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Abstract

We derive two types of representation results for increasing convex functionals in terms of count-
ably additive measures. The first is a max-representation of functionals defined on spaces of real-
valued continuous functions and the second a sup-representation of functionals defined on spaces of
real-valued measurable functions.
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1 Introduction

Let φ : X → R ∪ {+∞} be an increasing convex functional on a linear space of functions f : Ω →
R. More precisely, φ is convex and satisfies φ(f) ≥ φ(g) for f ≥ g, where the second inequality
is understood pointwise. By I(φ) we denote the algebraic interior of the effective domain domφ :=
{f ∈ X : φ(f) < +∞}; that is, I(φ) consists of all f ∈ domφ with the property that for every g ∈ X,
there is an ε > 0 such that f + λg ∈ domφ for all 0 ≤ λ ≤ ε.

If X is a linear space of bounded measurable functions on a measurable space (Ω,F) containing all
indicator functions 1A, A ∈ F , it follows from standard convex duality arguments (see Section 2) that

φ(f) = max
µ∈ba+(F)

(〈f, µ〉 − φ∗X(µ)) for all f ∈ I(φ), (1.1)

where ba+(F) is the set of all finitely additive measure µ on F satisfying µ(Ω) <∞, 〈f, µ〉 denotes the
integral

∫
fdµ, and φ∗X is the convex conjugate of φ, given by

φ∗X(µ) := sup
f∈X

(〈f, µ〉 − φ(f)) . (1.2)
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In applications, a representation like (1.1) is often more useful if it is in terms of countably instead
of finitely additive measures. This paper provides such representations under different assumptions.

For a non-empty set Ω, we call a linear subspace X of RΩ a Stone vector lattice if for all f, g ∈ X,
the point-wise minima f ∧ g and f ∧ 1 also belong to X. By σ(X) we denote the smallest σ-algebra
on Ω making all functions f ∈ X measurable with respect to the Borel σ-algebra on R and by ca+(X)
all (countably additive) measures on σ(X) satisfying 〈f, µ〉 <∞ for every f ∈ X+ := {g ∈ X : g ≥ 0}.
φ∗X : ca+(X) → R ∪ {+∞} is defined as in (1.2). If a sequence (fn) in X converges pointwise from
above to f ∈ X, we write fn ↓ f . Analogously, fn ↑ f means pointwise convergence from below.

The following proposition is a non-linear extension of the Daniell–Stone theorem (see e.g. Theorem
4.5.2 in [7]) and provides context to our main results, Theorems 1.3 and 1.7 below. All proofs are given
in Sections 2 and 3.

Proposition 1.1 Let φ : X → R ∪ {+∞} be an increasing convex functional on a Stone vector lattice
X over a non-empty set Ω. Then the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) hold among
the conditions

(i) There exists an f ∈ I(φ) such that φ(fn) ↓ φ(f) for every sequence (fn) in X satisfying fn ↓ f

(ii) φ(fn) ↓ φ(f) for each f ∈ I(φ) and every sequence (fn) in X satisfying fn ↓ f

(iii) For each f ∈ I(φ) and every sequence (fn) in X+ satisfying fn ↓ 0 there exists an ε > 0 such
that φ(f + εfn) ↓ φ(f)

(iv) φ(f) = maxµ∈ca+(X)(〈f, µ〉 − φ∗X(µ)) for all f ∈ I(φ)

(v) φ(f) = supµ∈ca+(X)(〈f, µ〉 − φ∗X(µ)) for all f ∈ I(φ)

(vi) φ(fn) ↑ φ(f) for each f ∈ I(φ) and every sequence (fn) in X satisfying fn ↑ f .

We are interested in representations of the form (iv) and (v). If φ is real-valued and linear, (i) is
Daniell’s condition [6] and equivalent to each of (ii), (iii) and (vi). However, for an increasing convex
φ, (i)–(iii) do not necessarily follow from (vi). Also, in general (iii) is weaker than (ii), and there
exist examples which do not satisfy any of the conditions (i)–(vi). These points are illustrated in the
following

Example 1.2 Consider the Stone vector lattice l∞ of all bounded functions f : N→ R, where we use
the convention N = {1, 2, ...}. Denote by ca+

1 (N) the set of all probability measures on N and by ba+
1 (N)

the set of all finitely additive probability measures on N, that is, all finitely additive measures µ on N
satisfying µ(N) = 1.

1. s(f) := supm f(m) defines an increasing convex functional s : l∞ → R which clearly fulfills (vi).
It can easily be checked that the convex conjugate of s is s∗l∞(µ) = 0 if µ belongs to ba+

1 (N) and
s∗l∞(µ) =∞ for all µ ∈ ba+(N) \ ba+

1 (N). One obviously has

s(f) = sup
µ∈ca+1 (N)

〈f, µ〉 , (1.3)
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and it follows from (1.1) that
s(f) = max

µ∈ba+1 (N)
〈f, µ〉 . (1.4)

(1.3) is of the form (v). Moreover, for all f ∈ l∞ attaining their supremum, the supremum in (1.3) is
attained by a Dirac measure. But if f ∈ l∞ does not attain its supremum, then s(f) cannot be written
in the form (iv). So s satisfies (v)–(vi) but not (i)–(iv).

2.
p(f) = sup

µ∈ca+(N)

〈f, µ〉 (1.5)

defines an increasing convex functional p : l∞ → R ∪ {+∞} mapping f to 0 or +∞ depending on
whether s(f) ≤ 0 or s(f) > 0. So f belongs to I(p) if and only if s(f) < 0, in which case the supremum
in (1.5) is attained. It is easy to see that p fulfills (iii) but not (ii). So by Proposition 1.1, it satisfies
(iii)–(vi) but violates (i)–(ii).

3. Now pick an increasing f ∈ l∞ that does not attain its supremum, and choose a µ ∈ ba+
1 (N) which

maximizes (1.4). Then one has for all n,

s(f) =
〈
f1[1,n], µ

〉
+
〈
f1(n,∞), µ

〉
≤ f(n)µ[1, n] + s(f)(1− µ[1, n]).

It follows that µ[1, n] = 0 for all n. So the positive linear functional l : l∞ → R, given by l(f) := 〈f, µ〉,
satisfies l(1[1,n]) = 0 < l(1) = 1, showing that it violates condition (vi), and therefore also (i)–(v).

In the following we introduce four conditions, called (A), (B), (C) and (D), for an increasing convex
functional φ : X → R ∪ {+∞} on a Stone vector lattice X of functions f : Ω → R on a topological
space Ω. If X consists of continuous functions, (A) and (B) both imply a max-representation like (iv).
From each of (C) and (D) we derive a sup-representation similar to (v) in the case where X is the set
of all bounded measurable functions on a Hausdorff space Ω equipped with its Borel σ-algebra.

(A) For all f ∈ I(φ) and every sequence (fn) in X+ satisfying fn ↓ 0, there exists an ε > 0 such that
for each δ > 0, there are m ∈ N, g ∈ RΩ

+ and an increasing convex function φ̂ : Y → R on a
convex subset Y ⊆ RΩ

+ containing {0, fmg, (ε− g)+, εfn : n ≥ m} so that

(i) {g < ε} is relatively compact

(ii) φ̂(fmg) ≤ δ and

(iii) φ̂(εfn) ≥ φ(f + εfn)− φ(f) for all n ≥ m.

(B) For all f ∈ I(φ) and every sequence (fn) in X+ satisfying fn ↓ 0, there exist functions g, g1, g2, . . .
in RΩ

+ and numbers m,m1,m2, . . . in N together with an increasing convex function φ̂ : Y → R
on a convex subset Y ⊆ RΩ

+ containing {0, fn/m, g, gn : n ≥ m} so that

(i) {fm > g/n} is relatively compact and contained in {mngn ≥ 1} for all n ≥ m
(ii) φ̂(0) = 0

(iii) φ̂(fn/m) ≥ φ(f + fn/m)− φ(f) for all n ≥ m.
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Theorem 1.3 Let X be a Stone vector lattice X of continuous functions f : Ω → R on a topological
space Ω and φ : X → R ∪ {+∞} an increasing convex functional satisfying at least one the conditions
(A) or (B). Then

φ(f) = max
µ∈ca+(X)

(〈f, µ〉 − φ∗X(µ)) for all f ∈ I(φ).

As a special case of Theorem 1.3, one obtains the following variant of the Daniell–Stone theorem:

Corollary 1.4 If X is a Stone vector lattice of continuous functions f : Ω→ R on a topological space
Ω, then every positive linear functional φ : X → R satisfying (A) or (B) is of the form φ(f) = 〈f, µ〉,
f ∈ X, for a measure µ ∈ ca+(X).

In various situations, a measure on a σ-algebra F of subsets of a topological space Ω can be shown
to possess regularity properties. Let us call a finite measure µ on F closed regular if

µ(A) = sup {µ(B) : B ∈ F , B is closed and B ⊆ A} for all A ∈ F

and regular if

µ(A) = sup {µ(B) : B ∈ F , B is closed, compact and B ⊆ A} for all A ∈ F .

If X is a Stone vector lattice of real-valued functions containing the constant functions, then every
measure µ ∈ ca+(X) is finite. Moreover, standard arguments (see Section 2 for details) yield the
following:

Proposition 1.5 Let X be a family of continuous functions f : Ω→ R on a topological space Ω. Then
every finite measure µ on σ(X) is closed regular. Furthermore, if µ is a finite measure on σ(X) and
there exists a sequence (Kn) of compact sets in σ(X) such that µ(Kn)→ µ(Ω), then µ is regular.

Examples 1.6
1. (Tightness conditions)
Let φ : Cb → R ∪ {+∞} be an increasing convex functional on the set Cb of all bounded continuous
functions f : Ω → R on a topological space Ω. Assume V is a linear space containing all functions of
the form f1K and f1Kc for f ∈ Cb and K a compact subset of Ω. If φ can be extended to an increasing
convex ψ : V → R ∪ {+∞} with the property that for every f ∈ I(φ), there exists a δ > 0 and a
sequence (Kn) of compact sets such that

ψ(f + δ1Kc
n
)→ ψ(f), (1.6)

then for every f ∈ I(φ) and each sequence (fn) ∈ C+
b satisfying fn ↓ 0, there exists an ε > 0 such that

φ(f + ε) < +∞ and

ψ(f + εf11Kc
n
)− ψ(f) ≤ ψ(f + ε||f1||∞1Kc

n
)− ψ(f)→ 0 as n→∞.

It follows that condition (A) holds with φ̂(h) = φ(f + h) − φ(f), and one obtains form Theorem 1.3
that

φ(f) = max
µ∈ca+(Cb)

〈f, µ〉 − φ∗Cb
(µ)) for all f ∈ I(φ). (1.7)
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If Ω is Hausdorff, all compact sets K ⊆ Ω are closed and therefore, belong to the Borel σ-algebra
F . So in this case, if φ : Bb → R is an increasing convex functional defined on the space Bb of all
bounded measurable functions f : Ω→ R with the property that for every constant M ≥ 1, there exists
a sequence (Kn) of compact sets such that

φ(M1Kc
n
)→ φ(0), (1.8)

one deduces as in the proof of (i) ⇒ (ii) of Proposition 1.1 that φ satisfies condition (1.6), and as
a consequence, is representable as (1.7). If in addition, φ has the translation property: φ(f + m) =
φ(f) + m for all f ∈ Bb and m ∈ R, then (1.8) holds if and only if for every M ≥ 1, there exists a
sequence of compacts (Kn) such that

φ(−M1Kn)→ φ(−M).

This is slightly weaker than the tightness condition used in Proposition 4.28 of [9] to derive a max-
representation for convex risk measures. Note that if φ has the translation property, then φ∗Cb

(µ) = +∞
for µ ∈ ca+(Cb) \ ca+

1 (Cb). Consequently, (1.7) reduces to a maximum over probability measures:

φ(f) = max
µ∈ca+1 (Cb)

(〈f, µ〉 − φ∗(µ)), f ∈ Cb. (1.9)

In the special case where Ω is a metric space, Cb generates the Borel σ-algebra F , and for every
compact set Kn, there exists a sequence (hm,n) of [0, 1]-valued functions in Cb such that hm,n ↑ 1Kc

n
.

Therefore, if φ : Cb → R∪{+∞} is an increasing convex functional with an increasing convex extension
ψ satisfying (1.6), then for any f ∈ I(φ) and µ ∈ ca+(F) maximizing (1.7), there exists a δ > 0 and a
sequence (Kn) of compact sets such that

δ
〈
1Kc

n
, µ
〉

= lim
m
δ 〈hm,n, µ〉 ≤ lim

m
φ(f + δhm,n)− φ(f) ≤ ψ(f + δ1Kc

n
)− ψ(f)) ↓ 0.

So it follows from Proposition 1.5 that µ is regular, and as a result, the representations (1.7) and
(1.9) can be written as maxima over regular finite measures or regular probability measures on F ,
respectively.

2. (Adapted spaces and cones)
Let ψ : V → R ∪ {+∞} be an increasing convex functional, where V is an adapted space [5] or an
adapted cone [10] of continuous functions f : Ω → R on a topological space Ω. That is, V is either a
linear space satisfying

(i) V = V + − V + (where V + = {f ∈ V : f ≥ 0})

(ii) For every ω ∈ Ω there exists an f ∈ V + such that f(ω) > 0

(iii) For every f ∈ V +, there exists a g ∈ V + such that for each ε > 0 the set {f > εg} is relatively
compact,

or V is a convex cone with the properties

(i) V = V + ∪ {0}
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(ii) For every ω ∈ Ω there exists an f ∈ V such that f(ω) > 0

(iii) For every f ∈ V , there exists a g ∈ V such that for each ε > 0 the set {f > εg} is relatively
compact.

In both cases,
X := {f : Ω→ R continuous : |f | ≤ g for some g ∈ V }

is a Stone vector lattice containing V , and

φ(f) := inf {ψ(g) : f ≤ g, g ∈ V }

defines an increasing convex extension φ : X → R ∪ {+∞} of ψ. Furthermore, for f ∈ I(φ) and a
sequence (fn) in X+ satisfying fn ↓ 0, there is an ε > 0 such that φ(f + εf1) < +∞. It follows from
(iii) that there exists a g ∈ V + such that φ(f + g) < +∞ and the set

{
f1 > g/n

}
is relatively compact

for all n ∈ N. By compactness, one obtains from (ii) that there exist functions gn ∈ V + and numbers
mn ∈ N, n ∈ N, such that φ(f + gn) < +∞ and mngn ≥ 1 on

{
f1 > g/n

}
. This shows that condition

(B) holds with φ̂(h) = φ(f + h)− φ(f). So by Theorem 1.3,

φ(f) = max
µ∈ca+(X)

(〈f, µ〉 − φ∗X(µ)), for all f ∈ I(φ). (1.10)

Moreover, it follows from the definition of φ that I(ψ) ⊆ I(φ) and ψ∗V (µ) = φ∗X(µ) for µ ∈ ca+(X).
Therefore

ψ(f) = max
µ∈ca+(X)

(〈f, µ〉 − ψ∗V (µ)), for all f ∈ I(ψ). (1.11)

(1.10) and (1.11) are non-linear versions of the linear representation results, Proposition 2 in [5] and
Proposition 11 of [10]. But in contrast to [5, 10], here X does not have to be locally compact. As a
special case of (1.11), one also recovers e.g. the max-representation of sublinear distributions given in
Lemma 3.4 of [11].

The next result gives a sup-representation for increasing convex functionals φ on the space Bb of
all bounded measurable functions f : Ω → R on a Hausdorff space Ω with Borel σ-algebra F . The
following two conditions are variants of (vi) in Proposition 1.1. We call a sequence (Kn) of subsets of
Ω or a sequence (fn) of real-valued functions on Ω increasing if Kn ⊆ Kn+1 or fn ≤ fn+1 for all n,
respectively.

(C) φ is real-valued and there exists an increasing sequence (Kn) of compact subsets of Ω such that
φ(fn) ↑ φ(f) for every increasing sequence (fn) in Bb and f ∈ Bb such that |f − fn|1Km = 0 for
all n ≥ m.

(D) There exists an increasing sequence (Kn) of compact subsets of Ω such that φ(fn) ↑ φ(f) for
every increasing sequence (fn) in Bb and f ∈ Bb such that |f − fn|1Km ≤ 1/m for all n ≥ m.

By Cb we denote the set of all bounded continuous functions f : Ω → R and by Ub all bounded
upper semicontinuous functions f : Ω→ R. We define the lower regularization of φ by

φr(f) := sup {φ(g) : g ∈ Ub, g ≤ f} ,
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and say φ is lower regular if φ = φr. ca
+
r (F) is the collection of all regular finite measures on F . For

φ∗Cb
(µ) := sup

f∈Cb

(〈f, µ〉 − φ(f)) and φ∗Ub
(µ) := sup

f∈Ub

(〈f, µ〉 − φ(f)) ,

one obviously has φ∗Cb
(µ) ≤ φ∗Ub

(µ), µ ∈ ca+
r (F).

Theorem 1.7 Let Ω be a Hausdorff space with Borel σ-algebra F and φ : Bb → R∪{+∞} an increasing
convex functional. If φ satisfies (C) or (D), then

φ(f) = sup
µ∈ca+r (F)

(
〈f, µ〉 − φ∗Cb

(µ)
)

for all f ∈ Cb, (1.12)

φ(f) ≤ sup
µ∈ca+r (F)

(
〈f, µ〉 − φ∗Cb

(µ)
)

for all f ∈ Ub, (1.13)

φr(f) ≤ sup
µ∈ca+r (F)

(
〈f, µ〉 − φ∗Cb

(µ)
)

for all f ∈ Bb, (1.14)

and both inequalities become equalities if φ∗Cb
(µ) = φ∗Ub

(µ) for all µ ∈ ca+
r (F).

In particular, if φ is lower regular and φ∗Cb
(µ) = φ∗Ub

(µ) for all µ ∈ ca+
r (F), then

φ(f) = sup
µ∈ca+r (F)

(
〈f, µ〉 − φ∗Cb

(µ)
)

for all f ∈ Bb. (1.15)

For positive linear functionals, Theorem 1.7 yields the following:

Corollary 1.8 Let Ω be a Hausdorff space with Borel σ-algebra F and φ : Bb → R a positive linear
functional satisfying (C). Then there exists a µ ∈ ca+

r (F) such that

φ(f) = 〈f, µ〉 for all f ∈ Cb. (1.16)

If Ω is a metric space with Borel σ-algebra F , one also has

φ(f) ≤ 〈f, µ〉 for all f ∈ Ub and φr(f) ≤ 〈f, µ〉 for all f ∈ Bb, (1.17)

and the inequalities are equalities if φ∗Cb
(ν) = φ∗Ub

(ν) for all ν ∈ ca+
r (F).

In particular, if Ω is a metric space with Borel σ-algebra F , φ is lower regular, and φ∗Cb
(ν) = φ∗Ub

(ν)
for all ν ∈ ca+

r (F), then
φ(f) = 〈f, µ〉 for all f ∈ Bb. (1.18)

Remarks 1.9
1. To have a representation of the form (1.15) or (1.18), it is necessary that φ be lower regular. Indeed,
for every f ∈ Bb and δ > 0, there exists a measurable partition (Am) of Ω and numbers a1 < · · · < aM
such that the step function g =

∑M
m=1 am1Am satisfies g ≤ f ≤ g+δ. Furthermore, for each µ ∈ ca+

r (F),
one can choose closed sets Fm ⊆ Am such that 〈g, µ〉 ≤ 〈h, µ〉+δ for the upper semicontinuous function
h = a11Ω\

⋃M
m=2 Fm

+
∑M

m=2 am1Fm ≤ g. It follows that 〈f, µ〉 ≤ 〈h, µ〉 + δ(〈1, µ〉 + 1). So any linear

functional of the form (1.18) is lower regular, and as a supremum of lower regular functionals, (1.15) is
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again lower regular.

2. If Ω is a Hausdorff space with Borel σ-algebra F , it follows from 1. that for all µ ∈ ca+
r (F) and

f ∈ Bb, there exists a sequence (fn) in Ub such that fn ≤ f and 〈fn, µ〉 ↑ 〈f, µ〉. As a result, one
obtains for every increasing functional φ : Bb → R ∪ {+∞} and µ ∈ ca+

r (F),

φ∗Ub
(µ) = sup

f∈Ub

(〈f, µ〉 − φ(f)) = φ∗Bb
(µ) = sup

f∈Bb

(〈f, µ〉 − φ(f)) .

Similarly, if µ ∈ ca+
r (F) has the property that for all f ∈ Ub, there exists a sequence (fn) in Cb such that

fn ≤ f and 〈fn, µ〉 ↑ 〈f, µ〉, then φ∗Cb
(µ) = φ∗Ub

(µ) for every increasing functional φ : Bb → R ∪ {+∞}.
This provides a sufficient condition for the inequalities in (1.13), (1.14) and (1.17) to be equalities.

The remainder of the paper is organized as follows: In Section 2 we prove representation (1.1),
Proposition 1.1, Theorem 1.3, Corollary 1.4 and Proposition 1.5. In Section 3 we give the proofs of
Theorem 1.7 and Corollary 1.8.

2 Derivation of max-representations

Proof of the representation (1.1)
It is immediate from the definition of φ∗X that

φ(f) ≥ sup
µ∈ba+(F)

(〈f, µ〉 − φ∗X(µ)) for every f ∈ X. (2.1)

On the other hand, for f ∈ I(φ), the directional derivative

φ′(f ; g) := lim
ε↓0

φ(f + εg)− φ(f)

ε

is a real-valued increasing sublinear function of g ∈ X. So it follows from the Hahn–Banach extension
theorem that there exists a positive linear functional ψ : X → R satisfying

ψ(g) ≤ φ′(f ; g) ≤ φ(f + g)− φ(f)

for all g ∈ X. Since ψ(λ1) = λψ(1), λ ∈ R, one obtains by monotonicity that ψ is continuous with
respect to the sup-norm on X. Therefore, it can be represented as ψ(g) = 〈g, ν〉 for the finitely additive
measure ν ∈ ba+(F) given by ν(A) := ψ(1A), A ∈ F . It follows that φ(f) + φ∗X(ν) = 〈f, ν〉, which
together with (2.1), implies φ(f) = maxµ∈ba+(F) (〈f, µ〉 − φ∗X(µ)). �

Proof of Proposition 1.1
To prove (i) ⇒ (ii), let f, g ∈ I(φ) such that f fulfills (i). Then for all λ ∈ (0, 1) and every sequence
(fn) in X+ satisfying fn ↓ 0, one has

φ(g + fn) ≤ λφ
(
f +

1

λ
fn
)

+ (1− λ)φ

(
g − λf
1− λ

)
= λφ

(
f +

1

λ
fn
)

+ (1− λ)φ

(
g +

λ

1− λ
(g − f)

)
.
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Since f satisfies (i),

φ

(
f +

1

λ
fn
)
↓ φ(f) for fixed λ ∈ (0, 1) and n→∞.

Moreover, there exists a δ > 0 such that x 7→ φ(g + x(g − f)) is a real-valued convex function on the
interval (−δ, δ). As a consequence, it is continuous at 0, and one obtains

λφ(f) + (1− λ)φ

(
g +

λ

1− λ
(g − f)

)
→ φ(g) for λ ↓ 0.

This shows that φ(g + fn) ↓ φ(g).
(ii) ⇒ (iii) is obvious. To prove (iii) ⇒ (iv), note first that it follows from the definition of φ∗X that

φ(f) ≥ sup
µ∈ca+(X)

(〈f, µ〉 − φ∗X(µ)) for all f ∈ X.

Moreover, for f ∈ I(φ), one deduces as in the proof of the representation (1.1) that there exists a
positive linear functional ψ : X → R satisfying

ψ(g) ≤ φ′(f ; g) ≤ φ(f + g)− φ(f), g ∈ X.

If (iii) holds, then for every sequence (fn) in X+ satisfying fn ↓ 0, there exists an ε > 0 such that

εψ(fn) ≤ φ(f + εfn)− φ(f) ↓ 0.

So one obtains from the Daniell–Stone theorem a ν ∈ ca+(X) such that ψ(g) = 〈g, ν〉 for all g ∈ X. It
follows that φ(f) + φ∗X(ν) = 〈f, ν〉, which implies φ(f) = maxca+(X) (〈f, µ〉 − φ∗X(µ)).

(iv)⇒ (v) is clear, and (v)⇒ (vi) follows since by the monotone convergence theorem, the mapping
f 7→ 〈f, µ〉 − φ∗X(µ) satisfies (v) for every µ ∈ ca+(X). �

Proof of Theorem 1.3
Choose a function f ∈ I(φ) and a sequence (fn) in X+ satisfying fn ↓ 0. If we can show that
there exists an ε > 0 such that φ(f + εfn) ↓ φ(f), the theorem follows from Proposition 1.1. Let
us first assume φ satisfies (A). Then there exists a λ > 0 such that for every δ > 0, there are m ∈
N, g ∈ RΩ

+ and an increasing convex function φ̂ : Y → R on a convex subset Y ⊆ RΩ
+ containing

{0, fmg, (λ− g)+, λfn : n ≥ m} such that {g < λ} is relatively compact, φ̂(fmg) ≤ δ, and φ̂(λfn) ≥
φ(f + λfn) − φ(f) for all n ≥ m. Since x 7→ φ̂(x(λ − g)+) is a real-valued increasing convex function
on the interval [0, 1], it must be continuous at 0. In particular, there exists an x ∈ (0, 1] such that

φ̂(x(λ− g)+) ≤ φ̂(0) + δ ≤ φ̂(fmg) + δ ≤ 2δ.

For n ≥ m, one has λfn ≤ fmg + fn(λ − g)+, and by Dini’s lemma, fn converges to 0 uniformly on
the closure of {g < λ}. So there exists an n ≥ m such that

fn(λ− g)+ ≤ x(λ− g)+,
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and one obtains

φ

(
f +

λ

2
fn
)
− φ(f) ≤ φ̂

(
λ

2
fn
)
≤ φ̂

(
fmg + x(λ− g)+

2

)
≤ φ̂(fmg) + φ̂(x(λ− g)+)

2
≤ 2δ.

Since δ > 0 was arbitrary, this shows that φ(f + λfn/2) ↓ φ(f).
If instead of (A), f satisfies condition (B), there exist functions g, g1, g2, . . . in RΩ

+ and numbers

m,m1,m2, ... in N together with an increasing convex function φ̂ : Y → R on a convex subset Y ⊆
RΩ

+ containing {0, fn/m, g, gn : n ≥ m} such that {fm > g/n} is relatively compact and contained in

{mngn ≥ 1} for all n ≥ m, φ̂(0) = 0, and φ̂(fn/m) ≤ φ(f+fn/m)−φ(f) for all n ≥ m. Since x 7→ φ̂(xg)
is a real-valued increasing convex function on the interval [0, 1], it is continuous at 0. In particular, for
given δ > 0, there exists an integer k ≥ 2m such that φ̂(2g/km) ≤ δ. Similarly, there exists an integer
l ≥ 2mk such that φ̂(2mkgk/lm) ≤ δ. By Dini’s Lemma, fn converges uniformly to 0 on the closure of
the set {fm > g/k}. So there exists an n ≥ m such that fn ≤ 1/l on {fm > g/k}. Since {fm > g/k}
is contained in

{
mkgk ≥ 1

}
and fn ≤ fm ≤ g/k on {fm ≤ g/k}, one has (fn − g/k)+ ≤ mkgk/l.

Therefore,
fn ≤ g/k + (fn − g/k)+ ≤ g/k +mkgk/l,

and

φ

(
f +

fn

m

)
− φ(f) ≤ φ̂

(
fn

m

)
≤ φ̂

(
g

km
+
mkgk

lm

)
≤ φ̂(2g/km) + φ̂(2mkgk/lm)

2
≤ δ.

This shows that φ(f + fn/m) ↓ φ(f), and the proof is complete. �

Proof of Corollary 1.4
It follows from Theorem 1.3 that there exists a µ ∈ ca+(X) such that φ∗X(µ) < +∞. If φ is linear, this
implies that 〈f, µ〉 = φ(f) for all f ∈ X. �

Proof of Proposition 1.5
Fix a finite measure µ on σ(X) and call a set A ∈ σ(X) closed regular if

µ(A) = sup {µ(B) : B ∈ σ(X), B is closed and B ⊆ A} .

The collection of sets
G := {A ∈ σ(X) : A and Ω \A are closed regular}

forms a sub-σ-algebra of σ(X). For a closed set F ⊆ R and f ∈ X, f−1(F ) is a closed subset of Ω.
Moreover, R\F can be written as a countable union

⋃
n Fn of closed sets Fn ⊆ R. Therefore, Ω\f−1(F )

equals
⋃
n f
−1(Fn), which can be approximated with the closed sets

⋃N
n=1 f

−1(Fn). This shows that
f−1(F ) belongs to G. Since the sets f−1(F ) generate σ(X), one obtains G = σ(X), which means that
µ is closed regular.

If there exists a sequence (Kn) of compact sets in σ(X) such that µ(Kn)→ µ(Ω), then µ(A∩Kn)→
µ(A) for every A ∈ F . Moreover, for every n there exists a closed set Bn ⊆ A ∩Kn in σ(X) such that
µ(Bn) ≥ µ(A ∩Kn)− 1/n. Since every closed subset of a compact set is compact, this shows that µ is
regular. �
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3 Derivation of sup-representations

For a sequence of compact Hausdorff spaces (Hn), consider the sequence spaces

U :=

{
u ∈

∏
n

C(Hn) : ||u|| <∞

}
and V :=

{
ν ∈

∏
n

car(Hn) : ||ν|| <∞

}
,

where C(Hn) denotes the set of all real-valued continuous functions on Hn, car(Hn) = ca+
r (Hn) −

ca+
r (Hn), where ca+

r (Hn) are all finite regular measures on the Borel σ-algebra of Hn, and the norms
are defined as follows:

||u|| := sup
n
||un||∞ for the sup-norm ||.||∞ and

||ν|| :=
∑
n

||νn||tv <∞ for the total variation norm ||.||tv.

By the Riesz representation theorem (see e.g. Theorem IV.6.3 in [8]), car(Hn) is the topological dual
of C(Hn). Therefore, (U, V ) is a dual pair under the bilinear form 〈u, ν〉 :=

∑
n 〈un, νn〉. By V + we

denote the set of all ν ∈ V belonging to
∏
n ca

+
r (Hn). For a function ψ : U → R ∪ {+∞}, we consider

the following two conditions:

(C’) ψ is real-valued and limn ψ(un) = ψ(u) for every increasing sequence (un) in U and u ∈ U such
that unm = um for all n ≥ m.

(D’) limn ψ(un) = ψ(u) for every increasing sequence (un) in U and u ∈ U such that limn ||unm −
um||∞ = 0 for every m.

Note that U contains l∞ as a subspace, and on l∞ the following holds:

Lemma 3.1 Every increasing convex functional ψ : l∞ → R∪{+∞} satisfying (C’) or (D’) is σ(l∞, l1)-
lower semicontinuous.

Proof. To prove the lemma one has to show that all lower level sets of ψ are σ(l∞, l1)-closed. By the
Krein–Šmulian theorem (see e.g. Theorem V.5.7 in [8]), it is enough to show that the sets

Da,b = {x ∈ l∞ : ψ(x) ≤ a, ||x||∞ ≤ b} , a, b ∈ R,

are σ(l∞, l1)-closed, which they are if and only if they are σ(l∞, l1(η))-closed, where l1(η) is the l1-space
with respect to the probability measure η on N given by η(n) = 2−n, and the pairing on (l∞, l1(η))
is 〈x, y〉 =

∑
n xnyn2−n. The embedding of l∞ in l1(η) is continuous with respect to σ(l∞, l1(η)) and

σ(l1(η), l∞). So it is sufficient to show that the sets Da,b are σ(l1(η), l∞)-closed. But by convexity, this
follows if it can be shown that they are norm-closed in l1(η). To do that, consider a sequence (xn) in
Da,b converging to x in the l1(η)-norm. Then ||x||∞ ≤ b, and ynm := infj≥n x

j
m defines a sequence (yn)

in Da,b which increases component-wise to x.

11



Under (C’) ψ is real-valued, and since every real-valued convex function on Rm is continuous, one
has

ψ(x1, . . . , xm, y
1
m+1, y

1
m+2, . . . ) = lim

n
ψ(yn1 , . . . , y

n
m, y

1
m+1, y

1
m+2, . . . ) ≤ lim

n
ψ(yn) ≤ a

for all m ≥ 1. Therefore, it follows from (C’) that x belongs to Da,b. If ψ satisfies (D’), one obtains
ψ(x) = limn ψ(yn) ≤ a. So x belongs to Da,b. �

We also need the following

Lemma 3.2 For every y ∈ l1, the set Ay = {ν ∈ V : ||νn||tv ≤ |yn|} is σ(V,U)-compact.

Proof.

Ũ :=

{
u ∈

∏
n

C(Hn) :
∑
n

||un||∞ <∞

}
is a Banach space with topological dual

Ṽ :=

{
ν ∈

∏
n

car(Hn) : sup
n
||νn||tv <∞

}
.

Therefore, one obtains from the Banach–Alaoglu theorem that the norm ball {ν ∈ Ṽ : supn ||νn||tv ≤ 1}
is σ(Ṽ , Ũ)-compact. But for y ∈ l1, the mapping (νn) 7→ (νnyn) continuously embeds Ṽ in V with
respect to σ(Ṽ , Ũ) and σ(V,U). It follows that Ay is σ(V,U)-compact. �

Now we are ready to prove a representation result for increasing convex functionals on U .

Proposition 3.3 Every increasing convex functional ψ : U → R∪ {+∞} satisfying (C’) or (D’) has a
representation of the form

ψ(u) = sup
ν∈V +

(〈u, ν〉 − ψ∗(ν)) for ψ∗(ν) := sup
u∈U

(〈u, ν〉 − ψ(u)) .

Proof. In the case ψ ≡ +∞, the proposition is clear. So let us assume that ψ(u) < +∞ for at least one
u ∈ U . Then it is enough to show that

ψ(u) = sup
ν∈V

(〈u, ν〉 − ψ∗(ν)) , u ∈ U, (3.1)

since it follows from the monotonicity of ψ that ψ∗(ν) = +∞ for all ν ∈ V \ V +. But (3.1) is a
consequence of the Fenchel–Moreau theorem (see e.g. Theorem 3.2.2 in [13]) if we can show that ψ is
σ(U, V )-lower semicontinuous, or equivalently, all lower level sets Da = {u ∈ U : ψ(u) ≤ a} are σ(U, V )-
closed. Moreover, since every Da is convex, it follows from the Hahn–Banach separation theorem
together with the Mackey–Arens theorem (see e.g. Theorem IV.3.2 in [12]) that it is σ(U, V )-closed if
we can show that it is closed in the Mackey topology τ(U, V ). So let (uα) be a net in Da such that
uα → û ∈ U in τ(U, V ). We know from Lemma 3.2 that for every y ∈ l1, the set

Ay := {ν ∈ V : ||νn||tv ≤ |yn|}
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is σ(V,U)-compact. Therefore, one has∑
n

||uαn − ûn||∞|yn| ≤ sup
ν∈Ay

|〈uα − û, ν〉| → 0. (3.2)

If ψ satisfies (C’), we define the projections πn : U → l∞ as follows: for m > n,

πn(u)m := um := min
z∈Hm

um(z),

and for m = 1, . . . , n,

πn(u)1 := min
{
x ∈ R : x ≥ u1, ψ(x, u2, . . . , un, un+1, . . . ) = ψ(u1, u2, . . . , un, un+1, . . . )

}
πn(u)2 := min{x ∈ R : x ≥ u2, ψ(πn(u)1, x, u3, . . . , un, un+1, . . . ) = ψ(u1, . . . , un, un+1, . . . )}

. . .

πn(u)n := min{x ∈ R : x ≥ un, ψ(πn(u)1, . . . , πn(u)n−1, x, un+1, . . . ) = ψ(u1, . . . , un, un+1, . . . )}.

Since x 7→ ψ(x, u2, . . . , un, un+1, . . . ) is a convex function from R to R, it is continuous. Therefore, the
minimum in the definition of πn(u)1 is attained, and

ψ(πn(u)1, u2, . . . , un, un+1, . . . ) = ψ(u1, u2, . . . , un, un+1, . . . ).

Analogously, the other minima are attained, and

ψ ◦ πn(u) = ψ(u1, . . . , un, un+1, . . . ) for all u ∈ U.

Since ψ is increasing, πn(uα) is in Da for all α, and by (3.2), one has for each y ∈ l1,

|〈πn(uα)− πn(û), y〉| ≤
∑
m

||uαm − ûm||∞|ym| → 0,

showing that πn(uα) → πn(û) in σ(l∞, l1). From Lemma 3.1 we know that ψ restricted to l∞ is
σ(l∞, l1)-lower semicontinuous. Therefore, πn(û) is in Da for all n, and one obtains from (C’) that

ψ ◦ πn(û) = ψ(û1, . . . , ûn, ûn+1, . . . ) ↑ ψ(û) for n→∞.

This shows that û belongs to Da, which completes the proof in the case where ψ satisfies (C’).
If ψ fulfills (D’), we fix n ≥ 1 and note that due to (3.2), there exists an α0 such that

uαm ≥ ûm −
1

n
for all α ≥ α0 and m = 1, . . . , n.

It follows that (
û1 −

1

n
, . . . , ûn −

1

n
, uαn+1 −

1

n
, . . .

)
is in Da for all α ≥ α0.

As above, one deduces from (3.2) that(
uαn+1 −

1

n
, uαn+2 −

1

n
, . . .

)
→
(
ûn+1 −

1

n
, ûn+2 −

1

n
, . . .

)
in σ(l∞, l1).
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So, since

x 7→ ψ

(
û1 −

1

n
, . . . , ûn −

1

n
, x1, x2, . . .

)
defines an increasing convex mapping on l∞ with property (D’), one obtains from Lemma 3.1 that(

û1 −
1

n
, . . . , ûn −

1

n
, ûn+1 −

1

n
, ûn+2 −

1

n
, . . .

)
belongs to Da for all n ≥ 1.

Now it follows from (D’) that û is in Da, and the proof is complete. �

Proof of Theorem 1.7
We first prove (1.12). It is immediate from the definition of φ∗Cb

that φ(f) ≥ supµ∈ca+r (〈f, µ〉 − φ∗Cb
(µ))

for all f ∈ Cb. We show the other inequality in the following three steps:
Step 1: For Hn = Kn, define the function ψ : U =

∏
nC(Hn)→ R ∪ {+∞} by

ψ(u) := φ

(∑
n

un1Kn\Kn−1

)
, where K0 := ∅.

Then ψ is increasing and convex. Moreover, it fulfills (C’) or (D’) if φ satisfies (C) or (D), respectively.
So it follows from Proposition 3.3 that ψ can be represented as

ψ(u) = sup
ν∈V +

(〈u, ν〉 − ψ∗(ν)) .

Step 2: For every ν ∈ V +, µν(A) =
∑

n νn(A ∩Kn) defines an element of ca+
r (F). Indeed, µν is a

finite measure since ||ν|| =
∑

n ||νn||tv <∞. Moreover, for given A ∈ F and ε > 0, there exist compact
sets Fn ⊆ A ∩Kn such that νn(Fn) ≥ νn(A ∩Kn)− 2−n−1ε. So for m ∈ N large enough, F =

⋃m
n=1 Fn

is compact, F ⊆ A and µν(F ) ≥ µν(A)− ε.
Step 3: Since φ satisfies (C) or (D), one has for each f ∈ Cb,

φ(f) = φ(f1⋃
nKn

) = ψ(f |K1 , f |K2 , ...).

Therefore,

φ(f) = sup
ν∈V +

(∑
n

〈f |Kn , νn〉 − ψ∗(ν)

)
= sup

ν∈V +

(〈f, µν〉 − ψ∗(ν)) ,

and it is enough to show that φ∗Cb
(µν) ≤ ψ∗(ν) for all ν ∈ V + to complete the proof of (1.12). But this

readily follows from

φ∗Cb
(µν) = sup

f∈Cb

(〈f, µν〉 − φ(f)) = sup
f∈Cb

(∑
n

〈f1Kn , νn〉 − ψ(f |K1 , f |K2 , ...)

)
≤ sup

u∈U
(〈u, ν〉 − ψ(u)) = ψ∗(ν).

To show (1.13) we fix an f ∈ Ub and a constant ε > 0. For every δ > 0, there exists a measurable
partition (Am) of Ω and real numbers a1 < · · · < aM such that the step function g =

∑M
m=1 am1Am

14



satisfies g ≤ f ≤ g+ δ, and by passing to the upper semicontinuous hull, one can assume g to be upper
semicontinuous. If φ satisfies (C), then x 7→ φ(f + x) defines a convex function from R to R. So it has
to be continuous, and since φ is increasing, one can ensure that φ(g) ≥ φ(f) − ε by choosing δ > 0
small enough. If φ satisfies (D) and φ(f) < +∞, one obtains directly that φ(g) ≥ φ(f) − ε for δ > 0
small enough. On the other hand, if φ satisfies (D) and φ(f) = +∞, then φ(g) ≥ ε for δ > 0 small
enough. Now denote

UM :=

{
u ∈

∏
n

C(Kn)M : sup
n,m
||unm||∞ <∞

}
, VM :=

{
ν ∈

∏
n

car(Kn)M :
∑
n,m

||νnm||tv <∞

}
,

and define ψ : UM → R ∪ {+∞} by

ψ(u) := φ

(∑
n

M∑
m=1

unm1Bnm

)
, where K0 := ∅ and Bnm := (Kn \Kn−1) ∩Am.

Then ψ is increasing, convex and satisfies (C’) or (D’). Therefore, it follows from Proposition 3.3 that

ψ(u) = sup
ν∈(VM )+

(〈u, ν〉 − ψ∗(ν)) , where ψ∗(ν) = sup
u∈UM

(〈u, ν〉 − ψ(u)) .

If φ(h) = +∞ for all h ∈ Cb, then φ∗Cb
≡ −∞, and (1.13) is obvious. So let us assume there exists an

h ∈ Cb such that φ(h) < +∞. Then it follows that νnm(Kn \ B̄nm) = 0 for all ν ∈ (VM )+ satisfying
ψ∗(ν) < +∞. Indeed, assume νnm(Kn \ B̄nm) > 0. Then, since νnm is regular, there exists a closed set
F ⊆ Kn \ B̄nm with νnm(F ) > 0. By Theorem 2.48 in [1], Kn is normal. So it follows from Urysohn’s
lemma that there exists a continuous function ϕ : Kn → [0, 1] which is 1 on F and 0 on B̄nm. This
gives

ψ∗(ν) ≥ sup
x∈R+

∑
i

M∑
j=1

〈h1Ki , νij〉+ 〈xϕ, νnm〉 − φ(h+ xϕ1Bnm)


= sup

x∈R+

∑
i

M∑
j=1

〈h1Ki , νij〉+ 〈xϕ, νnm〉 − φ(h)

 = +∞.

Now define u ∈ UM by unm = am. It follows from (C) or (D) that

φ(g) = φ(g1⋃
nKn

) = ψ(u).

Therefore, since g is upper semicontinuous,

φ(g) = sup
ν∈(V N )+

(∑
n

M∑
m=1

〈unm, νnm〉 − ψ∗(ν)

)

≤ sup
ν∈(V N )+

(∑
n

M∑
m=1

〈
g1B̄nm

, νnm
〉
− ψ∗(ν)

)
= sup

ν∈(V N )+
(〈g, µν〉 − ψ∗(ν)) ,

15



where µν is given by µν(A) :=
∑

n

∑M
m=1 νnm(A∩Kn). It follows as above that µν belongs to ca+

r (F),
and for all ν ∈ (VM )+, one has

φ∗Cb
(µν) = sup

l∈Cb

(〈l, µν〉 − φ(l))

= sup
l∈Cb

(∑
n

M∑
m=1

〈l1Kn , νnm〉 − ψ(l1K1 , . . . , l1K1 , l1K2 , . . . )

)
≤ sup

u∈UM

(〈u, ν〉 − ψ(u)) = ψ∗(ν).

So in the case φ(f) < +∞, one obtains

φ(f)− ε ≤ φ(g) ≤ sup
µ∈ca+r

(
〈g, µ〉 − φ∗Cb

(µ)
)
≤ sup

µ∈ca+r

(
〈f, µ〉 − φ∗Cb

(µ)
)
,

and if φ(f) = +∞,

ε ≤ φ(g) ≤ sup
µ∈ca+r

(
〈g, µ〉 − φ∗Cb

(µ)
)
≤ sup

µ∈ca+r

(
〈f, µ〉 − φ∗Cb

(µ)
)
.

Since ε > 0 was arbitrary, this yields (1.13). On the other hand, it follows from the definition of φ∗Ub

that φ(f) ≥ supµ∈ca+r (〈f, µ〉 − φ∗Ub
(µ)). So if φ∗Cb

(µ) = φ∗Ub
(µ) for all µ ∈ ca+

r , the inequality in (1.13)
becomes an equality.

Finally, by Remark 1.9.1, φ̂(f) := supµ∈ca+r (〈f, µ〉 − φ∗Cb
(µ)) is lower regular on Bb. So one obtains

from the second part of the proof that for all f ∈ Bb,

φr(f) = sup{φ(g) : g ∈ Ub, g ≤ f} ≤ sup{φ̂(g) : g ∈ Ub, g ≤ f} = φ̂(f),

with equality if φ∗Cb
(µ) = φ∗Ub

(µ) for all µ ∈ ca+
r . This completes the proof. �

Proof of Corollary 1.8
By Theorem 1.7, one has

φ(f) = sup
µ∈ca+r (F)

(〈f, µ〉 − φ∗Cb
(µ)) for all f ∈ Cb.

In particular, φ∗Cb
(µ) < +∞ for at least one µ ∈ ca+

r (F). Since φ is linear, this implies that φ(f) = 〈f, µ〉
for all f ∈ Cb, and φ∗Cb

(µ) = 0. Moreover, if Ω is a metric space, µ is completely determined by the
values 〈f, µ〉, f ∈ Cb (see e.g. [3]). So one obtains from (1.13) and (1.14) that φ(f) ≤ 〈f, µ〉 for all
f ∈ Ub and φr(f) ≤ 〈f, µ〉 for all f ∈ Bb, with equality if φ∗Cb

(ν) = φ∗Ub
(ν) for all ν ∈ ca+

r (F). �
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