional initial topology for f .

2) Let (Xi, Ti) be a non-empty family of conditional topological spaces. The conditional product topol-
ogy on

∏
Xi is the conditional initial topology for the family of conditional projections (pri). ♢

Proposition 3.10. Let (X, T ) and (X′, T ′) be conditional topological spaces and f : X → X′ a condi-
tional function. The following are equivalent:

(i) The conditional function f is conditionally continuous.

(ii) f−1(O′) is conditionally open for every conditionally open set O′.

(iii) f−1(F′) is conditionally closed for every conditionally closed set F′.

Proof. The assertions are immediate from the definitions. □

Proposition 3.11. Let X and X′ be two conditional sets, B and B′ stable collections of stable sets
which are a base of a topology on X and X ′, respectively, and B and B′ the corresponding conditional
topological bases on X and X′, respectively. A conditional function f : X → X′ is conditionally
continuous if, and only if, f : X → X ′ is continuous with respect to the topologies T B and T B′

.

Proof. Assume that f : X → X ′ is continuous. Let O ∈ B′, and suppose that f−1(O) is a conditional
subset of X on a. By Proposition 3.5, one has

f−1(O)|a+X|ac = f−1(O|a+X ′|ac) ∈ {O ∈ T B : O ∈ S(X)} = {O ∈ S(X) : O ∈ T B}.

Thus f−1(O) = f−1(O|a + X′|ac)|a ∈ T B. Conversely, assume that f : X → X′ is conditionally
continuous and let O ∈ B′. Without loss of generality, we may assume that f−1(O) ̸= ∅. By Proposition
3.5, one has f−1(O) ∈ {O ∈ S(X) : O ∈ T B} = {O ∈ T B : O ∈ S(X)}, and therefore f−1(O) ∈
T B. □

16Note that if f−1
i (Oi) is on a < 1 for some Oi ∈ Ti, then f−1

i (Oi|a+Xi|ac) is on 1.
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3.2 Conditional filters
Definition 3.12. Let X be a conditional set. A conditional filter F on X is a stable collection of condi-
tional subsets of X on 1 satisfying the following conditions:

(i) if Y ∈ F and Y ⊑ Z ⊑ X, then Z ∈ F ;

(ii) if Y,Z ∈ F , then Y ⊓ Z ∈ F .

A conditional filter F is conditionally finer than a conditional filter F ′ if F ′ ⊑ F .17 A conditional
ultrafilter is a maximal element in the set of all conditional filters on X. A stable collection B of condi-
tional subsets of X on 1 is a conditional filter base if for every Y1,Y2 ∈ B there exists Y3 ∈ B with
Y3 ⊑ Y1 ⊓Y2.

Remark 3.13. By consistency, if F is a conditional filter on X, then F|a is a conditional filter on X|a.
Moreover, let F := {Yi|ai : i} be a collection of conditional subsets of X not necessarily on 1 such that∑(

Yij |aij
)
|bj =

∑
Yij |aij ∧ bj ∈ F for every (bj) ∈ p(1) and each family (Yij |aij ) of elements

in F . Suppose that F satisfies (i) and (ii) in the definition of a filter and additionally X|0 ̸∈ F as in
classical filter’s definition. Then it follows that there exists a minimal condition aF > 0 such that F|aF
is a conditional filter on X|aF .18 ♦

For every conditional filter base B, inspection shows that

FB := {Z : Y ⊑ Z ⊑ X for some Y ∈ B}

is a conditional filter, called the conditional filter conditionally generated by B.

Examples 3.14. 1) The conditional trivial filter is {X}.

2) The stable collection U(x) of all conditional neighborhoods of a conditional element x of a conditional
topological space is a conditional filter.

3) For any conditional subset Y of X on 1, the collection {Z : Y ⊑ Z ⊑ X} is a conditional filter. ♢

Proposition 3.15. Let X be a conditional set and B a stable collection of conditional subsets of X on 1.
Then B is a conditional filter base if, and only if, the corresponding stable collection B of stable subsets
of X is a classical filter base on X .

Proof. By Lemma 2.13, the equivalence is immediate from the definitions. □

We next prove a conditional ultrafilter lemma.

Theorem 3.16. For every conditional filter F there exists a conditional ultrafilter U such that F ⊑ U .

Proof. Order F := {G : G is a conditional filter with F ⊑ G} by conditional inclusion. Let (Gi) be a
chain in F and set W := ⊔Gi. We show that W is a conditional filter with F ⊑ W . Let Z ⊑ X be such
that Y ⊑ Z for some Y ∈ W . Then Y =

∑
Yj |aj for some (aj) ∈ p(1) and Yj ∈ Gij for each j.

For each j, it holds Z|aj ∈ Gij |aj because Yj |aj ⊑ Z|aj and Gij |aj is a conditional filter on X|aj . By

17The conditional inclusion between the two stable collections of conditional subsets of X is understood in the sense of the
conditional inclusion of the generated conditional sets.

18 Indeed, suppose, for the sake of contradiction, that ∧ai = 0. By de Morgan’s law, it holds ∨aci = 1. By the well-ordering
theorem, choose (bi) ∈ p(1) such that bi ≤ aci for each i. Then

∑
Yi|bi = X|0. Since F is a stable collection of conditional

sets, it follows that
∑

Yi|bi ∈ F which contradicts X|0 ̸∈ F .
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stability, Z|aj + X|acj ∈ W for all j, and thus Z =
∑

(Z|aj + X|acj)|aj ∈ W . Let Y,Z ∈ W where
Y =

∑
Yj |aj and Z =

∑
Zl|bl for some (aj), (bl) ∈ p(1), and Yj ∈ Gij for each j and Zl ∈ Gil for

each l. Since (Gi) is a chain, it holds Yj ⊓ Zl is a conditional subset on 1 in Gi for i = j ∨ l for every
j, l. By stability, it holds that Y ⊓ Z =

∑
(Yj ⊓ Zl)|aj ∧ bl is a conditional set on 1 in W . Hence W

is a conditional filter with F ⊑ W and therefore an upper bound for (Gi). The existence of a conditional
ultrafilter follows by Zorn’s lemma. □

Proposition 3.17. Let U be a conditional filter. Then the following are equivalent:

(i) U is a conditional ultrafilter.

(ii) If Y1 ⊔Y2 ∈ U for some Y1,Y2 ⊑ X, then Y1|a+Y2|ac ∈ U where either a = a1 or ac = a2,
whereby Y1 is on a1 and Y2 is on a2.

(iii) For every Y ⊑ X, it holds Y|a +Y⊏|ac ∈ U where either a = a1 or ac = a2, whereby Y is on
a1 and Y⊏ is on a2.

(iv) For every Y ⊑ X such that Y ⊓U is on 1 for every U ∈ U , it holds Y ∈ U .

Proof. To show that (i) implies (ii), let Y1,Y2 ⊑ X be such that Y1 ⊔Y2 ∈ U . Since

Y1 ⊔Y2 = Y1|b1 + (Y1 ⊔Y2)|b2 +Y2|b3

where b1 = a1 ∧ ac2, b2 = a1 ∧ a2 and b3 = a2 ∧ ac1, it holds Y1|b1,Y1|b2 ⊔Y2|b2,Y2|b3 ∈ U . Now
if Y1|b2 ∈ U , then a = b1 ∨ b2 = a1 yields the claim. Otherwise F := {Z ⊑ X : Z ⊔ Y1|b2 ∈ U}
is a conditional filter such that Y2|b2 ∈ F . Since U ⊑ F and U is a conditional ultrafilter, it holds
Y2|b2 ∈ U . In that case ac = b2 ∨ b3 = a2 yields the assertion.

As for (ii) implies (iii), set Y1 := Y and Y2 := Y⊏. Then (iii) follows since Y ⊔Y⊏ = X ∈ U .

To show that (iii) implies (i), let V be a conditional filter conditionally finer than U and Y ∈ V . For
the sake of contradiction, suppose Y ̸∈ U . Then by assumption Y|a + Y⊏|ac ∈ U where Y⊏ is
on ac > 0. Hence Y⊏|ac ∈ U ⊑ V . However, since Y|ac + X|a,Y⊏|ac + X|a ∈ V , it holds
(Y|ac + X|a) ⊓ (Y⊏|ac + X|a) = X|a which contradicts the second property of a conditional filter.
Thus ac = 0, showing that V = U .

Finally we show that (i) is equivalent to (iv). Assume (i) and let Y ⊑ X be such that Y ⊓U is on 1 for
every U ∈ U . Inspection shows that B := {Y ⊓U : U ∈ U} is a conditional filter base with U ⊑ FB.
Hence U = FB, and thus Y ∈ U . Conversely, let V be a conditional ultrafilter of U and let Y ∈ V . From
U ⊑ V it follows that Y ⊓ U is on 1 for every U ∈ U . By assumption, one has Y ∈ U , and therefore
V = U . □

Proposition 3.18. Let X and Y be conditional sets, f : X → Y a conditional function, F a conditional
filter on X and U a conditional ultrafilter on X. Then f(F) := {f(U) : U ∈ F} is a conditional filter
base on Y and f(U) a conditional ultrafilter base on Y.

Proof. Since F is a stable collection of conditional subsets of X, it follows from the stability of f that
f(F) is also a stable collection of conditional subsets of X. It is immediate from the definitions, (2.4) and
(2.6) that f(F) is a conditional filter base. Next suppose that U is a conditional ultrafilter and denote by
V the conditional filter conditionally generated by f(U). Let V ⊑ Y be on a1 and V⊏ on a2. By (2.5)
and (2.7),

f−1(V) ⊔ f−1(V)⊏ = f−1(V ⊔V⊏) = f−1(Y) = X ∈ U .
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Since U is a conditional ultrafilter, Proposition 3.17 implies that U := f−1(V)|b + f−1(V⊏)|bc ∈ U
where either b = b1 or bc = b2 whereby f−1(V) is on b1 ≤ a1 and f−1(V⊏) is on b2 ≤ a2. By (2.7) and
(2.8), it holds

f(U) = f
(
f−1(V)

)
|b+ f

(
f−1(V⊏)

)
|bc ⊑ V|b+V⊏|bc.

Since f(U) ∈ f(U), one has V|b + V⊏|bc ∈ V . Without loss of generality, assume that b = b1 ≤ a1.
By concatenating, we obtain V|a + V⊏|ac ∈ V where a = a1. Proposition 3.17 implies that V is a
conditional ultrafilter. □

3.3 Conditional convergence
Definition 3.19. Let (X, T ) be a conditional topological space, F a conditional filter and (xi) a condi-
tional net of conditional elements of X. A conditional element x of X is said to be a

(i) conditional limit point of F if U(x) ⊑ F ;

(ii) conditional cluster point of F if x is a conditional element of cl(Y) for every Y ∈ F and denote
LimF := ⊓{cl(Y) : Y ∈ F};

(iii) conditional limit point of (xi) if for every conditional neighborhood U of x there exists i0 such
that each xi is a conditional element of U for every i ⩾ i0;

(iv) conditional cluster point of (xi) if for every conditional neighborhood U of x and every i there
exists j ⩾ i such that xj is a conditional element of U.

We indicate by F → x that x is the conditional limit point of F . For a classical topology T and a
classical filter F , denote by F

T−→ x the convergence of F to x and by LimF the set of all cluster
points of F with respect to T .

Remark 3.20. As in the classical case, inspection shows that conditional filters and conditional nets are in
one-to-one relation. The following Propositions 3.21, 3.22 and 3.23 are formulated in terms of conditional
filters. Their respective analogues hold for conditional nets. ♦

Proposition 3.21. Let (X, T ) be a conditional topological space and F a conditional filter. Then the
following are equivalent:

(i) The conditional element x is a conditional element of LimF .

(ii) There exists a conditional filter G conditionally finer than F such that G → x.

Proof. To show that (i) implies (ii), let x be a limit point of F . Then {V ⊓U : V ∈ U(x),U ∈ F} is a
conditional filter base of a conditional filter G conditionally finer than F and for which holds G → x. To
show that (ii) implies (i), let G be a conditional filter conditionally finer than F and G → x. Then V ⊓Y

is on 1 for all V ∈ U(x) and Y ∈ F since V,Y ∈ G. Proposition 3.7 implies that x is a conditional
element of cl(Y) for all Y ∈ F which shows that x is a conditional limit point of F . □

Proposition 3.22. Let X be a conditional set, G a conditional filter base, B a conditional topological
base, and G and B the corresponding stable collections of stable subsets of X . Then

x ∈ LimG if, and only if, x is a conditional element of LimG

G
T B

−−→ x if, and only if, G → x.
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Proof. The assertions follow from the Propositions 3.5, 3.7 and 3.15. □

Proposition 3.23. Let (X, T ) and (X′, T ′) be conditional topological spaces and f : X → X′ a condi-
tional function. Then the following are equivalent:

(i) The conditional function f is conditionally continuous at x.

(ii) For every conditional filter F → x, it holds f(F) → f(x).

Proof. By Proposition 3.11, conditional continuity is equivalent to continuity. The claim follows from
the respective classical result and Proposition 3.22. □

3.4 Conditional compactness
Let (X, T ) be a conditional topological space. A conditional open covering of X is a conditional family
(Oi) of conditional open sets such that X = ⊔Oi. A conditional family (Yi) of conditional subsets of
X has the conditional finite intersection property if19 ⊓1⩽l⩽nYil is on 1 for every conditionally finite
subfamily (Yil)1⩽l⩽n.

Definition 3.24. We say that X is conditionally compact if for every conditional open covering (Oi)

there exists a conditionally finite subfamily (Oil)1⩽l⩽n such that X = ⊔1⩽l⩽nOil .

Proposition 3.25. Let (X, T ) be a conditional topological space. Then the following are equivalent:

(i) X is conditionally compact.

(ii) Every conditional filter on X has a conditional cluster point.

(iii) Every conditional ultrafilter on X has a conditional limit point.

(iv) For every conditional family (Fi) of conditional closed subsets of X with the conditional finite
intersection property, ⊓Fi is on 1.

Proof. The equivalence of (ii) and (iii) follows from Theorem 3.16 and Proposition 3.21.

To show that (i) implies (iv), let (Fi) be a conditional family of conditional closed subsets of X with
the conditional finite intersection property. By contradiction, assume that ⊓Fi is on a < 1. Let Oi :=

(Fi)
⊏ ∈ T for each i. Without loss of generality, assume that Oi is on 1 for each i. Otherwise, replace

Oi by Ôi = Oi|ai + X|aci where Oi is on ai ≤ 1. By localization, X|ac is conditionally compact
with respect to the conditional topology T |ac, and (Oi|ac) is a conditional open covering of X|ac. By
assumption, there exists a conditionally finite subfamily (Oil |ac)1⩽l⩽n such that X|ac = ⊔1⩽l⩽nOil |ac.
It follows from de Morgan’s law

X|a = (X|ac)⊏ = (⊔1⩽l⩽nOil |ac)
⊏
= ⊓1⩽l⩽n(Oil |ac)⊏

= ⊓1⩽l⩽n(Fil |ac +X|a) = (⊓1⩽l⩽nFil) |ac +X|a.

By the conditional finite intersection property, ⊓1⩽l⩽nFil is on 1, and therefore (⊓1⩽l⩽nFil)|ac is on ac.
Thus it holds X|a = (⊓1⩽l⩽nFil)|ac +X|a if, and only if, ac = 0 which is the desired contradiction.

19Recall that ⊔1⩽l⩽n and ⊓1⩽l⩽n are understood as the conditional union and intersection over all conditional elements l such
that 1 ⩽ l ⩽ n.
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To show that (iv) implies (i), let (Oi) be a conditional open covering of X. Let

b := ∨{a : ⊔1⩽l⩽nOil |a = X|a for some conditionally finite subfamily (Oil)}.

By consistency, the well-ordering theorem and stability, b is attained by some (Oil). By contradiction,
suppose that b < 1. Up to localization, we may assume that bc = 1, otherwise the following argument is
done on bc < 1. Then for all conditionally finite subfamilies (Oil), it holds

(⊔1⩽l⩽nOil) |a ̸= X|a, for all 0 < a ≤ 1.

Hence (⊔1⩽l⩽nOil)
⊏
= ⊓1⩽l⩽nOil

⊏ = ⊓1⩽l⩽nFil is on 1, and thus (Fi) satisfies the conditional finite
intersection property. By assumption, ⊓Fi is on 1. However, this implies that (⊓Fi)

⊏ = ⊔Oi ̸= X,
contrary to the assumption.

As for (ii) implies (iv), let (Fi) be a conditional family of conditional closed subsets of X satisfying
the conditional finite intersection property. Then G := {⊓1⩽l⩽nFil : (Fil)1⩽l⩽n conditionally finite} is
a conditional filter base. By assumption, there exists a conditional element x of Lim(F). Thus ⊓Fi is
on 1.

To show that (iv) implies (ii), let F be a conditional filter on X. Since cl(⊓Yi) ⊑ ⊓cl(Yi), it follows
that {cl(Y) : Y ∈ F} is a stable collection of conditional closed subsets of X fulfilling the conditional
finite intersection property. Hence LimF is on 1, and thus F has a conditional cluster point. □

Proposition 3.26. Let (X, T ) and (X′, T ′) be conditional topological spaces, f : X → X′ a condition-
ally continuous function, and Y a conditional compact subset of X on 1. Then f(Y) is a conditional
compact subset of X′.

Proof. Let (Oi) be a conditional open covering of f(Y), that is f(Y) ⊑ ⊔Oi. By (2.4), (2.5) and (2.8),
one has

Y ⊑ f−1(f(Y)) ⊑ f−1(⊔Oi) = ⊔f−1(Oi).

By Proposition 3.10, it follows that (f−1(Oi)) is a conditional open covering of Y. By assumption, there
exists a conditionally finite subfamily (f(Oil))1⩽l⩽n such that Y ⊑ ⊔1⩽l⩽nf(Oil). By (2.4), (2.5) and
(2.8), one has

f(Y) ⊑ f(⊔1⩽l⩽nf
−1(Oil)) = ⊔1⩽l⩽nf(f

−1(Oil)) ⊑ ⊔1⩽l⩽nOil . □

Proposition 3.27. Let (X, T ) be a conditionally compact space and Y a conditionally closed subset of
X on 1. Then Y is conditionally compact.

Proof. Without loss of generality, we may assume that Y⊏ is on 1, since otherwise Y|ac = X|ac is
already conditionally compact by localization, where Y⊏ is on a < 1. Let (Oi) be a conditional open
cover of Y. Then (Ôi) where Ôi := Oi ⊔ Y⊏ is a conditional open cover of X. By assumption,
there exists a conditionally finite subfamily (Ôil)1⩽l⩽n conditionally covering X. Thus (Oil)1⩽l⩽n is a
conditional open cover of Y. □

We finish this section with a conditional Tychonoff’s theorem.

Theorem 3.28. Let (Xi, Ti) be a non-empty family of conditional topological spaces and let X =
∏

Xi

be endowed with the conditional product topology. Then X is conditionally compact if, and only if, Xi is
conditionally compact for every i.
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Proof. Every conditional projection pri : X → Xi is conditionally continuous. Therefore, if X is condi-
tionally compact, so is Xi = pri(X) for every i due to Proposition 3.26. Conversely, assume that Xi is
conditionally compact for each i and let U be a conditional ultrafilter on X. It follows from Proposition
3.18 that pri(U) is a conditional ultrafilter base on Xi for each i. Since Xi is conditionally compact,
pri(U) → xi for some conditional element xi of Xi for each i due to Proposition 3.25. Let Oi be a
conditional open neighborhood of xi for some i. Then there exists U ∈ U such that pri(U) ⊑ Oi. By
(2.4) and (2.8), one has U ⊑ pr−1

i (Oi), and thus pr−1
i (Oi) ∈ U . By stability of U , it follows that any

conditional neighborhood of x := (xi) is an element in U which shows that U → x. Proposition 3.25
implies that X is conditionally compact. □

4 Conditional real numbers and metric spaces
Definition 4.1. We call a conditional set X together with a conditional function + : X × X → X a
conditional group if (X,+) is a classical group. A conditional set X with two conditional functions
+ : X × X → X and · : X × X → X is a conditional ring if (X,+, ·) is a classical ring. We denote
by 0 and 1 the conditional neutral elements for + and ·, respectively.20 Let (X,+, ·) be a conditional
ring and (X,⩽) a conditional totally ordered set. We say that X is a conditional ordered ring if x < y

implies x + z < y + z and x,y > 0 implies x · y > 0 for all conditional elements x,y, z of X. A
conditional ring (X,+, ·) is a conditional field if for every conditional element x of X∗ := {0}⊏ there
exists a conditional element y of X∗ such that x · y = y · x = 1.

For a conditional ordered field (K,+, ·,⩽), define K+ := {x : x ⩾ 0} and K++ := {x : x > 0}. The
conditional absolute value |·| : K → K+ is generated by the stable function |x| := max{x,−x}.

Examples 4.2. 1) Let (S,+, ·) be a classical ring. The conditional functions generated by + and · define
a conditional ring structure on the conditional set S generated by S in the sense of Example 2.3 5). For
instance, the conditional ring of conditional rational numbers (Q,+, ·) is generated by the ring of rational
numbers (Q,+, ·). Inspection shows that Q is a conditional ordered field where the conditional order is
the one defined in Examples 2.16 1).

2) Let QN be the conditional set of conditional sequences of conditional elements of Q. On QN define

(qn) + (pn) := (qn + pn), (qn) · (pn) := (qn · pn),

(qn) ⩽ (pn) whenever qn ⩽ pn for each n.

Inspection shows that (QN,+, ·,⩽) is a conditional ordered ring. ♢

Endow Q with the conditional Euclidean topology, see Example 3.2. A conditional sequence (qn) of
conditional elements of Q is said to be conditionally Cauchy if for every conditional element r of Q++

there exists n0 such that |qn − qm| < r for all m,n ⩾ n0. Denote by C the conditional subset of
QN consisting of all conditional Cauchy sequences. Let (pn) ∼ (qn) whenever (qn − pn) → 0 be a
conditional equivalence relation on C. On R := C/ ∼ define

[(qn)] + [(pn)] := [(qn) + (pn)], [(qn)] · [(pn)] := [(qn) · (pn)],

[(pn)] ⩽ [(qn)] whenever for all r of Q++ there exists n0 such that qn − pn > −r for all n ⩾ n0.

Inspection shows that (R,+, ·,⩽) is a conditional ordered field.

20Whenever there is no risk of confusion, we use + for addition and concatenations, and 0, 1 denote the neutral elements and the
distinguished elements 0, 1 ∈ A.
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Definition 4.3. We call R = (R,+, ·,⩽) the conditional ordered field of conditional real numbers.

It can be checked that

(i) R is conditionally Dedekind complete;

(ii) for every conditional element x of R there exists a conditional element n of N such that n > x;

(iii) for conditional elements x, r of R such that r > 0, let Br(x) = {y : |x− y| < r}. The condi-
tional collection B of conditional sets {Br(x) : x, r of R with r > 0} is a conditional topological
base of a conditional Hausdorff topology. R endowed with T B is conditionally separable and
complete. We call T B the conditional Euclidean topology on R.

The following theorem connects the conditional analysis in L0-modules [8, 10, 13] to conditional set
theory. For a proof of the isomorphism of L0 and the real numbers in the universe of Boolean-valued sets
over the measure algebra associated to a σ-finite measure space see [2, Theorem 7.1]. The conditional set
L0 is constructed in Example 2.3 4), and its conditional topology is defined in Example 3.6.

Theorem 4.4. Let A be the measure algebra associated to a σ-finite measure space (Ω,F , µ). Then
there exists a conditional bijection from R to L0.

Proof. For
∑

qn|an ∈ Q, one has
∑

n≥1 qn1An := limn→∞(q11A1 + . . . + qn1An) ∈ L0 where an =

[An] for each n. Let x be a conditional element of L0. Since L0 is conditionally separable, there exists a
conditional sequence (qn) of conditional elements of L0 with qn =

∑
m≥1 qn,m1An,m where (qn,m) is

a sequence in Q such that qn → x, see [21, Lemma 5.3.2]. Conversely, if (qn) is a conditional Cauchy
sequence of conditionally rational-valued functions, then (qn) is a Cauchy net in L0 endowed with the
L0-topology. By a conditional Bolzano-Weierstraß theorem, see [15, Lemma 1.64] or [8, Theorem 3.8],
one has that (qn) converges in the L0-topology.21 From Proposition 3.22 it follows that (qn) conditionally
converges to x. Then f : R → L0 defined by the stable function f(qn) = lim(

∑
m≥1 qn,m1An,m) is a

conditional function. It is conditionally injective since L0 is conditionally Hausdorff, and conditionally
surjective due to the conditional separability of L0. □

Definition 4.5. Let X be a conditional set. A conditional metric is a conditional function d : X×X →
R+ such that

(i) d(x,y) = 0 if, and only if, x = y,

(ii) d(x,y) = d(y,x) for all conditional elements x, y of X,

(iii) d(x, z) ⩽ d(x,y) + d(y, z) for all conditional elements x,y, z of X.

The pair (X,d) is called a conditional metric space.

Given a conditional metric space (X,d), we define a conditional topological base B consisting of con-
ditional balls Br(x) and conditional Cauchy sequences similarly to the respective definitions for Q, see
Example 3.2. Inspection shows that the conditional topology T B is conditionally Hausdorff and first
countable. We say that (X,d) is conditionally complete, if every conditional Cauchy sequence has a
conditional limit, and conditionally sequentially compact, if every conditional sequence has a conditional
cluster point. A conditional subset Y of X on 1 is conditionally totally bounded, if for every conditional
element r of R++ there exists a conditionally finite family (xl)1⩽l⩽n of conditional elements of Y,
called a conditional r-net, such that ⊔1⩽l⩽nBr(xl) = Y. A conditionally totally bounded metric space

21In the cited results the convergence is almost everywhere which implies convergence in L0-topology for stable sequences.

21



is conditionally separable. Indeed, for every conditional element r of Q++ choose (xr
l )1⩽l⩽mr such that

⊔1⩽l⩽mrBr(x
r
l ) = X. Then ⊔r of Q++

{xr
l : 0 ⩽ l ⩽ mr} is a conditionally countable dense subset by

Proposition 2.25.
We characterize conditional compactness in conditional metric spaces by a conditional Borel-Lebesgue

theorem.

Theorem 4.6. For a conditional metric space (X,d), the following are equivalent:

(i) X is conditionally compact.

(ii) If (Fn) is a conditionally decreasing22 family of conditionally closed sets in X, then ⊓Fn is on 1.

(iii) X is conditionally sequentially compact.

(iv) X is conditionally complete and totally bounded.

Proof. As for (i) implies (ii), note that ⊓1⩽l⩽mFnl
= Fnm for any conditionally finite subfamily

(Fnl
)1⩽l⩽m. Thus ⊓1⩽l⩽mFnl

is on 1. Proposition 3.25 implies that ⊓Fn is on 1.

To show that (ii) implies (iii), let (xn) be a conditional sequence of conditional elements of X. For each
n ∈ N , set En := {xm : m ≥ n}. Then (En) is a stable family of stable subsets of X , and thus (En)

is a conditional family of conditional subsets of X. Let Fn := cl(En) for each conditional element n
of N. Then (Fn) is a conditionally decreasing family of conditional closed sets. By assumption, there
exists a conditional element x of ⊓Fn. Now set xn1 = x1. Supposing that we have already chosen
xn1 , . . . ,xnk−1

, choose a conditional element xnk
of Fnk−1+1 such that d(xnk

,x) < 1/k. For each
k =

∑
ni|ai ∈ N , set xnk

:=
∑

xni
|ai. Inspection shows that (xnk

) is a conditional subsequence of
(xn) conditionally converging to x.

We show that (iii) implies (iv). Conditional completeness follows by the conditional triangle inequality.
As for the conditional total boundedness, suppose for the sake of contradiction that b := ∨M > 0 where

M = {a : ⊔1⩽l⩽nBr(xl)|a′ ̸= X|a′ for all 0 < a′ ≤ a for some r > 0 and all (xl)1⩽l⩽n of X}.

Note that if a ∈ M , then a′ ∈ M whenever a′ ≤ a. Index M by (ai). By the well-ordering theorem,
there exists (bi) ∈ p(b) with bi ≤ ai for all i. Then bi ∈ M for each i. Let ri > 0 satisfy the condition in
M for bi for each i. By stability, b is attained in M for r =

∑
ri|bi. Without loss of generality, assume

that b = 1. Let x1 be any conditional element of X. Suppose we have found a conditionally finite family
(xl)1⩽l⩽n such that d(xl1 ,xl2) ⩾ r for all 1 ⩽ l1, l2 ⩽ n with l1 ⊓ l2 = N|0. Let

c := ∨{a : d(xl,x)|a ⩾ r|a for some x of X and for all 1 ⩽ l ⩽ n}.

By consistency, the well-ordering theorem and stability, c is attained by some xn+1 := x. It holds c = 1,
since otherwise there exists a > 0 such that ⊔1⩽l⩽nBr(xl)|a = X|a which contradicts the maximality
of b. For 1 ⩽ l ⩽ n+ 1, put xl :=

∑
xni

|ai where l =
∑

ni|ai. By induction, we obtain a conditional
sequence (xn) such that d(xn1 ,xn2) ⩾ r whenever n1 ⊓ n2 = N|0. By construction, (xn) does not
have a conditionally converging subsequence. Indeed, if there exists a conditional subsequence (xnk

)

conditionally converging to some x of X, then there exists k0 of N such that d(xnk
,x) < r/2 for all

k ⩾ k0. By the conditional triangle inequality, one has d(xnk0+1
,xnk0+2

) < r contrary to the definition
of (xn).

22That is, m ⩽ n implies Fn ⊑ Fm.
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To show that (iv) implies (i), suppose, by contradiction, that b := ∨M > 0 where

M = {a : ⊔1⩽l⩽nUil |a′ ̸= X|a′ for all 0 < a′ ≤ a and (Uil) of some conditional open covering (Ui)}.

By consistency, the well-ordering theorem and stability, b is attained by some (Ui). By localization, we
may assume that b = 1. Now for r = 1/2 there exists a conditional 1/2-net (x1

l )1⩽l⩽n1
by assumption.

Let

c1 := ∨{a : ⊔1⩽k⩽mUik |a′ ̸= B1/2(x
1
l )|a′ for all 0 < a′ ≤ a and (Uik)1⩽k⩽m of (Ui) for some x1

l }.

By consistency, stability and the well-ordering theorem, c1 is attained by some y1 := x1
l . By as-

sumption, it must hold c1 = 1. Indeed, if cc1 > 0, then for all x1
l there exists (Uik)1⩽k⩽m such that

⊔1⩽k⩽mUik |cc1 = B1/2(x
1
l )|cc1. Proposition 2.25 implies that X|cc1 is conditionally covered by a condi-

tionally finite subfamily of (Ui|cc1) which contradicts the maximality of b.

Next for r = 1/4, let (x2
l )1⩽l⩽n2

be a conditional 1/4-net, and set c = ∨M where M is the collection
of all a ∈ A such that there exists x2

l with B1/2(y1) ⊓B1/4(x
2
l ) is on 1 and

⊔1⩽k⩽mUik |a′ ̸= B1/4(x
2
l )|a′ for all 0 < a′ ≤ a and (Uik)1⩽k⩽m of (Ui).

By consistency, the well-ordering theorem and stability, c2 is attained by some y2 := x2
l . Moreover, one

has c2 = 1. Indeed, since (B1/4(x
2
l ))1⩽l⩽n2

is a conditional family, for each conditional element x of
B1/2(y1) there exists x2

l such that x is a conditional element of B1/4(x
2
l ) due to Lemma 2.13. Thus if

cc2 > 0, then for all x2
l such that B1/2(y1)⊓B1/4(x

2
l ) is on 1 there exists a conditionally finite subfamily

(Uik) of (Ui) such that ⊔Uik |cc = B1/4(x
2
l )|cc2. By Proposition 2.25, this contradicts the maximality

of b.

We continue analogously: at the n-th stage, with r = 1/2n let yn be any conditional element of that
conditional 1/2n-net such that B1/2n−1(yn−1) ⊓ B1/2n(yn) is on 1, and having the property that if a
conditional finite subfamily of (Ui|a) conditionally covers B1/2n(yn)|a, then a = 0.

For n =
∑

ni|ai, set yn =
∑

yni
|ai. By construction, (yn) is a conditional Cauchy sequence of

conditional elements of X. By assumption, (yn) conditionally converges to some conditional element y
of X. Since (Ui) conditionally covers X, there exists some i0 such that y is a conditional element of
Ui0 by Lemma 2.13. Since Ui0 is conditionally open there exists r > 0 such that Br(y) ⊑ Ui0 . By
the definition of y, there exists n of N such that d(yn,y) < r/2 and 1/2n < r/2. It follows from the
conditional triangle inequality that B1/2n(yn) ⊑ Br(y) ⊑ Ui0 . But this contradicts the fact that there
does not exist a conditionally finite subfamily of (Ui) which is a conditional covering of B1/2n(yn). □

5 Conditional topological vector spaces
Definition 5.1. A conditional group X is a conditional vector space if there exists a conditional function
· : R × X → X such that X is an R-module in the classical sense. A conditional subset Y of X on 1

is a conditional subspace of X if Y + Y ⊑ Y and rY ⊑ Y for every conditional element r of R. A
conditional function f : X → R is conditionally linear if f(rx+ y) = rf(x) + f(y) for all conditional
elements x,y of X and every conditional element r of R.
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Definition 5.2. Let X be a conditional vector space. Let Y be a conditional subset of X on 1. Define

conv(Y) :=

 ∑
1⩽l⩽n

rlyl : (yl)1⩽l⩽n of Y, 0 ⩽ rl ⩽ 1,
∑

1⩽l⩽n

rl = 1, n of N

 .23

We say that Y is

• conditionally convex if Y = conv(Y),

• conditionally absorbing if for any conditional element x of X there exists rx > 0 such that rx is a
conditional element of Y for every r of R with |r| ⩽ rx,

• conditionally circled if ry is a conditional element of Y for every conditional element y of Y and
all conditional elements r of R with |r| ⩽ 1.

A conditional function f : X → R is conditionally convex if

f(rx+ (1− r)y) ⩽ rf(x) + (1− r)f(y)

for all conditional elements x,y of X and 0 ⩽ r ⩽ 1.

We prove a conditional Hahn-Banach theorem.

Theorem 5.3. Let X be a conditional vector space, Y a conditional subspace of X and f : Y → R

a conditional linear function. If f(x) ⩽ g(x) for all conditional elements x of Y for some conditional
convex function g : X → R, then there exists a conditional linear function f̂ : X → R such that
f̂(x) ⩽ g(x) for all conditional elements x of X and f̂(x) = f(x) for all conditional elements x of Y.

Proof. Let E be the collection of all pairs (h,H) where H is a conditional subspace of X with Y ⊑ H

and h : H → R is a conditionally linear function such that h = f on Y and h ⩽ g on H. Define
a partial order on E by (h,H) ≤ (h′,H′) whenever H ⊑ H′ and h′ = h on H. Let (hi,Hi) be a
chain in E . By Proposition 2.4, it holds (h,H) ∈ E where H := ⊔Hi and h : H → R is defined by
h(x) =

∑
hij (xj)|aij for every x =

∑
xj |aj of H where (aj) ∈ p(1) and xj of Hij for each j. By

Zorn’s lemma, there exists a maximal element (f̂ , Ĥ) in E .
By contradiction, suppose that Ĥ⊏ is on a > 0. By localization, we may assume that a = 1. Pick some

v of Ĥ⊏ and put H̃ = {x+ rv : x of Ĥ, r of R}. Inspection shows that H̃ is a conditional subspace of
X with Y ⊑ Ĥ ⊏ H̃ ⊑ X. Every conditional element y of H̃ is of the form y = x+ rv for unique x

of Ĥ and r of R. Indeed, let y = x+ rv = x̄+ r̄v and suppose that b = ∨{a : r|a = r̄|a} < 1. Since
(r̄− r)v = x− x̄ is a conditional element of Ĥ, it holds that v ⊓ Ĥ is on bc > 0 which contradicts the
choice of v. Hence b = 1, and thus r = r̄ and x = x̄.

Any linear extension f̃ of f̂ to H̃ has to fulfill f̃(x+ rv) = f̂(x) + rf̃(v) for all x of Ĥ and r of R. It
is enough to find w of R such that f̂(x) + rw ⩽ g(x+ rv) for all x of Ĥ and r of R. In this case, there
is (a1, a2, a3) ∈ p(1) such that r|a1 > 0|a1, r|a2 < 0|a2 and r|a3 = 0|a3. Thus

w|a1 ⩽
(
1

r
[g(x+ rv)− f̂(x)]

)
|a1, (5.1)

w|a2 ⩽
(
−1

r
[̂f(x)− g(x+ rv)]

)
|a2, (5.2)

f̂(x)|a3 ⩽ g(x)|a3, (5.3)

23We understand
∑

1⩽l⩽n xl :=
∑

(
∑ni

l=1 xl)|ai where n =
∑

ni|ai.
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for every x of Ĥ. The relation (5.3) is fulfilled by the definition of f̂ . By inspection, the relations (5.1)
and (5.2) hold for a conditional element r of R if, and only if,

1

p
[̂f(x)− g(x− pv)] ⩽ w ⩽ 1

q
[ g(y + qv)− f̂(y)] (5.4)

for all conditional elements x,y of Ĥ and p,q of R++. Thus (5.4) is fulfilled for some conditional
element r of R which is the desired contradiction. □

Definition 5.4. A conditional vector space X endowed with a conditional topology T is a conditional
topological vector space if the conditional functions + : X × X → X and · : R × X → X are
conditionally continuous. We call a conditional subset Y of X on 1 conditionally T -bounded if for every
conditional neighborhood U of 0 there exists r > 0 such that Y ⊑ rU. For a conditional topological
vector space X, denote by X′ the conditional vector space of all conditionally continuous and linear
functions f : X → R.

A conditional topological vector space X is conditionally locally convex if X has a conditional neigh-
borhood base of 0 consisting of conditionally convex sets.

Inspection shows that a conditional topological vector space has a conditional neighborhood base of 0
consisting of conditionally closed, absorbing and circled conditional sets.

Separation theorems for locally convex topological L0-modules are proved in [13, Theorem 2.6 and
2.8]. The following theorem is the respective analogue for conditional locally convex topological vector
spaces. Its proof technique is similar to [13].

Theorem 5.5. Let X be a conditional locally convex topological vector space and C1,C2 two condi-
tionally convex subsets of X on 1 such that C1 ⊓C2 = X|0.

(i) If C1 is conditionally open, then there exists a conditionally continuous linear function f : X → R

such that
f(x) < f(y) for every conditional element x of C1 and y of C2.

(ii) If C1 is conditionally compact and C2 conditionally closed, then there exists a conditionally con-
tinuous linear function f : X → R and a conditional element r of R++ such that

f(x) + r < f(y) for every conditional element x of C1 and y of C2.

Definition 5.6. Two conditional vector spaces X and Y form a conditional dual pair, denoted by ⟨X,Y⟩,
if there exists a conditional function ⟨·, ·⟩ : X×Y → R such that

(i) if x 7→ ⟨x,y⟩ for every fixed conditional element y of Y and y 7→ ⟨x,y⟩ for every fixed condi-
tional element x of X are conditionally linear;

(ii) if ⟨·,y⟩ = 0 and ⟨x, ·⟩ = 0 imply y = 0 and x = 0, respectively.

For a conditional dual pair ⟨X,Y⟩, we denote by σ(X,Y) and σ(Y,X) the conditional initial topologies
for (⟨·,y⟩)y of Y and (⟨x, ·⟩)x of X, respectively. It can be checked that (X, σ(X,Y))′ = X′. For a
conditional locally convex topological vector space X, it follows from Theorem 5.3 that ⟨X,X′⟩ is a
conditional dual pair with respect to the conditional function (x,x′) 7→ x′(x).

Definition 5.7. Let ⟨X,Y⟩ be a conditional dual pair and Z a conditional subset of X on 1. The condi-
tional subset Z◦ := {y : ⟨x,y⟩ ⩽ 1 for all x of Z}24 of Y is called the conditional polar of Z.

24Note that Z◦ is on 1 since 0 is a conditional element of it.
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Proposition 5.8. Let ⟨X,Y⟩ be a conditional dual pair, Z and W two conditional subsets of X on 1,
and (Zi) a non-empty family of conditional subsets of X each of which is on 1. Then it holds:

(i) If Z ⊑ W, then W◦ ⊑ Z◦.

(ii) If r is a conditional element of R∗ = {0}⊏, then (rZ)◦ = (1/r)Z◦.

(iii) (⊔Zi)
◦ = ⊓Z◦

i .

(iv) Z◦ is conditionally convex, σ(Y,X)-closed and 0 is a conditional element of it.

Proof. The assertions (i), (ii) and (iii) are immediate from the definitions. Proposition 3.23 implies asser-
tion (iv). □

The previous proposition together with Theorem 5.5 yield a conditional Bipolar theorem.

Theorem 5.9. Let ⟨X,Y⟩ be a conditional dual pair and Z a conditional subset of X on 1. Then Z◦◦ =

cl(conv(Z ⊔ 0)). Thus if Z is conditionally convex, σ(X,Y)-closed and 0 is a conditional element of
it, then Z◦◦ = Z.

Next we prove a conditional Banach-Alaoglu theorem.

Theorem 5.10. Let X be a conditional locally convex topological vector space and U a conditional
neighborhood of 0. Then U◦ is conditionally σ(X′,X)-compact.

Proof. The conditional σ(X′,X)-topology is the conditional topology of conditional pointwise conver-
gence in X and a conditional relative topology of the conditional product topology T on RX.25 Without
loss of generality, we may assume that U is conditionally convex and circled due to Proposition 5.8. The
conditional function

Φ : (X′, σ(X′,X)) → (RX, T ), Φ(x′)(x) = ⟨x′,x⟩

is conditionally injective and its conditional inverse function

Φ−1 : (RX, T ) → (X′, σ(X′,X))

conditionally continuous. By Proposition 3.26, it is enough to show that Φ(U◦) is conditionally compact.
To this end, let x be a conditional element of X. Since U is conditionally absorbing, there exists rx > 0

such that x is a conditional element of rxU. For x being a conditional element of U, choose rx ⩽ 1.
Since U is conditionally circled, it holds |⟨x′,x⟩| ⩽ rx for all conditional elements x′ of U◦. Put Kx =

{r : |r| ⩽ rx}. It follows from Theorem 4.6 that Kx is conditionally compact. By Theorem 3.28,

K := {f of RX : f(x) of Kx for all x of X}

is conditionally compact. By Proposition 3.27, it remains to show that Φ(U◦) is conditionally closed.
Let f be a conditional element of cl(Φ(U◦)). Since the conditional pointwise limit of a conditional net
of conditional linear functions is conditionally linear (due to the conditional continuity of conditional
addition and scalar multiplication), f is conditionally linear. Since rx ⩽ 1 for x of U, it follows that
f(U) ⊑ {r : |r| ⩽ 1}. Therefore, f is a conditional element of Φ(X′). The remaining assertion follows
from the fact that U◦ is conditionally σ(X′,X)-closed. □

25As in the classical case, one identifies X′ with a conditional subspace of XR.
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Definition 5.11. Let X be a conditional vector space. A conditional norm is a conditional function
∥·∥ : X → R+ such that

(i) ∥x∥ = 0 if, and only if, x = 0,

(ii) ∥rx∥ = |r| ∥x∥ for all conditional elements x of X and r of R,

(iii) ∥x+ y∥ ⩽ ∥x∥+ ∥y∥ for all conditional elements x,y of X.

A conditional vector space together with a conditional norm is called a conditional normed vector space.

For a conditional norm ∥·∥ : X → R, the conditional function d : X ×X → R defined by d(x,y) =

∥x− y∥ is a conditional metric. A conditional normed vector space (X, ∥.∥) is called a conditional
Banach space if (X,d) is conditionally complete. For a conditionally linear operator T : X → R, the
conditional operator norm ∥T∥′ is defined by ∥T∥′ := sup {|T(x)| : x of X, ∥x∥ = 1}. By inspection,
if X is conditionally Banach, then (X′, ∥·∥′) is so.

We close this paper by a conditional Krein-Šmulian theorem. A conditional version of this theorem for
modules over L∞ is proved in Eisele and Taieb [12, Theorem 11.1]. For r > 0, let

C′
r = {x′ : ∥x′∥′ ⩽ r}, C′

r(y
′) = {x′ : ∥x′ − y′∥′ ⩽ r} for each y′ of X′.

In particular, we denote by C′ := C′
1 and C := {x : ∥x∥ ⩽ 1}.

Theorem 5.12. Let X be a conditional Banach space and Y a conditionally convex subset of X′ on 1.
Then Y is conditionally σ(X′,X)-closed if, and only if, Y⊓C′

n is conditionally σ(X′,X)-closed for all
conditional elements n of N.

Proof. If Y is conditionally σ(X′,X)-closed, then its conditional intersection with each C′
n is so, since

C′
n is conditionally σ(X′,X)-closed.
As for the converse, note first that Y is conditionally norm-closed. Indeed, for a conditional sequence

(x′
n) of conditional elements of Y such that x′

n → x′, it follows from the conditional triangle inequality
that there is some m of N such that (x′

n) is a conditional sequence of conditional elements of Y ⊓
C′

m. Since conditional norm-convergence implies conditional σ(X′,X)-convergence26 and since x′
n

is a conditional element of Y ⊓ C′
m which is conditionally σ(X′,X)-closed by assumption, x′ is a

conditional element of Y. Further Y ⊓ C′
r(y

′) is conditionally σ(X′,X)-closed for all conditional
elements r of R++ and y′ of X′. Indeed, there exists n of N such that C′

r(y
′) ⊑ nC′. By assumption,

Y ⊓C′
r(y

′) = (Y ⊓ nC′) ⊓C′
r(y

′) is conditionally σ(X′,X)-closed.
Up to conditional addition of Y by a conditional element, which is a conditionally continuous oper-

ation, we may assume that 0 is a conditional element of Y. For each conditional element n of N, put
Yn = Y ⊓ 2nC′. Then Yn is conditionally convex, σ(X′,X)-closed and 0 is a conditional element
of Yn. It follows from Theorem 5.9 that Yn = Y◦◦

n . Put Z = ⊓Y◦
n. Note that Z is on 1 since 0 is a

conditional element of each Y◦
n. We will show that Y = Z◦ which will imply that Y is conditionally

σ(X′,X)-closed by Proposition 5.8. Since Z ⊑ Y◦
n, it follows that Yn ⊑ Z◦ from Proposition 5.8 which

in turn implies Y = ⊔Yn ⊑ Z◦. The following steps will establish Z◦ ⊑ Y.

Step 1 : We show that Y◦
n ⊑ Y◦

n+1+2−nC for every n of N. To this end, let x be a conditional element
of (Y◦

n+1 + 2−nC)⊏. By Theorem 5.5, it holds x′(x) ⩾ 1 ⩾ sup{x′(y) : y of Y◦
n+1 + 2−nC}

for some x′ of X′. Since 2−(n+1)C ⊑ Y◦
n+1 and x′(3 · 2−(n+1)C) = x′(2−(n+1)C+ 2−nC) ⊑

x′(Y◦
n+1 + 2−nC) by (2.4), it holds ∥x′∥′ ⩽ 2

32
n. Since

sup{y : y of Y◦
n+1 + 2−nC} = sup{y : y of Y◦

n+1}+ sup{y : y of 2−nC},
26This follows from |⟨xn,x′⟩ − ⟨x,x′⟩| ⩽ ∥x′∥′ ∥xn − x∥.
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one has sup{y : y of Y◦
n+1} ⩽ 1− 2−n ∥x′∥′. Choose r to be the conditional minimum of 1/3 and

2−n ∥x′∥′. Put y′ := 1
1−rx

′. From r < 2−n ∥x′∥′ and sup{y : y of Y◦
n+1} ⩽ 1− 2−n ∥x′∥′, it follows

that sup{y : y of Y◦
n+1} ⩽ 1, that is, y′ is a conditional element of Y◦◦

n+1 = Yn+1. By the choice of r,
we get ∥y′∥ ⩽ 2n, and therefore y′ is a conditional element of Yn. Since y′(x) > 1, it follows that x is
a conditional element of (Yn

◦)⊏.

Step 2 : It is shown that Y◦
n ⊑ Z + 2−(n−1)C for every conditional element n of N. For each n of

N, we pick inductively, using the result of Step 1, xn+1,xn+2, . . . such that xm is a conditional element
of Y◦

m and ∥xm − xm+1∥ ⩽ 2−m for m = n,n+ 1, . . .. For a conditional element m of N with
m =

∑
mi|ai where (mi) is a family in {n, n + 1, . . .} and (ai) ∈ p(1), put xm :=

∑
xmi

|ai. Since
(Y◦

n) is a conditional family, each xm is a conditional element of Y◦
m. By construction, (xm) is a

conditional Cauchy sequence. By the conditional completeness of X, there exists a conditional element
x of X such that xm → x. Each Y◦

n is conditionally norm-closed. Thus x is a conditional element of Z
since (xm) is a conditional element of each Y◦

m. Moreover, it holds ∥x− xn∥ ⩽
∑∞

j=n
1
2j ⩽ 1

2n−1 .

Step 3 : We show that Y = ⊓r>0(1+ r)Y. Since Y is conditionally convex and 0 is a conditional
element of Y, the conditional inclusion ⊑ is immediate. Conversely, for x′ of ⊓r>0(1+ r)Y, setting
x′
n = n/(1+ n)x′ for n of N, defines a conditional sequence of conditional elements of Y such that

∥x′ − x′
n∥

′ ⩽ ∥x′∥′ /(n+ 1) → 0. Hence xn → x, and thus x is a conditional element of Y since Y is
conditionally norm-closed.

Step 4 : We show that Z◦ ⊑ ⊓r>0(1+ r)Y. It holds x+ y = (1+ r)( x
1+r + (1− 1

1+r )
y
r ) for all x,y

of X and some r > 0. From Step 2 it follows that Y◦
n ⊑ (1+ r)conv(Z ⊔ 2n−1/rC). It follows from

Proposition 5.8 that 1/(1+ r)(Z◦ ⊓ 2n−1rC′) ⊑ Yn ⊑ Y for every n of N. By taking the conditional
union over all n of N, we obtain 1/(1+ r)Z◦ ⊑ Y for every r > 0, and thus Z◦ ⊑ ⊓r>0(1+ r)Y = Y

by means of Step 3. □
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