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ABSTRACT

We give local and global existence and uniqueness results for
multidimensional coupled FBSDEs for generators with arbi-
trary growth in the control variable. The local existence result
is based on Malliavin calculus arguments for Markovian equa-
tions. Under additional monotonicity conditions on the gener-
ator we construct global solutions by a pasting technique along
PDE solutions.
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1 Introduction

Given a multidimensional Brownian motionW on a probability space, we consider the system of forward
and backward stochastic differential equations{

Xt = x+
∫ t

0 bs(Xs, Ys) ds+
∫ t

0 σsdWs

Yt = h(XT ) +
∫ T
t gs(Xs, Ys, Zs) ds−

∫ T
t ZsdWs, t ∈ [0, T ]

(1.1)

where x is the initial value, T > 0 is a finite time horizon, and b, σ, g and h are given functions. In this
paper, we give conditions under which the system admits a unique solution in the case where the value
process Y is multidimensional and the generator g can grow arbitrarily fast in the control process Z.
Our focus is on Markovian systems, in which the functions b, σ, g and h are deterministic. We con-
sider generators that are Lipschitz continuous in X and Y and locally Lipschitz continuous in Z. For
one-dimensional value processes the decoupled system (with b depending only on X) has been solved
by Cheridito and Nam [6] based on Malliavin calculus arguments. In fact, using that for Lipschitz con-
tinuous generators the trace of the Malliavin derivative of the value process Y is a version of the control
process, they show that the control process can be uniformly bounded, hence enabling solvability for
locally Lipschitz generators by a truncation argument. To solve (1.1) in the multidimensional case we
propose a Picard iteration scheme which yields a Cauchy sequence in an appropriate Banach space under
uniform boundedness of the control processes. Using Malliavin calculus arguments the boundedness is
guaranteed if the time horizon is small enough. Here we make ample use of the method in Cheridito
and Nam [6]. Moreover using the PDE representation of Markovian Lipschitz FBSDEs as developed
for instance in Delarue [8] and a pasting procedure, we construct a unique global solution for generators
with an additional monotonicity-type condition and non-degeneracy of the volatility σ, see Theorem 2.5.
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Systems such as (1.1) naturally appear in numerous areas of applied mathematics including stochastic
control and mathematical finance, see e.g. Yong and Zhou [30], El Karoui et al. [12], Horst et al. [17],
Kramkov and Pulido [22] and Bielagk et al. [3]. As shown for instance in Ma et al. [25] and Cheridito
and Nam [6], in the Markovian case, FBSDEs can be linked to parabolic PDEs. More recently it is shown
in Fromm et al. [15] that FBSDEs can be used in the study of the Skorokhod embedding problem.
BSDEs and FBSDEs with Lipschitz continuous generators are well understood, we refer to El Karoui
et al. [12] and Delarue [8]. If Y is one-dimensional and g has quadratic growth in the control process Z,
BSDE solutions have been obtained by Kobylanski [21], Barrieu and El Karoui [2] and Briand and Hu
[4, 5] under different assumptions on the terminal condition ξ = h(XT ). We further refer to Delbaen
et al. [9], Drapeau et al. [11], Cheridito and Nam [6] and Heyne et al. [16] for results on one-dimensional
BSDEs and FBSDEs with superquadratic growth. Mainly due to the absence of comparison principle,
general solvability of multidimensional BSDEs with quadratic growth is less well understood. Under
smallness of the terminal condition solvability is shown in Tevzadze [28], see also Hu and Tang [18],
Luo and Tangpi [24], Jamneshan et al. [20], Cheridito and Nam [7], Frei [13] and Xing and Žitković [29]
for more recent developments.
To the best of our knowledge, Antonelli and Hamadène [1], Luo and Tangpi [24] and Fromm and Imkeller
[14] are the only works studying well-posedness of coupled FBSDEs with quadratic growth. In Antonelli
and Hamadène [1] the authors consider a one-dimensional equation with one dimensional Brownian mo-
tion and impose monotonicity conditions on the coefficient so that comparison principles for SDEs and
BSDEs can be applied. A (non-necessarily unique) solution is then obtained by monotone convergence
of an iterative scheme. This approach cannot be transfered to the present multidimensional case since
comparison results are not available. Fromm and Imkeller [14] consider fully coupled Markovian FB-
SDEs with multidimensional forward and value processes and locally Lipschitz continuous generators
in (Y,Z). Using the technique of decoupling fields they obtain existence of a unique local solution and
provide an extension to a maximal time interval. Compared to Fromm and Imkeller [14], we use an es-
sentially different technique based on Malliavin calculus which guarantees the existence of a uniformly
Lipschitz decoupling field and Malliavin differentiability of solutions. Moreover, we also construct a
global solution. Although the non-Markovian system studied in Luo and Tangpi [24] is the same as the
one considered here, the techniques are essentially different. In particular, the growth conditions in the
present paper are weaker and we do not impose any diagonally quadratic condition. Our main results
can be extended to the non-Markovian setting and to random diffusion coefficient (when σ depends on
X and Y ) under stronger assumptions involving the Malliavin derivatives of g and h, for details we refer
to the Ph.D. thesis of Luo [23].
The paper is organized as follows. In the next section, we present the setting and main results. In Section
3 we prove local solvability of multidimensional BSDE with superquadratic growth and give conditions
guaranteeing global solvability. Section 4 is dedicated to the proofs of the main results.

2 Main results

Let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability space, where (Ft)t∈[0,T ] is the augmented filtration
generated by a d-dimensional Brownian motion W , and F = FT for a finite time horizon T ∈ (0,∞).
The product Ω × [0, T ] is endowed with the predictable σ-algebra. Subsets of Rk and Rk×k, k ∈ N,
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are always endowed with the Borel σ-algebra induced by the Euclidean norm | · |. The interval [0, T ]
is equipped with the Lebesgue measure. Unless otherwise stated, all equalities and inequalities between
random variables and processes will be understood in the P -almost sure and P ⊗ dt-almost sure sense,
respectively. For p ∈ [1,∞] and k ∈ N, we denote by Sp(Rk) the space of all predictable continuous
processes X with values in Rk such that ‖X‖Sp(Rk) := || supt∈[0,T ] |Xt| ||p < ∞, and by Hp(Rk) the

space of all predictable processes Z with values in Rk such that ‖Z‖Hp(Rk) := ||(
∫ T

0 |Zu|
2 du)1/2||p <

∞. Here, || · ||p denotes the Lp-norm.
Let l,m ∈ N be fixed. A solution of (1.1) with values in Rm × Rl × Rl×d can be obtained under the
following conditions:

(A1) b : [0, T ]× Rm × Rl → Rm is a measurable function, bt(·, ·) is continuous for each t ∈ [0, T ],
and there exist k1, k2, λ1 ≥ 0 such that∣∣bt(x, y)− bt(x′, y′)

∣∣ ≤ k1

∣∣x− x′∣∣+ k2

∣∣y − y′∣∣ and |bt(x, y)| ≤ λ1(1 + |x|+ |y|)

for all x, x′ ∈ Rm and y, y′ ∈ Rl.

(A2) σ : [0, T ] → Rm×d is a measurable function and there is λ2 ≥ 0 such that |σt| ≤ λ2 for all
t ∈ [0, T ].

(A3) h : Rm → Rl is a continuous function and there exists k5 ≥ 0 such that∣∣h(x)− h(x′)
∣∣ ≤ k5

∣∣x− x′∣∣
for all x, x′ ∈ Rm.

(A4) g : [0, T ] × Rm × Rl × Rl×d → Rl is a measurable function and
∫ T

0 |gt(0, 0, 0)| dt < +∞.
Moreover, the function gt(·, ·, ·) is continuous for each t ∈ [0, T ] and there exist k3, k4 ≥ 0 and
a nondecreasing function ρ : R+ → R+ such that∣∣gt(x, y, z)− gt(x′, y, z)∣∣ ≤ k3

∣∣x− x′∣∣ (2.1)

for all x, x′ ∈ Rm, y ∈ Rl and z ∈ Rl×d such that |z| ≤M := 8λ2k5

√
dl and∣∣gt(x, y, z)− gt(x, y′, z′)∣∣ ≤ k4

∣∣y − y′∣∣+ ρ
(
|z| ∨

∣∣z′∣∣) ∣∣z − z′∣∣
for all x ∈ Rm, y, y′ ∈ Rl and z, z′ ∈ Rl×d.

(A5) There exists a constant K ≥ 0 such that∣∣gt(x, y, z)− gt(x′, y, z)− gt(x, y′, z′) + gt(x
′, y′, z′)

∣∣ ≤ K ∣∣x− x′∣∣ (∣∣y − y′∣∣+
∣∣z − z′∣∣)

for all t ∈ [0, T ], x, x′ ∈ Rm, y, y′ ∈ Rl and z, z′ ∈ Rl×d.

Our main result ensures local existence and uniqueness for the coupled FBSDE (1.1) under the previous
assumptions. The proof is given in Section 4.
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Theorem 2.1. Assume that (A1)-(A5) hold. Then there exists a constant C > 0 depending on k1, k2,
k3, k4, k5, λ2, l and d, such that the FBSDE (1.1) has a unique solution (X,Y, Z) ∈ S2(Rm)×S2(Rl)×
S∞(Rl×d) with |Zt| ≤M , whenever T ≤ C.

Local existence results have been obtained in [14, Theorem 3] and [24, Theorem 2.1] in essentially
different settings and with different methods. Let us mention that our technique allows to obtain existence
of solutions of coupled FBSDEs with Burger type nonlinearities at least for small enough time horizons.

Example 2.2. Assume that T is small enough, b, σ and h satisfy (A1)-(A3), with |h| ≤ λ5 for some
λ5 ≥ 0. Then for each k ≥ 1 the FBSDE{

Xt = x+
∫ t

0 bs(Xs, Ys) ds+
∫ t

0 σsdWs

Yt = h(XT ) +
∫ T
t Ys|Zs|k ds−

∫ T
t ZsdWs, t ∈ [0, T ]

(2.2)

admits a solution (X,Y, Z) ∈ S2(Rm)×S2(Rl)×S∞(Rl×d). The details are given in Subsection 4.2.♦

Remark 2.3. The condition (A5) is the minimal condition needed to ensure Lipschitz continuity in y, z
of the Malliavin derivative of gt(Xt, y, z) for a given SDE solution X , see e.g. El Karoui et al. [12] and
Cheridito and Nam [6] for details. When the generator g is of the form gt(x, y, z) := f1

t (x) + f2
t (y) +

f3
t (z) for some functions f1, f2 and f3, then (A5) is satisfied.

Moreover, let us mention that an advantage of our method is that it implies Malliavin differentiability of
the forward process X and the value process Y in the solution (X,Y, Z) of the FBSDE (1.1) obtained in
Theorem 2.1. We refer to Subsection 4.3 for details. �

Remark 2.4. The following counterexample shows that in general, even in the one-dimensional case,
coupled systems do not have a unique global solution. Consider the FBSDE{

Xt =
∫ t

0 Yu du

Yt =
∫ T
t kXu du−

∫ T
t Zu dWu.

This equation can be rewritten as

Yt =

T∫
t

s∫
0

kYu du ds−
T∫
t

Zu dWu. (2.3)

It is shown in [10, Example 3.2] that if T
√
k < π

2 then the BSDE with time-delayed generator (2.3) has
a unique solution whereas if T

√
k = π

2 , the equation (2.3) may not have any solution and if it has one,
there are infinitely many. �

Next, we would like to find conditions under which Theorem 2.1 can be extended to obtain global solv-
ability. In the present setting, under additional assumptions, a pasting method based on PDEs allows to
get global existence and uniqueness for the FBSDE (1.1).
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(A6) There exist K4 ≥ 0 satisfying K4 ≥ 2e2k1Tk2
2T (k2

5 + k3T ) + k3 + ρ2(M̄
√
dl) with M̄ =

8λ2K5

√
dl and K5 =

√
2(k2

5 + k3T )ek1T such that

l∑
i=1

(yi − y′i)
(
git(x, y, z)− git(x, y′, z)

)
≤ −K4

∣∣y − y′∣∣2
for all x ∈ Rm, y, y′ ∈ Rl and z ∈ Rl×d.

(A7) There exist K1,K4 ≥ 0 satisfying
√

2K1k2
5(K4 − ρ2(M

√
dl)) ≥ k2k

2
5 + k3 such that

m∑
i=1

(xi − x′i)
(
bit(x, y)− bit(x′, y)

)
≤ −K1

∣∣x− x′∣∣2 ,
l∑

i=1

(yi − y′i)
(
git(x, y, z)− git(x, y′, z)

)
≤ −K4

∣∣y − y′∣∣2
for all x, x′ ∈ Rm, y, y′ ∈ Rl and z ∈ Rl×d.

Theorem 2.5. Assume that (A1)-(A5) hold and there exist λ3, λ4, λ5 > 0 such that1
|bt(x, y)| ≤ λ1(1 + |y|)
〈x, σtσ∗t x〉 ≥ λ3|x|2

|gt(x, y, z)| ≤ λ4(1 + |y|+ ρ(|z|) |z|)
|h(x)| ≤ λ5

(2.4)

for all t ∈ [0, T ], x, x′ ∈ Rm, y, y′ ∈ Rl and z, z′ ∈ Rl×d. Then, if (A6) (respectively (A7)) is satisfied,
the FBSDE (1.1) has a unique global solution (X,Y, Z) ∈ S2(Rm) × S2(Rl) × S∞(Rl×d) such that
|Zt| ≤ M̄ (respectively |Zt| ≤M ).

Remark 2.6. Assumptions (A6) and (A7) can be understood as monotonicity conditions on the generator
and the drift coefficient. These conditions are satisfied for instance when the components of g (resp. b)
are linear in y (resp. x). In fact, if there is a function f with values in Rl such that gt(x, y, z) :=
−K4y + ft(x, z), then g satisfies (A6), and suitable conditions on f guarantee that g satisfies (A4) and
(A5) as well. �

Notice that Theorem 2.5 yields existence of a decoupling field, see [14]. In particular, the boundedness
of Z yields uniform Lipschitz continuity of the decoupling field.
Theorem 2.1 relies on an existence result for multidimensional BSDEs presented in Nam [26] and revis-
ited in the next section.

1σ∗t is the transpose matrix of σt.
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3 Multidimensional BSDEs with bounded Malliavin derivatives

Let us introduce the spaces of Malliavin differentiable random variables and stochastic processesD1,2(Rl)
and L1,2

a (Rl). For a thorough treatment of the theory of Malliavin calculus we refer to Nualart [27]. Let
M be the class of smooth random variables ξ = (ξ1, . . . , ξl) of the form

ξi = ϕi
( T∫

0

hi1s dWs, . . . ,

T∫
0

hins dWs

)
where ϕi is in the space C∞p (Rn;R) of infinitely continuously differentiable functions whose partial
derivatives have polynomial growth, hi1, . . . , hin ∈ L2([0, T ];Rd) and n ≥ 1. For every ξ inM let the
operator D = (D1, . . . , Dd) :M→ L2(Ω× [0, T ];Rd) be given by

Dtξ
i :=

n∑
j=1

∂ϕi

∂xj

( T∫
0

hi1s dWs, . . . ,

T∫
0

hins dWs

)
hijt , 0 ≤ t ≤ T, 1 ≤ i ≤ l,

and the norm ‖ξ‖1,2 := (E[|ξ|2 +
∫ T

0 |Dtξ|2 dt])1/2. As shown in Nualart [27], the operator D extends
to the closure D1,2(Rl) of the setM with respect to the norm ‖·‖1,2. A random variable ξ is Malliavin
differentiable if ξ ∈ D1,2(Rl) and we denote by Dtξ its Malliavin derivative. Denote by L1,2

a (Rl) the
space of processes Y ∈ H2(Rl) such that Yt ∈ D1,2(Rl) for all t ∈ [0, T ], the process DYt admits a
square integrable progressively measurable version and

‖Y ‖2L1,2a (Rl)
:= ‖Y ‖H2(Rl) + E

[ T∫
0

T∫
0

|DrYt|2 dr dt
]
<∞.

We next consider a system of superquadratic BSDEs of the form

Yt = ξ +

T∫
t

gu(Yu, Zu)du−
T∫
t

ZudWu (3.1)

satisfying the following conditions:

(B1) g : Ω× [0, T ] × Rl × Rl×d → Rl is a measurable function and there exist a constant B ∈ R+

and a nondecreasing function ρ : R+ → R+ such that∣∣gt(y, z)− gt(y′, z′)∣∣ ≤ B ∣∣y − y′∣∣+ ρ
(
|z| ∨

∣∣z′∣∣) ∣∣z − z′∣∣
for all t ∈ [0, T ], y, y′ ∈ Rl and z, z′ ∈ Rl×d.

(B2) ξ ∈ D1,2(Rl) and there exist constants Aij ≥ 0 such that |Dj
t ξ
i| ≤ Aij for all i = 1, . . . , l,

j = 1, . . . , d and t ∈ [0, T ].
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(B3) g·(0, 0) ∈ H4(Rl) and there exist Borel-measurable functions qij : [0, T ] → R+ satisfying∫ T
0 q2

ij(t)dt <∞ such that for every pair (y, z) ∈ Rl × Rl×d with

|z| ≤ Q :=

√√√√√2

d∑
j=1

(
l∑

i=1

A2
ij +

l∑
i=1

T∫
0

q2
ij(t)dt

)

one has

• g·(y, z) ∈ L1,2
a (Rl) with |Dj

ugit(y, z)| ≤ qij(t) for all i = 1, . . . , l, j = 1, . . . , d and
u ∈ [0, T ],

• for almost all u ∈ [0, T ] one has∣∣Dugt(y, z)−Dugt(y
′, z′)

∣∣ ≤ Ku(t)
(∣∣y − y′∣∣+

∣∣z − z′∣∣)
for all t ∈ [0, T ], y, y′ ∈ Rl and z, z′ ∈ Rl×d for some R+-valued adapted process
(Ku(t))t∈[0,T ] satisfying

∫ T
0 ‖Ku‖4H4(R) du <∞.

The following is an extension of Cheridito and Nam [6, Theorem 2.2] to the multidimensional case.
It was proved in Nam [26] under slightly different assumptions. For instance, we do not assume a
monotonicity-type condition on y 7→ gt(y, z) for every z. Our results rely on the techniques of [6]. For
the sake of completeness we give the proof.

Theorem 3.1. Assume that (B1)-(B3) hold and T ≤ log(2)
2B+ρ2(Q)+1

. Then the BSDE (3.1) admits a unique

solution in S4(Rl)× S∞(Rl×d) and |Zt| ≤ Q.

Consider the following stronger versions of the conditions (B1) and (B3):

(B1’) g is continuously differentiable in (y, z) and there exist constants B ∈ R+ and ρ ∈ R+ such
that |∂ygt(y, z)| ≤ B and |∂zgt(y, z)| ≤ ρ for all t ∈ [0, T ], y, y′ ∈ Rl and z, z′ ∈ Rl×d.

(B3’) The condition (B3) holds for all (y, z) ∈ Rl × Rl×d.

Lemma 3.2. If (B1’), (B2) and (B3’) hold, then the BSDE (3.1) admits a unique solution (Y, Z) ∈
S4(Rl)×H4(Rl×d) and

|Zjt |2 ≤

(
l∑

i=1

A2
ij +

l∑
i=1

T∫
t

q2
ij(s)e

−(2B+ρ2+1)(T−s)ds

)
e(2B+ρ2+1)(T−t) for all j = 1, . . . , d. (3.2)

Proof. By (B2), each component ξi of ξ has bounded Malliavin derivative, which implies by [6, Lemma
2.5] that E[|ξi|p] < ∞ for all p ≥ 1. It follows from El Karoui et al. [12, Theorem 5.1 and Proposition
5.3] that the BSDE (3.1) has a unique solution (Y, Z) ∈ S4(Rl) × H4(Rl×d), which is Malliavin dif-
ferentiable. Moreover for every i = 1, . . . , l and j = 1, . . . , d, the process (Dj

rY i
t , D

j
rZit)t∈[0,T ] has a

version (U ij,rt , V ij,r
t )t∈[0,T ] which satisfies

U ij,rt = 0, V ij,r
t = 0, for 0 ≤ t < r ≤ T,
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and is the unique solution in S2(Rl)×H2(Rl×d) of the BSDE

U j,rt = Dj
rξ +

T∫
t

∂ygs(Ys, Zs)U
j,r
s + ∂zgs(Ys, Zs)V

j,r
s +Dj

rgs(Ys, Zs)ds−
T∫
t

V j,r
s dWs.

Applying Itô’s formula to |U j,rt |2 yields

|U j,rt |2 = |Dj
rξ|2 −

T∫
t

2U j,rs V j,r
s dWs

+

T∫
t

2U j,rs ∂ygs(Ys, Zs)U
j,r
s + 2U j,rs ∂zgs(Ys, Zs)V

j,r
s + 2U j,rs Dj

rgs(Ys, Zs)− |V j,r
s |2ds

≤ |Dj
rξ|2 −

T∫
t

2U j,rs V j,r
s dWs +

T∫
t

2B|U j,rs |2 + 2ρ|U j,rs ||V j,r
s |+ 2

√√√√ l∑
i=1

q2
ij(s)|U

j,r
s | − |V j,r

s |2ds

≤ |Dj
rξ|2 −

T∫
t

2U j,rs V j,r
s dWs +

T∫
t

(
2B + ρ2 + 1

)
|U j,rs |2 +

l∑
i=1

q2
ij(s)ds.

Using condition (B3) and taking conditional expectation in the above inequality yields

|U j,rt |2 ≤ E
[ l∑
i=1

A2
ij +

T∫
t

(
2B + ρ2 + 1

)
|U j,rs |2 +

l∑
i=1

q2
ij(s)ds

∣∣∣Ft]. (3.3)

By El Karoui et al. [12, Proposition 5.3] the processZ is a version of the trace (U tt )t∈[0,T ] of the Malliavin
derivative of Y . Hence (3.2) follows from (3.3) by applying Gronwall’s inequality. �

Proof (Theorem 3.1). Define the Lipschitz continuous function g̃ by

g̃t(y, z) =

{
gt(y, z) if |z| ≤ Q,
gt(y,Qz/|z|) if |z| > Q.

(3.4)

By Cheridito and Nam [6, Lemma 2.5], the condition (B2) implies E [|ξ|p] < +∞ for all p ∈ [1,∞).
Thus, ξ ∈ Lp for all p ≥ 1. Therefore, it follows from El Karoui et al. [12, Theorem 5.1] that the BSDE
corresponding to (g̃, ξ) has a unique solution (Y,Z) ∈ S4(Rl) × H4(Rl×d). For x = (y, z) ∈ Rl+l×d
let β ∈ C∞(Rl+l×d) be the mollifier

β(x) :=

{
λ exp

(
− 1

1−|x|2

)
if |x| < 1,

0 otherwise,
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where the constant λ ∈ R+ is chosen such that
∫
Rl+l×d β(x)dx = 1. Set βn(x) := nl+l×dβ(nx),

n ∈ N \ {0}, and define

gnt (ω, x) :=

∫
Rl+l×d

g̃t(ω, x
′)βn(x− x′)dx′

so that for each n > 0 the function gn satisfies (B1’) and (B3’) with the constant ρ replaced by ρ(Q). By
Lemma 3.2 the BSDE corresponding to (gn, ξ) has a unique solution (Y n, Zn) in S4(Rl) × H4(Rl×d)
which satisfies

|Zn,jt |2 ≤

 l∑
i=1

A2
ij +

l∑
i=1

T∫
t

q2
ij(s)e

−(2B+ρ2(Q)+1)(T−s)ds

 e(2B+ρ2(Q)+1)(T−t)

≤

 l∑
i=1

A2
ij +

l∑
i=1

T∫
0

q2
ij(s)ds

 e(2B+ρ2(Q)+1)T .

Since T ≤ log(2)
2B+ρ2(Q)+1

we obtain

|Zn,jt |2 ≤ 2

 l∑
i=1

A2
ij +

l∑
i=1

T∫
0

q2
ij(s)ds

 for all j = 1, . . . , d.

This shows |Znt | ≤ Q. Since gn converges uniformly in (t, ω, y, z) to g̃, using the procedure of the
proof of Cheridito and Nam [6, Theorem 2.2], it follows that (Y n, Zn) converges to (Y,Z) in S2(Rl)×
H2(Rl×d), so that |Zt| ≤ Q. Since g̃(y, z) = g(y, z) for all (y, z) ∈ Rl × Rl×d with |z| ≤ Q, it follows
that (Y, Z) is the unique solution of the BSDE corresponding to (ξ, g) in S4(Rl)× S∞(Rl×d). �

Corollary 3.3. Suppose (B1)-(B3) hold, T ≤ log(2)
2B+ρ2(Q)+1

and (Y,Z) ∈ S4(Rl) × S∞(Rl×d) is the

solution of the BSDE (3.1). Then Yt ∈ D1,2(Rl) for all t ∈ [0, T ] and for every j = 1, . . . , d, one has

|Dj
rYt|2 ≤ 2

(
l∑

i=1

A2
ij +

l∑
i=1

T∫
0

q2
ij(s)ds

)
for all r ∈ [0, t]. (3.5)

Proof. Since |Z| ≤ Q is bounded, (Y, Z) solves the BSDE with terminal condition ξ and generator g̃
defined by (3.4). If g satisfies (B1’) and (B3’), then the result follows from Lemma 3.2. Otherwise
consider the sequence of smooth functions gn converging to g as defined in the proof of Theorem 3.1.
Let (Y n, Zn) ∈ S4(Rl) × H4(Rl×d) be the solutions to the BSDEs corresponding to (gn, ξ), which
converge to (Y, Z) in S2(Rl)×H2(Rl×d). By Lemma 3.2 (Y n

t , Z
n
t ) ∈ D1,2(Rl)×D1,2(Rl×d) for each

t ∈ [0, T ] and the arguments in the proof of Theorem 3.1 imply

|Dj
rY

n
t |2 ≤ 2

 l∑
i=1

A2
ij +

l∑
i=1

T∫
0

q2
ij(s)ds

 j = 1, . . . , d, r, t ∈ [0, T ].
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Hence, supn∈NE[
∫ T

0 |D
j
rY n
t |2 dr] <∞ for each t ∈ [0, T ]. Since (Y n

t ) converges to Yt in L2, it follows
from Nualart [27, Lemma 1.2.3] that Yt ∈ D1,2(Rl) and (DrY

n
t ) converges toDrYt in the weak topology

ofH2(Rl×d). Thus, DrYt satisfies (3.5). �

As a consequence to Theorem 3.1, we give a condition for global solvability of fully coupled systems of
BSDEs. For the remainder of this section we put

∆n :=
log(2)

2B + ρ2(2nQ) + 1
, n ∈ N.

Proposition 3.4. Assume that (B1)-(B2) hold, that there exists N ∈ N such that
∑N

n=0 ∆n ≥ T , and
(B3) holds with Q replaced by 2NQ. Then the BSDE (3.1) has a unique solution in S4(Rl)×S∞(Rl×d)
and |Zt| ≤ 2NQ.

Proof. If T ≤ ∆0 then the result follows from Theorem 3.1. Otherwise, if T > ∆0 it follows by the
same arguments as in the proof of Theorem 3.1 that the BSDE (3.1) has a unique solution (Y 0, Z0) in
S4(Rl)×S∞(Rl×d) on the interval [T −∆0, T ]. Moreover, Z0 satisfies |Z0

t | ≤ Q and by Corollary 3.3
one has Y 0

T−∆0
∈ D1,2(Rl) and for every r ≤ T −∆0,

|Dj
rY

0
T−∆0

|2 ≤
l∑

i=1

2|Aij |2 +

l∑
i=1

T∫
0

2|qij(t)|2dt for all j = 1, . . . , d.

Since g satisfies (B3) for all (y, z) ∈ Rl × Rl×d such that |z| ≤ cQ, again by Theorem 3.1 the BSDE
(3.1) with terminal condition Y 0

T−∆0
has a unique solution (Y 1, Z1) in S4(Rl) × S∞(Rl×d) on [(T −

∆0 −∆1) ∨ 0, T −∆0] , and

|Dj
rY

1
(T−∆0−∆1)∨0|

2 ≤
l∑

i=1

22|Aij |2 +
l∑

i=1

T∫
0

(22 + 2)|qij(t)|2dt, for all j = 1, . . . , d

|Z1
t | ≤ 2Q, t ∈ [(T −∆0 −∆1) ∨ 0, T −∆0] .

Repeating the previous arguments, for N ≥ 2 the BSDE (3.1) has a unique solution (Y N , ZN ) in
S4(Rl)×S∞(Rl×d) on [(T−

∑N
n=0 ∆n)∨0, (T−

∑N−1
n=0 ∆n)∨0] with terminal condition Y(T−

∑N−1
n=0 ∆n)∨0.

Moreover,

|Dj
rY

N
(T−

∑N
n=0 ∆n)∨0

|2 ≤
l∑

i=1

2N |Aij |2 +
l∑

i=1

T∫
0

(
N∑
k=1

2k)|qij(t)|2dt for all j = 1, . . . , d

|ZNt | ≤ 2NQ, t ∈
[
(T −

N∑
n=0

∆n) ∨ 0, (T −
N−1∑
n=0

∆n) ∨ 0
]
.
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Hence, the pair (Y, Z) given by

Y := Y 01[T−∆1,T ] +
N∑
n=1

Y n1[(T−
∑n

i=0 ∆i)∨0,(T−
∑n−1

i=0 ∆i)∨0]

Z := Z01[T−∆1,T ] +
N∑
n=1

Zn1[(T−
∑n

i=0 ∆i)∨0,(T−
∑n−1

i=0 ∆i)∨0]

solves (3.1) and its uniqueness follows from Theorem 3.1. �

Remark 3.5. The condition
∑N

n=0 ∆n ≥ T for some N ∈ N does not guarantee global solvability of
multidimentional BSDEs with superquadratic growth. In fact, if ρ(x) ≥ C(1 +

√
x) for all x ≥ 0,

then
∑

n≥0 ∆n < ∞. However, it does guarantee global solvability for BSDEs whose generator grows
slightly faster than the linear function. For instance, if ρ(x) ≤ C(1 +

√
log(1 + x)) one has

∞∑
n=0

log(2)

2B + ρ2(2NQ) + 1
≥
∞∑
n=0

log(2)

2B + 2C2(1 + log(2N (1 +Q))) + 1

=

∞∑
n=0

log(2)

2B + 2C2(1 + log(1 +Q) + n log(2)) + 1
=∞.

Note also that global solvability of strict subquadratic systems has been established by Cheridito and
Nam [7]. �

4 Coupled FBSDE with superquadratic growth

4.1 Proof of Theorem 2.1

Step 1: We first assume that h, b and g are continuously differentiable in all variables. Let us define

C1 :=
k2

5

k2
3

∧ log 2

k1
∧ λ2

k2M
∧ log 2

2k4 + ρ2(M) + 1

with M := 8k5λ2

√
dl. We will show that for T ≤ C1, the sequence (Xn, Y n, Zn) given by X0 = 0,

Y 0 = 0, Z0 = 0 and{
Xn+1
t = x+

∫ t
0 b(X

n+1
u , Y n

u ) du+
∫ t

0 σu dWu

Y n+1
t = h(Xn+1

T ) +
∫ T
t gu(Xn+1

u , Y n+1
u , Zn+1

u ) du−
∫ T
t Zn+1

u dWu, n ≥ 1

is well defined and that |Znt | ≤ M for all n ∈ N and t ∈ [0, T ]. The process X1 is well defined, X1
t

belongs to D1,2(Rm) for every t and the process (DrXt)t∈[0,T ] satisfies the linear equation

DrX
1
t = 0, 0 ≤ t < r ≤ T,

DrX
1
t =

t∫
r

(∂xbDrX
1
u + ∂ybDrY

0
u ) du+Dr

 t∫
r

σu dWu

 , 0 ≤ r ≤ t ≤ T,
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with Dr(
∫ t
r σu dWu) = σ1[r,t], see Nualart [27, Lemma 2.2.1 and Theorem 2.2.1]. Hence, since b is

Lipschitz continuous, we have

∣∣DrX
1
t

∣∣ ≤ t∫
r

k1DrX
1
u du+ σr and

∣∣DrX
1
t

∣∣ ≤ λ2e
Tk1 ,

where the second estimate comes from Gronwall’s inequality. We will now show that since T ≤ C1,
h(X1

T ) and g(X1, ·, ·) satisfy (B1)-(B3). In fact, since h is continuously differentiable and X1
T ∈

D1,2(Rm), it follows from the chain rule, see for instance Nualart [27, Proposition 1.2.4], that h(X1
T ) ∈

D1,2(Rl) and |Dj
r(h(X1

T ))| = |∂xh(X1
T )Dj

rX1
T | ≤ λ2k5e

Tk1 for all r ∈ [0, T ], j = 1, . . . , d. Using
T ≤ log 2

k1
, we deduce that h(X1

T ) satisfies (B2) with Aij := 2λ2k5. Similarly, by (A4) and using that
the function x 7→ g(x, y, z) is continuously differentiable, it follows that g.(X1

. , y, z) ∈ L
1,2
a (Rl) and∣∣Dj(gi. (X

1, y, z))
∣∣ ≤ λ2k3e

Tk1 , j = 1, . . . , d for all (y, z) ∈ Rl × Rl×d such that |z| ≤ M and, due to
(A5), applying the same argument to ĝt(x, y, y′, z, z′) := gt(x, y, z)− gt(x, y′, z′) yields

|Dj
rgt(X

1
t , y, z)−Dj

rgt(X
1
t , y
′, z′)| ≤ Kλ2e

Tk1 .

Using T ≤ k25
k23
∧ log 2

k1
, we deduce that g.(X1

. , y, z) satisfies (B3) with qij = 2λ2k3 and Ku(t) := 2Kλ2.

Moreover due to (A4), the function (t, y, z) 7→ gt(X
1
t , y, z) satisfies (B1).

Therefore, by T ≤ log 2
2k4+ρ2(M)+1

, Theorem 3.1 ensures that (Y 1, Z1) exists. Consider the function g̃
defined by

g̃t(x, y, z) =

{
gt(x, y, z) if |z| ≤M
gt(x, y, zM/|z|) if |z| > M.

Since (Y 1, Z1) also solves the BSDE with terminal condition h(X1
T ) and a Lipschitz generator g̃(X1, ·, ·),

it follows from Lemma 3.2 and its proof that (Y 1
t , Z

1
t ) ∈ D1,2(Rl) × D1,2(Rl×d) for all t ∈ [0, T ] and

DtY
1 is bounded and it holds Z1

t = DtY
1
t . In addition, we have

∣∣DrX
1
t

∣∣ ≤ 4λ2 and
∣∣DrY

1
t

∣∣ ≤M .
Now let n ∈ N, assume that (Xn

t , Y
n
t , Z

n
t ) ∈ D1,2(Rm) × D1,2(Rl) × D1,2(Rl×d), Znt = DtY

n
t and

|DrX
n
t | ≤ 4λ2, |DrY

n
t | ≤ M for all r, t ∈ [0, T ]. The process Xn+1 is well defined, for each t; Xn+1

t

belongs to D1,2(Rm) and it holds

DrX
n+1
t = 0, 0 ≤ t < r ≤ T,

DrX
n+1
t = σr +

t∫
r

(∂xbDrX
n+1
u + ∂ybDrY

n
u ) du, 0 ≤ r ≤ t ≤ T.

Since ∂xb, ∂yb and σ are bounded by k1, k2 and λ2 respectively, it follows from Gronwall’s inequality
that ∣∣DrX

n+1
t

∣∣ ≤ eTk1
λ2 + k2

T∫
0

|DrY
n
u | du

 .

Hence, ∣∣DrX
n+1
t

∣∣ ≤ eTk1 (λ2 + k2TM) <∞ (4.1)
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so that since T ≤ λ2
k2M

, we have
∣∣DrX

n+1
t

∣∣ ≤ 4λ2. As above, h(Xn+1
T ) and g.(Xn+1, y, z) are Malli-

avin differentiable and satisfy (B1)-(B3) with Aij := 4λ2k5, qij = 2λ2k3 and Ku(t) := 2Kλ2. It
then follows again from Theorem 3.1 that (Y n+1, Zn+1) exists and |Zn+1| ≤ M is bounded. Since
(Y n+1, Zn+1) also solves the BSDE with terminal condition h(Xn+1

T ) and Lipschitz continuous gener-
ator g̃t(Xn+1, ·, ·), Lemma 3.2 and its proof guarantee that (Y n+1

t , Zn+1
t ) ∈ D1,2(Rl)×D1,2(Rl×d) for

all t ∈ [0, T ] and DtY
n+1 is bounded and it holds Zn+1

t = DtY
n+1
t , with

∣∣DrY
n+1
t

∣∣ ≤M .
Step 2: Now we show that there is a positive constant C2 depending on k1, k2, k3, k4, k5, λ2, l and d,
such that if T ≤ C2, then (Xn, Y n, Zn) is a Cauchy sequence in S2(Rm)×S2(Rl)×H2(Rl×d). Using
(A1) we can estimate the norm of the difference Xn+1

t −Xn
t as

|Xn+1
t −Xn

t |2 ≤ 2

 t∫
0

k1|Xn+1
s −Xn

s |ds

2

+ 2

 t∫
0

k2|Y n
s − Y n−1

s |ds

2

.

Thus

sup
0≤t≤T

|Xn+1
t −Xn

t |2 ≤ 2

 T∫
0

k1|Xn+1
s −Xn

s |ds

2

+ 2

 T∫
0

k2|Y n
s − Y n−1

s |ds

2

.

Taking expectation on both sides and using Cauchy-Schwarz’ inequality, we have

E

[
sup

0≤t≤T
|Xn+1

t −Xn
t |2
]
≤ 2Tk2

1E

 T∫
0

|Xn+1
s −Xn

s |2ds

+ 2Tk2
2E

 T∫
0

|Y n
s − Y n−1

s |2ds


≤ 2T 2k2

1E

[
sup

0≤t≤T
|Xn+1

t −Xn
t |2
]

+ 2T 2k2
2E

[
sup

0≤t≤T
|Y n
t − Y n−1

t |2
]
.

Choosing T to be small enough so that 2T 2k2
1 ≤ 1

2 , it follows

E

[
sup

0≤t≤T
|Xn+1

t −Xn
t |2
]
≤ 4T 2k2

2E

[
sup

0≤t≤T
|Y n
t − Y n−1

t |2
]
. (4.2)

On the other hand, applying Itô’s formula to eβt|Y n+1
t − Y n

t |2, β ≥ 0, we have

eβt|Y n+1
t − Y n

t |2 = eβT |h(Xn+1
T )− h(Xn

T )|2 − 2

T∫
t

eβs(Y n+1
s − Y n

s )(Zn+1
s − Zns )dWs

−
T∫
t

eβs(Zn+1
s − Zns )2ds−

T∫
t

βeβs(Y n+1
s − Y n

s )2ds

+ 2

T∫
t

eβs(Y n+1
s − Y n

s )
[
gs(X

n+1
s , Y n+1

s , Zn+1
s )− gs(Xn

s , Y
n
s , Z

n
s )
]
ds.
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Hence, due to the condition (A3) and the boundedness of (Zn), it holds

eβt|Y n+1
t − Y n

t |2 +

T∫
t

eβs(Zn+1
s − Zns )2ds

≤ eβT
∣∣h(Xn+1

T )− h(Xn
T )
∣∣2 − 2

T∫
t

eβs(Y n+1
s − Y n

s )(Zn+1
s − Zns )dWs

−
T∫
t

βeβs(Y n+1
s − Y n

s )2ds+ 2

T∫
t

eβsρ(M)
∣∣Y n+1
s − Y n

s

∣∣ ∣∣Zn+1
s − Zns

∣∣ ds
+ 2

T∫
t

eβsk7

∣∣Y n+1
s − Y n

s

∣∣ ∣∣Xn+1
s −Xn

s

∣∣ ds+ 2

T∫
t

eβsk4

∣∣Y n+1
s − Y n

s

∣∣2 ds.
With some positive constants α1, α2, it follows from (A3) and Young’s inequality that

eβt|Y n+1
t − Y n

t |2 +

T∫
t

eβs(Zn+1
s − Zns )2ds ≤ eβTk2

5|Xn+1
T −Xn

T |2

− 2

T∫
t

eβs(Y n+1
s − Y n

s )(Zn+1
s − Zns )dWs + α2

T∫
t

eβs|Xn+1
s −Xn

s |2ds

+

(
(ρ(M))2

α1
+
k2

3

α2
+ 2k4 − β

) T∫
t

eβs(Y n+1
s − Y n

s )2ds+ α1

T∫
t

eβs|Zn+1
s − Zns |2ds. (4.3)

Letting β = (ρ(M))2

α1
+

k23
α2

+ 2k4 and taking expectation on both sides above, we have

E
[
eβt|Y n+1

t − Y n
t |2
]

+ E

 T∫
t

eβs(Zn+1
s − Zns )2ds

 ≤ eβTk2
5E
[
|Xn+1

T −Xn
T |2
]

+ α1E

 T∫
t

eβs|Zn+1
s − Zns |2ds

+ α2E

 T∫
t

eβs|Xn+1
s −Xn

s |2ds

 .
Putting α1 = 1

2 and α2 = 1, the previous estimate yields

E

 T∫
0

eβs(Zn+1
s − Zns )2ds

 ≤ 2eβTk2
5E
[
|Xn+1

T −Xn
T |2
]

+ 2E

 T∫
0

eβs|Xn+1
s −Xn

s |2ds

 .
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Next, taking conditional expectation with respect to Ft in (4.3) gives

eβt|Y n+1
t − Y n

t |2 + E

 T∫
t

eβs(Zn+1
s − Zns )2ds

∣∣∣∣Ft
 ≤ eβTk2

5E
[
|Xn+1

T −Xn
T |2|Ft

]

+ α1E

 T∫
t

eβs|Zn+1
s − Zns |2ds

∣∣∣∣Ft
+ α2E

 T∫
t

eβs|Xn+1
s −Xn

s |2ds
∣∣∣∣Ft
 .

Thus, by Burkholder-Davis-Gundy’s inequality, with a positive constant c1 and α1 = 1
2 , α2 = 1, we

have

E

[
sup

0≤t≤T
eβt|Y n+1

t − Y n
t |2
]
≤ c1e

βTk2
5E
[
|Xn+1

T −Xn
T |2
]

+ c1
1

2
E

 T∫
0

eβs|Zn+1
s − Zns |2ds

+ c1E

 T∫
0

eβs|Xn+1
s −Xn

s |2ds


≤ 2c1e

βTk2
5E
[
|Xn+1

T −Xn
T |2
]

+ 2c1E

 T∫
0

eβs|Xn+1
s −Xn

s |2ds

 .
It now follows from (4.2) that

E

[
sup

0≤t≤T
|Y n+1
t − Y n

t |2
]

+ E

 T∫
0

(Zn+1
s − Zns )2ds


≤ 8(c1 + 1)eβT (k2

5 + T )T 2k2
2E

[
sup

0≤t≤T
|Y n
t − Y n−1

t |2
]
.

Taking T small enough so that

8(c1 + 1)eβT (k2
5 + T )T 2k2

2 ≤
1

2
,

we obtain that (Xn, Y n, Zn) is a Cauchy sequence in S2(Rm)× S2(Rl)×H2(Rl×d). Thus, it suffices
to define C2 by the conditions {

2T 2k2
1 ≤ 1

2

8(c1 + 1)eβT (k2
5 + T )T 2k2

2 ≤ 1
2 .

By continuity of b, g and hwe have the existence of a solution (X,Y, Z) in S2(Rm)×S2(Rl)×H2(Rl×d)
of FBSDE (1.1) and it follows from the boundedness of (Zn) that |Zt| ≤ M . The uniqueness in
S2(Rm) × S2(Rl) × S∞(Rl×d) follows from the boundedness of Z and by repeating the above ar-
guments on the difference of two solutions.
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Step 3: If one of the functions b, g or h is not differentiable, we apply the technique of the proof of
Theorem 3.1. Namely, we use an approximation by the smooth functions defined as follows: For n ∈ N,
let β1

n, β
2
n and β3

n be nonnegativeC∞ functions with support on {x ∈ Rm : |x| ≤ 1
n}, {x ∈ Rm+l : |x| ≤

1
n} and {x ∈ Rm+l+l×d : |x| ≤ 1

n} respectively, and satisfying
∫
Rm β

1
n(r)dr = 1,

∫
Rm+l β

2
n(r)dr = 1

and
∫
Rm+l+l×d β

3
n(r)dr = 1. We define the convolutions

bnt (x, y) :=

∫
Rm+l

bt(x
′, y′)β2

n(x′ − x, y′ − y)dx′dy′, hn(x) :=

∫
Rm

h(x′)β1
n(x′ − x)dx′,

gn(u, x, y, z) :=

∫
Rm+l+l×d

g(u, x′, y′, z′)β3
n(x′ − x, y′ − y, z′ − z)dx′dy′dz′.

It is easy to check that bn satisfies (A1) with the constants k1, k2 and 2λ1 and that gn and hn satisfy
(A4) - (A5) and (A3), respectively, with the same constants. From Steps 1 and 2, there exists a positive
constant C̄ independent of n such that if T ≤ C̄, FBSDE (1.1) with parameters (bn, hn, gn) admits a
unique solution (Xn, Y n, Zn) ∈ S2(Rm)× S2(Rl)× S∞(Rl×d) and

|Znt | ≤M.

By the Lipschitz continuity conditions on b and h and the locally Lipschitz condition of g, the sequences
(bn) and (hn) converge uniformly to b and h on Rm+l and Rm, respectively, and (gn) converges to g
uniformly on Rm+l×Λ for any compact subset Λ of Rl×d. Combining these uniform convergences with
the boundedness of Zn, similar to above, there exists a constant C̃ depending on k1, k2, k3, k4, k5, λ2, l
and d such that if T ≤ C̃, (Xn, Y n, Zn) is a Cauchy sequence in the Banach space S2(Rm)×S2(Rl)×
H2(Rl×d).
In fact, for any m,n ∈ N, using Cauchy-Schwarz’ inequality we have

|Xn
t −Xm

t |
2 ≤ T

T∫
0

|bnu(Xn
u , Y

n
u )− bmu (Xm

u , Y
m
u )|2 du.

Thus, taking the supremum with respect to t and then expectation on both sides give

‖Xn −Xm‖2S2(Rm)

≤ 3T

T∫
0

(|bnu(Xn
u , Y

n
u )− bu(Xn

u , Y
n
u )|2 + |bmu (Xm

u , Y
m
u )− bu(Xm

u , Y
m
u )|2

+ |bu(Xn
u , Y

n
u )− bu(Xm

u , Y
m
u )|2)du

≤ 3T

T∫
0

(|bnu(Xn
u , Y

n
u )− bu(Xn

u , Y
n
u )|2 + |bmu (Xm

u , Y
m
u )− bu(Xm

u , Y
m
u )|2) du

+ 3k2
1T

2 ‖Xn −Xm‖2S2(Rm) + 3k2
2T

2 ‖Y n − Y m‖2S2(Rl) (4.4)
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where the second inequality follows from (A1). On the other hand, applying Itô’s formula as in Step 2,
one has

|Y m
t − Y n

t |
2 +

T∫
t

|Znu − Zmu |
2 du

≤ |hn(Xn
T )− h(Xn

T )|2 + |hm(Xm
T )− h(Xm

T )|2 + k2
5 |Xn

T −Xm
T |

2

− 2

T∫
t

(Y n+1
s − Y n

s )(Zn+1
s − Zns )dWs

+

T∫
t

|Y n
u − Y m

u | (|gnu(Xn
u , Y

n
u , Z

n
u )− gu(Xn

u , Y
n
u , Z

n
u )|

+ |gmu (Xm
u , Y

m
u , Zmu )− gu(Xm

u , Y
m
u , Zmu )|+ k3 |Xn

u −Xm
u |+ k4 |Y n

u − Y m
u |

+ ρ(M) |Znu − Zmu |)du. (4.5)

Taking expectation, due to Young’s inequality we have

‖Zn − Zm‖2H2(Rl×d)

≤ E[|hn(Xn
T )− h(Xn

T )|2] + E[|hm(Xm
T )− h(Xm

T )|2] + (k2
5 +

1

2
Tk2

3) ‖Xn −Xm‖2S2(Rm)

+
1

2
T ‖Y n − Y m‖2S2(Rl) +

1

2

T∫
0

|gnu(Xn
u , Y

n
u , Z

n
u )− gu(Xn

u , Y
n
u , Z

n
u )|2

+ |gmu (Xm
u , Y

m
u , Zmu )− gu(Xm

u , Y
m
u , Zmu )|2 du

+
1

2
Tk2

4ρ
2(M) ‖Y n − Y m‖2S2(Rl) +

1

2
‖Zn − Zm‖2H2(Rl×d) .

On the other hand, taking conditional expectation in (4.5) and then the supremum with respect to t and
then expectation on both sides, we have due to Young’s inequality

‖Y n − Y m‖2S2(Rl)

≤ E[|hn(Xn
T )− h(Xn

T )|2] + E[|hm(Xm
T )− h(Xm

T )|2] + k2
5 ‖Xn −Xm‖2S2(Rm)

+
1

2
T ‖Y n − Y m‖2S2(Rl) +

1

2

T∫
0

|gnu(Xn
u , Y

n
u , Z

n
u )− gu(Xn

u , Y
n
u , Z

n
u )|2

+ |gmu (Xm
u , Y

m
u , Zmu )− gu(Xm

u , Y
m
u , Zmu )|2 du

+
1

2
Tk2

3 ‖Xn −Xm‖2S2(Rm) +
1

2
Tk2

4ρ
2(M) ‖Y n − Y m‖2S2(Rl) +

1

2
‖Zn − Zm‖2H2(Rl×d) .

Combining (4.4) and (4.1) we observe that if T is small enough so that{
3k2

1T
2 ≤ 1

2
1
2T + 3k2

5k
2
2T

2 + 3
2T

3k2
3k

2
2 + 1

2Tk
2
4ρ

2(M) ≤ 1
2
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then, the uniform convergence of (bn), gn and (hn) to b, g and h ensure that (Xn, Y n, Zn) is a Cauchy
sequence. The verification that the limit (X,Y, Z) of the sequence (Xn, Y n, Zn) solves the FBSDE
(1.1) uses continuity of the functions b, h and g, and that |Zt| ≤M is a consequence of the boundedness
of (Zn). Taking C := C̃ ∧ C̄ concludes the proof. �

4.2 Proof of Example 2.2

Let k ≥ 1, g(y, z) = y|z|k and R := λ5eTMk

1−2MkeTMk with T < 1
Mk log( 1

2Mk ) ∧ 1. The function g

restricted to the ball {y : |y| ≤ R} × {z : |z| ≤ M} is Lipschitz continuous, i.e. |g(y, z)− g(y′, z′)| ≤
Mk|y − y′| + 2RMk−1|z − z′| for all |y|, |y′| ≤ R and |z|, |z′| ≤ M . Thus, it can be extendent to a
Lipchitz continuous function g̃ with the same Lipschitz constants on Rl ×Rl×d. In particular, g̃ satisfies
the conditions of Theorem 2.1. Thus, the FBSDE (2.2) with generator g replaced by g̃ admits a unique
solution (X̃, Ỹ , Z̃) ∈ S2(Rm)× S2(Rl)× S∞(Rl×d) with |Z̃| ≤M . Moreover, one has

|Ỹt| ≤ λ5 + E

 T∫
t

Mk|Ỹs|+ 2RMk−1|Z̃s| ds | Ft


so by Gronwall’s inequality and boundedness of Z̃, it follows that

|Ỹt| ≤ (λ5 + 2RMk)eTM
k

= R.

That is, g̃(Ỹt, Z̃t) = g(Ỹt, Z̃t), showing that (X̃, Ỹ , Z̃) solves the FBSDE (2.2) with generator g. �

4.3 Proof of Remark 2.3

By construction, for T sufficiently small, there is a sequence (Xn, Y n, Zn) ∈ S2(Rm) × S2(Rl) ×
S∞(Rl×d) converging in S2(Rm) × S2(Rl) × S2(Rl×d) to the solution (X,Y, Z) of the FBSDE (1.1).
Moreover, for each t ∈ [0, T ] it holds (Xn

t , Y
n
t , Z

n
t ) ∈ D1,2(Rm) × D1,2(Rl) × D1,2(Rl×d) with

|DrX
n
t | ≤ 4λ2 and |DrY

n
t | ≤M for all r ∈ [0, T ]. For t ∈ [0, T ] one has

||Xn
t −Xt||L2 + ||Y n

t − Yt||L2 → 0.

Thus, it follows from [27, Proposition 1.2.3] that (Xt, Yt) ∈ D1,2(Rm)×D1,2(Rl). �

4.4 Proof of Theorem 2.5

First assume that (A6) is satisfied. If T ≤ C, then the result follows from Theorem 2.1.
Assume T > C and let h̃M̄ : R → R be a continuously differentiable function whose derivative is
bounded by 1 and such that h̃′

M̄
(a) = 1 for all −M̄ ≤ a ≤ M̄ and

h̃M̄ (a) =


(M̄ + 1) if a > M̄ + 2

a if |a| ≤ M̄
−(M̄ + 1) if a < −(M̄ + 2).
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An example of such a function is given by

h̃M̄ (a) =

{(
−M̄2 + 2M̄a− a(a− 4)

)
/4 if a ∈ [M̄, M̄ + 2](

M̄2 + 2M̄a+ a(a+ 4)
)
/4 if [−(M̄ + 2),−M̄ ],

see Imkeller and dos Reis [19]. By the assumptions (A3) the function g̃ : [0, T ]×Rm×Rl×Rl×d → Rl
defined by

g̃t(x, y, z) := gt(x, y, hM̄ (z)) (4.6)

with hM̄ (z) := (h̃M̄ (zij))ij being Lipschitz continuous in all variables. Thus, it follows from Delarue
[8, Theorem 2.6] that the equation{

X̃t = x+
∫ t

0 bu(X̃u, Ỹu) du+
∫ t

0 σu dWu

Ỹt = h(X̃T ) +
∫ T
t g̃u(X̃u, Ỹu, Z̃u) du−

∫ T
t Z̃u dWu, t ∈ [0, T ]

(4.7)

admits a unique solution (X̃, Ỹ , Z̃) ∈ S2(Rm)×S∞(Rl)×S∞(Rl×d). Moreover, there exists a Lipschitz
continuous function θ : [0, T ]× Rm → Rl bounded by K5 such that Ỹt = θ(t, X̃t) for all t ∈ [0, T ]. In
fact, for every x, x′ ∈ Rd, t ∈ [0, T ] and i = 1, . . . , l, it follows by Itô’s formula that

|θ(t, X̃x
t )− θ(t, X̃x′

t )|2

= |h(X̃x
T )− h(X̃x′

T )|2 −
T∫
t

2

l∑
i=1

(
θi(u, X̃x

u)− θi(u, X̃x′
u )
)(

Z̃x,iu − Z̃x
′,i

u

)
dWu

+

T∫
t

2
l∑

i=1

(
θi(u, X̃x

u)− θi(u, X̃x′
u )
)(

giu(X̃x
u , Ỹ

x
u , Z̃

x
u)− giu(X̃x′

u , Ỹ
x′
u , Z̃x

′
u )
)
du

≤ |h(X̃x
T )− h(X̃x′

T )|2 −
T∫
t

2
l∑

i=1

(
θi(u, X̃x

u)− θi(u, X̃x′
u )
)(

Z̃x,iu − Z̃x
′,i

u

)
dWu

+

T∫
t

2|θ(u, X̃x
u)− θ(u, X̃x′

u )|
(
k3|X̃x

u − X̃x′
u |+ ρ(M̄

√
dl)|Z̃xu − Z̃x

′
u |
)
du

−
T∫
t

2K4|θ(u, X̃x
u)− θ(u, X̃x′

u )|2 + |Z̃xu − Z̃x
′

u |2du

≤ |h(X̃x
T )− h(X̃x′

T )|2 −
T∫
t

2
l∑

i=1

(
θi(u, X̃x

u)− θi(u, X̃x′
u )
)(

Z̃x,iu − Z̃x
′,i

u

)
dWu

+

T∫
t

k3|X̃x
u − X̃x′

u |2 −
(

2K4 − k3 − ρ2(M̄
√
dl)
)
|θ(u, X̃x

u)− θ(u, X̃x′
u )|2du
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Since by Gronwall’s lemma we have

|X̃x
s − X̃x′

s | ≤ (|X̃x
t − X̃x′

t |+ k2

s∫
t

|Ỹ x
u − Ỹ x′

u | du)ek1T , s ∈ [t, T ],

it holds∣∣∣θ(t, X̃x
t )− θ(t, X̃x′

t )
∣∣∣2

≤ E
[
2e2k1T (k2

5 + k3T )|X̃x
t − X̃x′

t |2

+
[
2e2k1Tk2

2T (k2
5 + k3T ) + k3 + ρ2(M̄

√
dl)−K4

] T∫
t

|θ(u, X̃x
u)− θ(u, X̃x′

u )|2 du | Ft
]

≤ 2e2k1T (k2
5 + k3T )|X̃x

t − X̃x′
t |2.

Thus, ∣∣∣θ(t, X̃x
t )− θ(t, X̃x′

t )
∣∣∣ ≤ K5|X̃x

t − X̃x′
t |.

Let C̄ := C(k1, k2, k3, k4,K5, λ2, l, d) and put N = bT/C̄c, where bac denotes the integer part of a,
and ti := iC̄, i = 0, . . . , N and tN+1 = T . Since t1 ≤ C̄, by Theorem 2.1 the FBSDE{

Xt = x+
∫ t

0 bu(Xu, Yu) du+
∫ t

0 σu dWu

Yt = θ(t1, Xt1) +
∫ t1
t gu(Xu, Yu, Zu) du−

∫ t1
t Zu dWu, t ∈ [0, t1]

admits a unique solution (X1, Y 1, Z1) such that
∣∣Z1

t

∣∣ ≤ M̄ with M̄ = 8λ2K5

√
dl for all t ∈ [0, t1].

Therefore, (X1, Y 1, Z1)1[0,t1] = (X̃, Ỹ , Z̃)1[0,t1]. Similarly, we obtain a family (Xi, Y i, Zi) of solu-
tions of the FBSDEs{

Xt = X̃ti−1 +
∫ t
ti−1

bu(Xu, Yu) du+
∫ t
ti−1

σu dWu

Yt = θ(ti, Xti) +
∫ ti
t gu(Xu, Yu, Zu) du−

∫ ti
t Zu dWu, t ∈ [ti−1, ti]

such that (Xi, Y i, Zi)1[ti−1,ti] = (X̃, Ỹ , Z̃)1[ti−1,ti], i = 1, . . . , N + 1. Define

X :=

N+1∑
i=1

Xi1[ti−1,ti], Y :=

N+1∑
i=1

Y i1[ti−1,ti] and Z :=

N+1∑
i=1

Zi1[ti−1,ti].

Then, (X,Y, Z) ∈ S2(Rm)×S∞(Rl)×S∞(Rl×d) is the unique solution of the FBSDE (1.1) satisfying
|Zt| ≤ M̄ for all t ∈ [0, T ]. In fact, it is clear that (X,Y, Z) ∈ S2(Rm) × S∞(Rl) × S∞(Rl×d) as a
finite sum of elements of the same space. Let t ∈ [0, T ] and i = 1, . . . , N + 1 such that t ∈ [ti−1, ti].
We have

x+

t∫
0

bu(Xu) du+

t∫
0

σu du = x+

i∑
j=1

 tj∧t∫
tj−1

bu(Xj
u) du+

tj∧t∫
tj−1

σu dWu


= Xi

t = Xt
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and

h(XT ) +

T∫
t

gu(Xu, Yu, Zu) du−
T∫
t

Zu dWu

= h(XN+1
T ) +

N+1∑
j=i

 tj∫
tj−1∨t

gu(Xj
u, Y

j
u , Z

j
u) du−

tj∫
tj−1∨t

Zju dWu

 = Y i
t = Yt.

That is, (X,Y, Z) satisfies Equation (1.1). �
In the case where (A7) is satisfied, the proof is similar and we only need to provide the argument for the
Lipschitz continuity of θ. If T ≤ C, then the result follows from Theorem 2.1.
Assume T > C and let h̃M : R→ R be a suitable truncating function and g̃ : [0, T ]×Rm×Rl×Rl×d →
Rl defined by

g̃t(x, y, z) := gt(x, y, hM (z)) (4.8)

with hM (z) := (h̃M (zij))ij . It follows from Delarue [8, Theorem 2.6] that the equation{
X̃t = x+

∫ t
0 bu(X̃u, Ỹu) du+

∫ t
0 σu dWu

Ỹt = h(X̃T ) +
∫ T
t g̃u(X̃u, Ỹu, Z̃u) du−

∫ T
t Z̃u dWu, t ∈ [0, T ]

(4.9)

admits a unique solution (X̃, Ỹ , Z̃) ∈ S2(Rm)×S∞(Rl)×S∞(Rl×d). Moreover, there exists a Lipschitz
continuous function θ : [0, T ] × Rm → Rl bounded by k5 such that Ỹt = θ(t, X̃t) for all t ∈ [0, T ]. In
fact, for every x, x′ ∈ Rd, t ∈ [0, T ] and i = 1, . . . , l applying Itô’s formula we have

|θ(t, X̃x
t )− θ(t, X̃x′

t )|2

= |h(X̃x
T )− h(X̃x′

T )|2 −
T∫
t

2
l∑

i=1

(
θi(u, X̃x

u)− θi(u, X̃x′
u )
)(

Z̃x,iu − Z̃x
′,i

u

)
dWu

+

T∫
t

2
l∑

i=1

(
θi(u, X̃x

u)− θi(u, X̃x′
u )
)(

giu(X̃x
u , Ỹ

x
u , Z̃

x
u)− giu(X̃x′

u , Ỹ
x′
u , Z̃x

′
u )
)
du

≤ |h(X̃x
T )− h(X̃x′

T )|2 −
T∫
t

2
l∑

i=1

(
θi(u, X̃x

u)− θi(u, X̃x′
u )
)(

Z̃x,iu − Z̃x
′,i

u

)
dWu

+

T∫
t

2|θ(u, X̃x
u)− θ(u, X̃x′

u )|
(
k3|X̃x

u − X̃x′
u |+ ρ(M

√
ld)|Z̃xu − Z̃x

′
u |
)
du

−
T∫
t

2K4|θ(u, X̃x
u)− θ(u, X̃x′

u )|2 + |Z̃xu − Z̃x
′

u |2du
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≤ |h(X̃x
T )− h(X̃x′

T )|2 −
T∫
t

2

l∑
i=1

(
θi(u, X̃x

u)− θi(u, X̃x′
u )
)(

Z̃x,iu − Z̃x
′,i

u

)
dWu

+

T∫
t

2k3|θ(u, X̃x
u)− θ(u, X̃x′

u )||X̃x
u − X̃x′

u | −
(
K4 − ρ2(M

√
ld)
)
|θ(u, X̃x

u)− θ(u, X̃x′
u )|2du

Since for s ∈ [t, T ],

|X̃x
s − X̃x′

s |2 ≤ |X̃x
t − X̃x′

t |2 +

s∫
t

−2K1|X̃x
u − X̃x′

u |2 + 2k2|X̃x
u − X̃x′

u ||Ỹ x
u − Ỹ x′

u | du,

it holds∣∣∣θ(t, X̃x
t )− θ(t, X̃x′

t )
∣∣∣2

≤ E
[
k2

5|X̃x
t − X̃x′

t |2 +

s∫
t

−2K1k
2
5|X̃x

u − X̃x′
u |2 + (2k2k

2
5 + 2k3)|X̃x

u − X̃x′
u ||Ỹ x

u − Ỹ x′
u | du

+
(
ρ2(M

√
ld)−K4

) T∫
t

|θ(u, X̃x
u)− θ(u, X̃x′

u )| du | Ft
]

≤ k2
5|X̃x

t − X̃x′
t |2.

Thus, ∣∣∣θ(t, X̃x
t )− θ(t, X̃x′

t )
∣∣∣ ≤ k5|X̃x

t − X̃x′
t |.

Having proved this Lipschitz continuity property, the rest of the proof is exactly the same as in the first
part. �

Remark 4.1. With the techniques presented above, it is hard to consider systems where the drift b depends
on z, since we do not have good enough estimates on the Malliavin derivative of the control process Z.
Similarly, when the diffusion coefficient σ is a function of x, y or z, we loose the estimates on the
Malliavin derivatives of the solutions. These cases (even the in non-Markovian case) can nevertheless be
studied under stronger assumptions, we refer to [23] for details. �
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