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Abstract

In discrete time, every time-consistent dynamic monetary risk measure can be written as a
composition of one-step risk measures. We exploit this structure to give new dual represen-
tation results for time-consistent convex monetary risk measures in terms of one-step penalty
functions. We first study risk measures for random variables modelling financial positions at
a fixed future time. Then we consider the more general case of risk measures that depend on
stochastic processes describing the evolution of financial positions or cumulated cash flows. In
both cases the new representations allow for a simple composition of one-step risk measures
in the dual. We discuss several explicit examples and provide connections to the recently
introduced class of dynamic variational preferences.
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1 Introduction

Following the introduction of coherent, convex and monetary risk measures in [2, 3, 19, 20, 21],
different dynamic extensions have been proposed. This has led to the study of conditional repre-
sentations and time-consistency properties of dynamic risk measures in various setups. We refer to
[4, 32, 33, 36, 14, 10, 34, 7, 23, 25, 18, 1] for the discrete time case and [22, 12, 31, 5, 6, 28, 13] for
risk measures in continuous time; see also [16] and [29] for related results for dynamic preferences
in discrete time.

In this paper we provide representations of time-consistent dynamic monetary risk measures in
discrete time that are similar in spirit to the continuous-time representations of [22, 31, 5, 6, 13].
Rather than looking at general dynamic monetary risk measures and trying to establish conditions
for time-consistency, we here only consider time-consistent ones and view them as compositions of
one-step risk measures. For time-consistent dynamic convex monetary risk measures, we exploit
this structure to derive new dual representations in terms of the penalty functions of the one-step
risk measures. These representations permit a simple construction of time-consistent dynamic
convex monetary risk measures by composing one-step risk measures in the dual.

∗We thank Irina Penner and an anonymous referee for valuable comments.
†Supported by NSF Grant DMS-0642361
‡Supported by the Swiss National Science Foundation
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The structure of the paper is as follows. In Section 2, we study time-consistent dynamic
monetary risk measures for random variables. They can be written as simple concatenations of
one-step risk measures. In Theorem 2.4, Lemma 2.8 and Corollary 2.9 we give dual representations
for time-consistent dynamic convex monetary risk measures for random variables. The time-
consistency is reflected by an additive structure in the dual. We illustrate this with examples
and provide connections to the dynamic variational preferences of [29]. In Section 3, we consider
dynamic monetary risk measures that depend on stochastic processes describing the evolution of
financial positions over time. In this case, the composition of one-step risk measures involves
the aggregation of current and future risk. For time-consistent dynamic convex monetary risk
measures, we translate this structure into a dual representation in terms of supermartingales; see
Theorem 3.4, Lemma 3.8 and Corollary 3.9. We conclude by introducing a special class of one-step
aggregators of composed form and discussing several related examples of risk measures that depend
on the whole path of a stochastic process.

2 Dynamic risk measures for bounded random variables

We fix a finite time horizon T ∈ N and let (Ω,F , (Ft)Tt=0,P) be a filtered probability space such that
P[A] ∈ {0, 1} for all A ∈ F0. P is not necessarily understood as a physical probability measure.
We use it as reference measure that specifies the negligible events. Equalities and inequalities
between random variables as well as equalities and inclusions betweens events are understood in
the P-almost sure sense. For instance, A ⊂ B for A,B ∈ F means P[A \ B] = 0. L∞(Ft) is
the space of essentially bounded Ft-measurable random variables. By Pa we denote the set of all
probability measures on (Ω,F) that are absolutely continuous with respect to P.

In this section the risky objects are financial positions at time T modelled by the set L∞(FT )
of essentially bounded FT -measurable random variables. We assume that there exists a money
market account and use it as numeraire, that is, money at later times is expressed in multiples of
the value of one dollar put into the money market account at time 0. A risk measure at time t is
a mapping ρt : L

∞(FT ) → L∞(Ft). ρt(X) is interpreted as a capital requirement at time t for the
financial position X conditional on the information given by Ft. For the study of dynamic risk
measures, it is more convenient to work with the negative ϕt = −ρt of a monetary risk measure.
We call ϕt a monetary utility function. Alternative names are risk adjusted valuation ([4]) or
acceptance measure ([33]).

Definition 2.1 Let t ∈ {0, . . . , T}. We call a mapping ϕt : L
∞(FT ) → L∞(Ft) a monetary utility

function at time t, if it has the following properties:

(N) Normalization: ϕt(0) = 0

(M) Monotonicity: ϕt(X) ≥ ϕt(Y ) for all X,Y ∈ L∞(FT ) such that X ≥ Y

(T) Translation property: ϕt(X +m) = ϕt(X) +m for all X ∈ L∞(FT ) and m ∈ L∞(Ft)

We call ϕt a concave monetary utility function at time t, if it also satisfies

(C) Ft-concavity: ϕt(λX + (1− λ)Y ) ≥ λϕt(X) + (1− λ)ϕt(Y )
for all X,Y ∈ L∞(Ft) and λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1.

A dynamic monetary utility function is a family of monetary utility functions (ϕt)
T
t=0. If all ϕt are

concave, then we call (ϕt)
T
t=0 a dynamic concave monetary utility function.

The normalization property (N) is convenient for the study of time-consistency questions. Every
function ϕt : L

∞(FT ) → L∞(Ft) satisfying (M) and (T) can readily be normalized by passing to
ϕt(.)− ϕt(0). Note that the properties (M) and (T) imply the

2



(LP) Local property:
ϕt(1AX + 1AcY ) = 1Aϕt(X) + 1Acϕt(Y )

for all X,Y ∈ L∞(FT ) and A ∈ Ft.

Indeed, it follows from (M) and (T) that

ϕt(1AX)− 1Ac ∥X∥∞ = ϕt(1AX − 1Ac ∥X∥∞) ≤ ϕt(X)

≤ ϕt(1AX + 1Ac ∥X∥∞) = ϕt(1AX) + 1Ac ∥X∥∞ .

By multiplying through with 1A, one obtains 1Aϕt(X) = 1Aϕt(1AX), which is equivalent to (LP).

Definition 2.2 We call a dynamic monetary utility function (ϕt)
T
t=0 time-consistent if

ϕt+1(X) ≥ ϕt+1(Y ) implies ϕt(X) ≥ ϕt(Y ) (2.1)

for all X,Y ∈ L∞(FT ) and t = 0, . . . , T − 1.

Due to the properties (N), (M) and (T), time-consistency of dynamic monetary utility functions
on L∞(FT ) is equivalent to the dynamic programming principle

ϕt(X) = ϕt(ϕt+1(X)) for all X ∈ L∞(FT ) and t = 0, . . . , T − 1. (2.2)

Concepts equivalent or similar to (2.1) or (2.2) have been studied in different contexts, see for
instance, [26, 27, 17, 15, 35, 16, 12, 4, 32, 31, 5, 6, 33, 36, 14, 10, 34, 25, 28, 18, 29].

2.1 Generators

For a dynamic monetary utility function (ϕt)
T
t=0, we denote by φt the restriction of ϕt to L

∞(Ft+1)
and call (φt)

T−1
t=0 the generator of (ϕt)

T
t=0. It follows from (2.2) that a time-consistent dynamic

monetary utility function is uniquely given by its generator. One can also start with an arbitrary
family

φt : L
∞(Ft+1) → L∞(Ft), t = 0, . . . , T − 1,

of monetary utility functions and define the time-consistent monetary utility function (ϕt)
T
t=0 by

backwards induction:

ϕT (X) = X and ϕt(X) = φt(ϕt+1(X)), t ≤ T − 1.

It is clear that every ϕt is Ft-concave if and only if all φt are so.

2.2 Duality

In this section we provide duality results for time-consistent dynamic concave monetary utility
functions on L∞(FT ) in terms of one-step penalty functions. We need the sets of one-step transition
densities

Dt :=
{
ξ ∈ L1

+(Ft) : EP [ξ | Ft−1] = 1
}
, t = 1, . . . , T.

Every sequence (ξ1, . . . , ξT ) ∈ D1 × · · · × DT defines a probability measure Qξ in Pa with density

dQξ

dP
= ξ1 · · · ξT .

On the other hand, every probability measure Q in Pa induces a non-negative martingale

MQ
t := EP

[
dQ
dP

| Ft
]
, t = 0, . . . , T.
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One has {
MQ
t−1 = 0

}
⊂

{
MQ
t = 0

}
for all 1 ≤ t ≤ T,

and the sequence

ξQt :=


MQ

t

MQ
t−1

on
{
MQ
t−1 > 0

}
1 on

{
MQ
t−1 = 0

} for t = 1, . . . , T,

is an element in D1 × · · · × DT with the property

dQ
dP

= ξQ1 · · · ξQT .

We will work with the convention

EQ [X | Ft] := EP

[
ξQt+1 · · · · · ξ

Q
TX | Ft

]
, X ∈ L∞(FT ), t = 0, . . . T − 1.

This is consistent with the standard definition of the conditional expectation. But according
to the standard definition, EQ [X | Ft] is only defined up to Q-almost sure equality, whereas

EP

[
ξQt+1 · · · · · ξ

Q
TX | Ft

]
is a version of EQ [X | Ft] which is defined up to P-almost sure equal-

ity. This will be important for formulas like (2.3) and (2.11) below, which involve the essential
infimum or supremum of random variables. We denote the essential infimum by ess inf and the
essential supremum by ess sup. Both are understood with respect to the reference measure P; for
the definition and properties of the essential infumum and supremum, see for instance, Proposition
VI.1.1 of Neveu [30] or the Appendix in Föllmer and Schied [20].

By L̄+(Ft) we denote all Ft-measurable functions X : Ω → [0,∞]. The conditional expectation
of X ∈ L̄+(Ft) is, as usual, understood as

EP [X | Ft] := lim
n→∞

EP [X ∧ n | Ft] .

Definition 2.3 For t ∈ {0, . . . , T − 1}, we call a mapping

ψt : Dt+1 → L̄+(Ft)

a one-step penalty function if it satisfies the following two conditions:

(i) ess infξ∈Dt+1 ψt(ξ) = 0

(ii) ψt(1Aξ + 1Acξ′) = 1Aψt(ξ) + 1Acψt(ξ
′) for all ξ, ξ′ ∈ Dt+1 and A ∈ Ft.

For Q ∈ Pa, we set
ψt(Q) := ψt(ξ

Q
t+1).

A dynamic penalty function consists of a sequence (ψt)
T−1
t=0 of one-step penalty functions. It induces

the mapping Ψ : Pa → L̄+(FT−1) given by Ψ(Q) =
∑T−1
t=0 ψt(Q).

In the following theorem we provide different dual representations through which a dynamic
penalty function induces a time-consistent dynamic concave monetary utility function. A new
feature of Theorem 2.4 compared to other representations of time-consistent dynamic convex mon-
etary risk measures is that (2.5) provides a dual representation of a whole family of risk measures

(ϕt)
T
t=0 in terms of the single penalty function Ψ =

∑T−1
j=0 ψj . This extends the dual representa-

tion of a time-consistent dynamic coherent risk measure with one m-stable (or rectangular) set of
probability measures (see [4, 12, 32, 16, 10]). Formula (2.4) can be seen as a discrete version of
the continuous-time representation (37) in [6].
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Theorem 2.4 Let (ψt)
T−1
t=0 be a dynamic penalty function. Then

φt(X) = ess inf
Q∈Pa

{EQ [X | Ft] + ψt(Q)} , t = 0, . . . , T − 1, X ∈ L∞(Ft+1), (2.3)

defines a generator of a time-consistent concave monetary utility function (ϕt)
T
t=0 with the following

representations:

ϕt(X) = ess inf
Q∈Pa

EQ

X +
T∑

j=t+1

ψj−1(Q) | Ft

 (2.4)

= ess inf
Q∈Pa

EQ [X +Ψ(Q) | Ft] (2.5)

for all t ≤ T − 1 and X ∈ L∞(FT ).

Proof. It can easily be checked that for all t ≤ T − 1,

φt(X) = ess inf
Q∈Pa

{EQ [X | Ft] + ψt(Q)}

defines a concave monetary utility function from L∞(Ft+1) to L
∞(Ft). Therefore, (φt)T−1

t=0 is the
generator of a time-consistent dynamic concave monetary utility function (ϕt)

T
t=0. It remains to

show (2.4) and (2.5). To do this we denote (2.5) by ϕ̃t(X). If X ∈ L∞(Fs) for 0 ≤ t < s ≤ T , then

ϕ̃t(X) = ess inf
(ξ1,...,ξT )∈D1×···×DT

EP

ξt+1 · · · · · ξT

X +
T∑
j=1

ψj−1(ξj)

 | Ft


=

t∑
j=1

ess inf
ξj∈Dj

ψj−1(ξj) (2.6)

+ ess inf
(ξt+1,...,ξs)∈Dt+1×···×Ds

EP

ξt+1 · · · · · ξs

X +
s∑

j=t+1

ψj−1(ξj)

 | Ft


+ ess inf

(ξs+1,...,ξT )∈Ds+1×···×DT

T∑
j=s+1

EP [ξt+1 · · · · · ξj−1 ψj−1(ξj) | Ft]

 . (2.7)

The terms (2.6) and (2.7) are both equal to 0. For (2.6) this follows directly from condition (i) of
Definition 2.3. For (2.7) we prove it by induction over T : Fix (ξt+1, . . . , ξs) ∈ Dt+1 × · · · × Ds. If
T = s, then the sum in (2.7) contains no terms and is equal to zero. If T = s+1, then (2.7) equals

ess inf
ξs+1∈Ds+1

EP [ξt+1 · · · · · ξs ψs(ξs+1) | Ft] . (2.8)

By condition (ii) of Definition 2.3, the family {ψs(ξs+1) : ξs+1 ∈ Ds+1} is directed downwards.
Therefore, the ess inf in (2.8) can be taken over a decreasing sequence and, by Beppo Levi’s
dominated convergence theorem, commutes with the conditional expectation. By condition (i) of
Definition 2.3, this shows that (2.8) is equal to zero. Now, assume T ≥ s+ 2 and

ess inf
(ξs+1,...,ξT−1)∈Ds+1×···×DT−1

T−1∑
j=s+1

EP [ξt+1 · · · · · ξj−1 ψj−1(ξj) | Ft] = 0.
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Then, to prove that (2.7) is equal to zero, it is enough to show that for fixed (ξt+1, . . . , ξT−1) ∈
Dt+1 × · · · × DT−1, the term

ess inf
ξT∈DT

EP [ξt+1 · · · · · ξT−1 ψT−1(ξT ) | Ft]

is zero. As above, this follows because ψT−1 satisfies condition (ii) of Definition 2.3 and therefore,
the ess inf can be taken inside the conditional expectation.

Since (2.6) and (2.7) are both equal to zero, one has

ϕ̃t(X) = ess inf
Q∈Pa

EQ

X +

T∑
j=t+1

ψj−1(Q) | Ft


= ess inf

Q∈Pa
EQ

X +
s∑

j=t+1

ψj−1(Q) | Ft

 . (2.9)

Next, we show ϕt = ϕ̃t by induction over s. If s = t+ 1, then we obtain from (2.9) that

ϕt(X) = φt(X) = ess inf
Q∈Pa

EQ [X + ψt(Q) | Ft] = ϕ̃t(X) for all X ∈ L∞(Fs).

Now, assume s ≥ t + 2 and ϕt(Y ) = ϕ̃t(Y ) for all Y ∈ L∞(Fs−1). If X ∈ L∞(Fs), then
φs−1(X) ∈ L∞(Fs−1), and we get

ϕt(X) = ϕt(φs−1(X)) = ϕ̃t(φs−1(X))

= ess inf
ξt+1,...,ξs−1∈Dt+1×···×Ds−1

EP

ξt+1 · · · · · ξs−1

φs−1(X) +

s−1∑
j=t+1

ψj−1(ξj)

 | Ft


= ess inf

ξt+1,...,ξs−1∈Dt+1×···×Ds−1

EP [ξt+1 · · · · · ξs−1

ess inf
ξs∈Ds

EP [ξsX | Fs−1] +
s∑

j=t+1

ψj−1(ξj)

 | Ft

 . (2.10)

By condition (ii) of Definition 2.3, the family

EP [ξsX | Fs−1] + ψs−1(ξs), ξs ∈ Ds

is directed downwards. Therefore, we can take the ess inf in (2.10) outside of the conditional
expectation and arrive at

ϕt(X) = ess inf
ξt+1,...,ξs∈Dt+1×···×Ds

EP

ξt+1 · · · · · ξs

X +
s∑

j=t+1

ψj−1(ξj)

 | Ft

 = ϕ̃t(X),

which concludes the proof. �

Remark 2.5 The generator (φt)
T−1
t=0 and dynamic utility function (ϕt)

T−1
t=0 in Theorem 2.4 can

also be represented by the variants of (2.3)–(2.5), where Pa is replaced with the smaller set

PΨ := {Q ∈ Pa : Ψ(Q) <∞} .
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Indeed, it follows from conditions (i) and (ii) of Definition 2.3 that for all t ≤ T − 1, there exists
a sequence (ξnt+1)n≥1 in Dt+1 such that ψt(ξ

n
t+1) ↓ 0 P-almost surely. Set Ant :=

{
ψt(ξ

n
t+1) <∞

}
and define

ξ∗t+1 := ξ1t+11A1
t
+

∑
n≥2

ξnt+11{An
t \A

n−1
t }.

Then
ξ∗t+1 ∈ Dψt

t+1 := {ξt+1 ∈ Dt+1 : ψt(ξt+1) <∞} .

For arbitrary ξt+1 ∈ Dt+1, the element ξ̃t+1 := ξt+11{ψt(ξt+1)<∞} + ξ∗t+11{ψt(ξt+1)=∞} is in Dψt

t+1,
and

EP [ξt+1X | Ft] + ψt(ξt+1) ≥ EP

[
ξ̃t+1X | Ft

]
+ ψt(ξ̃t+1) for X ∈ L∞(Ft+1).

Since
PΨ = Dψ0

1 · · · DψT−1

T ,

this shows that
φt(X) = ess inf

Q∈PΨ
{EQ [X | Ft] + ψt(Q)} , X ∈ L∞(Ft+1).

From here, exactly the same arguments as in the proof of Theorem 2.4 lead to

ϕt(X) = ess inf
Q∈PΨ

EQ

X +
T∑

j=t+1

ψj−1(Q) | Ft

 = ess inf
Q∈PΨ

EQ [X +Ψ(Q) | Ft]

for t ≤ T − 1 and X ∈ L∞(FT ). Note that the second identity can be written in the alternative
form

ϕt(X) = ess inf
(Q,q)∈QΨ

EQ [X + q | Ft] ,

for the set
QΨ :=

{
(Q, q) ∈ Pa × L0

+(FT ) : q ≥ Ψ(Q)
}
.

It can easily be checked that generators with a dual representation of the form (2.3) and
the corresponding dynamic monetary utility functions (2.4)–(2.5) have the following continuity
property:

Definition 2.6 For 0 ≤ t ≤ s ≤ T , we call a mapping I : L∞(Fs) → L∞(Ft) continuous from
above if

I(Xn) → I(X) P-almost surely

for every sequence (Xn)n∈N in L∞(Fs) that decreases P-almost surely to X ∈ L∞(Fs). We call
a generator (φt)

T−1
t=0 or a dynamic monetary utility function (ϕt)

T
t=0 on L∞(FT ) continuous from

above if all φt or ϕt are continuous from above, respectively.

Next we are going to show that every time-consistent dynamic concave monetary utility function
with generator that is continuous from above has representations of the form (2.4)–(2.5). This will
be shown in Corollary 2.9 below. First we need the following definition and lemma.

Definition 2.7 For a time-consistent dynamic concave monetary utility function (ϕt)
T−1
t=0 with

generator (φt)
T−1
t=0 that is continuous from above we define for all t = 0, . . . , T − 1,

φ#
t (ξt+1) := ess sup

X∈L∞(Ft+1)

{φt(X)− EP [ξt+1X | Ft]} , ξt+1 ∈ Dt+1. (2.11)
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Up to a sign, φ#
t is the conditional concave conjugate of φt. In the next lemma we provide a

conditional dual representation result for concave generators φt in terms of φ#
t . Similar results are

proved in [32, 4, 14, 10, 7, 34, 28]. Since our setup is slightly different, we provide a proof.

Lemma 2.8 Let (ϕt)
T
t=0 be a time-consistent dynamic concave monetary utility function on L∞(FT )

with generator (φt)
T−1
t=0 that is continuous from above. Then (φ#

t )
T−1
t=0 is the smallest dynamic

penalty function such that

φt(X) = ess inf
Q∈Pa

{
EQ [X | Ft] + φ#

t (Q)
}

(2.12)

for all t = 0, . . . , T − 1 and X ∈ L∞(Ft+1).

Proof. We fix t ∈ {0, . . . , T − 1} and introduce the sets

Bt := {X ∈ L∞(Ft+1) : φt(X) ≥ 0}

and
Ct :=

{
X ∈ L∞(Ft+1) : EQ [X | Ft] + φ#

t (Q) ≥ 0 for all Q ∈ Pa
}
.

It follows directly from the definition of φ#
t that

EQ [X | Ft] + φ#
t (Q) ≥ φt(X)

for all X ∈ L∞(Ft+1) and Q ∈ Pa. This shows that Bt ⊂ Ct. In the following we are going
to prove Ct ⊂ Bt. Assume this is not the case. Then there exists X∗ ∈ Ct \ Bt. Hence, the set
A := {φt(X∗) < 0} has positive P-measure and 1AX

∗ is still in Ct \ Bt. The mapping

X 7→ I(X) := E [φt(X)]

is a concave monetary utility function from L∞(Ft+1) to R that is continuous from above. Hence,
it can be deduced from the Krein–Šmulian theorem that

B := {X ∈ L∞(Ft+1) : I(X) ≥ 0}

is σ(L∞(Ft+1), L
1(Ft+1))-closed, see for instance, the proof of Theorem 3.2 in Delbaen [11] or

Remark 4.3 in Cheridito et al. [10]. Since it does not contain 1AX
∗, it follows from the separating

hyperplane theorem that there exists a Q ∈ Pa such that

EQ [1AX
∗] < inf

X∈B
EQ [X] ≤ inf

X∈Bt

EQ [X] . (2.13)

Since the family {EQ [X | Ft] : X ∈ Bt} is directed downwards, we obtain from Beppo Levi’s mono-
tone convergence theorem that

inf
X∈Bt

EQ [X] = EQ

[
ess inf
X∈Bt

EQ [X | Ft]
]
.

Moreover, by the translation property of φt, φ
#
t can be written as

φ#
t (Q) = ess sup

X∈Bt

EQ [−X | Ft] .

Therefore, it follows from (2.13) that

EQ [1AX
∗] < EQ

[
−φ#

t (Q)
]
,
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and hence,

EQ

[
EQ [1AX

∗ | Ft] + φ#
t (Q)

]
< 0.

But this contradicts 1AX
∗ ∈ Ct. Thus, we must have Bt = Ct. Now note that for allX ∈ L∞(Ft+1),

φt(X) = ess sup {m ∈ L∞(Ft) : X −m ∈ Bt} ,

and therefore,

φt(X) = ess sup
{
m ∈ L∞(Ft) : EQ [X −m | Ft] + φ#

t (Q) ≥ 0 for all Q ∈ Pa
}

= ess sup
{
m ∈ L∞(Ft) : EQ [X | Ft] + φ#

t (Q) ≥ m for all Q ∈ Pa
}

= ess inf
Q∈Pa

{
EQ [X | Ft] + φ#

t (Q)
}
.

Finally, observe that for every function ψt from Dt+1 to L̄+(Ft) satisfying

φt(X) = ess inf
ξt+1∈Dt+1

{EP [ξt+1X | Ft] + ψt(ξt+1)}

for all X ∈ L∞(Ft+1), one has

φt(X)− EP [ξt+1X | Ft] ≤ ψt(ξt+1)

for all X ∈ L∞(Ft+1) and ξt+1 ∈ Dt+1, and hence, φ#
t ≤ φt. �

The following corollary is an immediate consequence of Theorem 2.4 and Lemma 2.8.

Corollary 2.9 Let (ϕt)
T
t=0 be a time-consistent dynamic concave monetary utility function that is

continuous from above. Then

ϕt(X) = ess inf
Q∈Pa

EQ

X +

T∑
j=t+1

φ#
j−1(Q) | Ft

 = ess inf
Q∈Pa

EQ
[
X + ϕ#(Q) | Ft

]
for all t ≤ T − 1 and X ∈ L∞(FT ), where ϕ#(Q) =

∑T
j=1 φ

#
j−1(Q).

2.3 Examples

2.3.1 Dynamic Average-Value-at-Risk

For every t = 0, . . . , T − 1, let αt be an element of L∞(Ft) such that 0 < αt ≤ 1 and consider the
generators

φt(X) = ess inf
ξt+1∈Dt+1 , ξt+1≤α−1

t

EP [ξt+1X | Ft] , X ∈ L∞(Ft+1).

Then, −φt is a conditional Average-Value-at-Risk on L∞(Ft+1) at the level αt; see [20] for the
definition of the unconditional Average-Value-at-Risk. The minimal dynamic penalty function
(φ#
t )

T−1
t=0 of the induced time-consistent dynamic concave monetary utility function (ϕt)

T
t=0 is given

by

φ#
t (ξt+1) = ess sup

X∈L∞(Ft+1)

{φt(X)− EP [ξt+1X | Ft]} =

{
0 on

{
P[ξt+1 > α−1

t | Ft] = 0
}

∞ on
{
P[ξt+1 > α−1

t | Ft] > 0
} .
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Hence,

ϕ#(Q) =

T∑
j=1

φ#
j−1(Q) =

{
0 if P[ξQj > α−1

j−1 | Fj−1] = 0 for all j = 1, . . . , T

∞ else
,

and
ϕt(X) = ess inf

Q∈Pa
EQ

[
X + ϕ#(Q) | Ft

]
= ess inf

Q∈Q
EQ [X | Ft] ,

where
Q :=

{
Q ∈ Pa : ξQj ≤ α−1

j−1 for all j = 1, . . . , T
}
.

(ρt)
T
t=0 = (−ϕt)Tt=0 is a time-consistent dynamic Average-Value-at-Risk at the dynamic level

(α0, . . . , αT−1).

2.3.2 Dynamic entropic risk measure

For all t = 0, . . . , T − 1, let αt ∈ L∞(Ft) with αt > 0 and define φt by

φt(X) = −α−1
t log EP [exp(−αtX) | Ft] , X ∈ L∞(Ft+1).

Then, −φt is a conditional entropic risk measure on L∞(Ft+1) with risk aversion parameter αt;

see [19, 20, 5, 6, 14, 10]. It is well known that the minimal dynamic penalty function (φ#
t )

T−1
t=0 of

the induced time-consistent concave monetary utility function (ϕt)
T
t=0 is given by

φ#
t (ξt+1) = α−1

t EP [ξt+1 log(ξt+1) | Ft] .

Hence,

ϕ#(Q) =
T∑
j=1

φ#
j−1(Q) =

T∑
j=1

1

αj
EQ

[
log

(
ξQj+1

)
| Fj

]
,

and

ϕt(X) = ess inf
Q∈Pa

EQ
[
X + ϕ#(Q) | Ft

]
, X ∈ L∞(FT ), t = 0, . . . , T.

2.3.3 Dynamic variational preferences

Denote by R∞ the space of all essentially bounded adapted processes (Xt)
T
t=0 on (Ω,F , (Ft)Tt=0,P).

We here understand Xt as a (not necessarily discounted) cashflow at time t. Let (ϕt)
T
t=0 be a time-

consistent dynamic concave monetary utility function on L∞(FT ) and β > 0 a depreciation factor.
The transform

Wt(.) := β−tϕt(β
t.), t = 0, . . . , T,

is still a dynamic concave monetary utility function on L∞(FT ). It satisfies the β-time-consistency
condition

Wt+1(Y ) ≥Wt+1(Z) implies Wt(βY ) ≥Wt(βZ) for Y, Z ∈ L∞(FT ).

or equivalently, the β-dynamic programming principle

Wt(Y ) =Wt(βWt+1(β
−1Y )) for Y ∈ L∞(FT ).
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Now, let u be an increasing continuous function from R to R. Then, the functionals

Vt(X) :=Wt

 T∑
j=t

βj−tu(Xj)

 , X ∈ R∞, t = 0, . . . , T,

satisfy the recursive relation

Vt(X) = u(Xt) +Wt(βVt+1(X)), t = 0, . . . , T − 1.

In the simpler framework of finite sample spaces, this class of dynamic preferences is axiomatized
in [29], where they are called dynamic variational preferences.

3 Dynamic monetary risk measures for stochastic processes

In this section the risky objects are stochastic processes X ∈ R∞ modelling discounted value
processes or discounted cumulated cash flows; for instance, the discounted market value of a
portfolio, the discounted equity value of a firm or the discounted surplus of an insurance company.
This interpretation of X ∈ R∞ is the same as in [4, 8, 9, 10, 25] but different from the one in
Subsection 2.3.3 above, where X is understood as a sequence of cash flows. However, in discrete
time it is easy to pass from cash flows to cumulated cash flows and back (see Subsection 3.1
below). As before, we are interested in monetary risk measures ρt but find it more convenient to
work with the corresponding monetary utility functions ϕt = −ρt. In the following, we generalize
the definitions of Section 2 to this more general setup. For 0 ≤ t ≤ s ≤ T , we define the projection
πt,s : R∞ → R∞ by

πt,s(X)r := 1{t≤r}Xr∧s, r = 0, . . . , T.

and denote
R∞
t,s := πt,s(R∞).

Definition 3.1 Let t ∈ {0, . . . , T}. A monetary utility function on R∞
t,T is a mapping ϕt : R∞

t,T →
L∞(Ft) with the following properties:

(N) Normalization: ϕt(0) = 0

(M) Monotonicity: ϕt(X) ≥ ϕt(Y ) for all X,Y ∈ R∞
t,T such that X ≥ Y

(T) Translation property: ϕt(X +m1[t,T ]) = ϕt(X) +m for all X ∈ R∞
t,T and m ∈ L∞(Ft).

We call ϕt Ft-concave if it satisfies

(C) Ft-concavity: ϕt(λX+(1−λ)Y ) ≥ λϕt(X)+(1−λ)ϕt(Y ) for all X,Y ∈ R∞
t,T and λ ∈ L∞(Ft)

such that 0 ≤ λ ≤ 1

For X ∈ R∞ we set
ϕt(X) := ϕt ◦ πt,T (X).

A dynamic monetary utility function on R∞ is a family (ϕt)
T
t=0 such that each ϕt is a monetary

utility function on R∞
t,T . If all ϕt satisfy (C), then we call (ϕt)

T
t=0 a dynamic concave monetary

utility function on R∞.

As in the case of risk measures for random variables, it can be deduced from (M) and (T) that
ϕt satisfies the

(LP) Local property: ϕt(1AX + 1AcY ) = 1Aϕt(X) + 1Acϕt(Y ) for all X,Y ∈ R∞ and A ∈ Ft.
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Definition 3.2 We call a dynamic monetary utility function (ϕt)
T
t=0 on R∞ time-consistent if for

all X,Y ∈ R∞ and t = 0, . . . , T − 1,

Xt = Yt and ϕt+1(X) ≥ ϕt+1(Y )

imply
ϕt(X) ≥ ϕt(Y ).

It can easily be deduced from (N), (M) and (T) that time-consistency of a dynamic monetary risk
measure on R∞ is equivalent to the following dynamic programming principle:

ϕt(X) = ϕt(Xt1{t} + ϕt+1(X)1[t+1,T ]) for all X ∈ R∞ and t = 0, . . . , T − 1. (3.1)

3.1 Cash flow streams

In discrete time, one can easily pass from discounted value processes or cumulated discounted cash
flows X ∈ R∞ to discounted increments or discounted cash flows C0 = X0, Ct = ∆Xt = Xt−Xt−1,
t ≥ 1. A monetary utility function ϕt : R∞

t,T → L∞(Ft) induces the following functional for future
discounted cash flows

ϕ̃t(Ct+1, . . . , CT ) = ϕt

0, . . . , 0, Ct+1, Ct+1 + Ct+2, . . . ,

T∑
j=t+1

Cj

 .

The dynamic programming principle (3.1) translates into

ϕ̃t (Ct+1, . . . , CT ) = ϕ̃t

(
Ct+1 + ϕ̃t+1 (Ct+2, . . . , CT ) , 0, . . . , 0

)
,

and ϕt can be recovered from ϕ̃t through

ϕt(X) = Xt + ϕ̃t(∆Xt+1, . . . ,∆XT ).

So in discrete time, the two formulations are equivalent.

3.2 Aggregators and generators

For a time-consistent dynamic monetary utility function (ϕt)
T
t=0 on R∞, we define the aggregators

Gt : L
∞(Ft)× L∞(Ft+1) → L∞(Ft), t = 0, . . . , T − 1

by
Gt(Xt, Xt+1) := ϕt(X),

where X is the process in R∞
t,t+1 given by

Xr :=

 0 for r < t
Xt for r = t
Xt+1 for r ≥ t+ 1

.

Clearly, Gt has the following three properties:

(G1) Gt(0, 0) = 0
(G2) Gt(Xt, Xt+1) ≥ Gt(Yt, Yt+1) if Xt ≥ Yt and Xt+1 ≥ Yt+1

(G3) Gt(Xt +m,Xt+1 +m) = Gt(Xt, Xt+1) +m for all m ∈ L(Ft),
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and it can be seen from (3.1) that the whole dynamic functional (ϕt)
T
t=0 is uniquely determined

by the aggregators (Gt)
T−1
t=0 . In fact, every sequence of functionals (Gt)

T−1
t=0 satisfying (G1)–(G3)

defines a time-consistent dynamic monetary utility function (ϕt)
T
t=0 by

ϕT (X) = X

ϕt(X) = Gt(Xt, ϕt+1(X)), t ≤ T − 1.

It is clear that (ϕt)
T
t=0 is concave if and only if all Gt satisfy

(G4) Gt(λXt + (1− λ)Yt, λXt+1 + (1− λ)Yt+1) ≥ λGt(Xt, Xt+1) + (1− λ)Gt(Yt, Yt+1)
for all Xt, Yt ∈ L∞(Ft), Xt+1, Yt+1 ∈ L∞(Ft+1) and λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1.

By (G3), we can write Gt as

Gt(Xt, Xt+1) = Xt +Gt(0, Xt+1 −Xt) = Xt +Ht(Xt+1 −Xt), (3.2)

for the mapping Ht : L
∞(Ft+1) → L∞(Ft) given by

Ht(X) := Gt(0, X).

It follows from (G1)–(G3) that Ht has the following three properties:

(H1) Ht(0) = 0
(H2) Ht(X) ≥ Ht(Y ) for X,Y ∈ L∞(Ft+1) with X ≥ Y
(H3) Ht(X +m) ≤ Ht(X) +m for all X ∈ L∞(Ft+1) and m ∈ L∞

+ (Ft)

(H1) and (H2) are clear, and (H3) holds because for X ∈ L∞(Ft+1) and m ∈ L∞
+ (Ft) one has

Ht(X +m) = Gt(0, X +m) = m+Gt(−m,X) ≤ m+Gt(0, X) = m+Ht(X).

On the other hand, every sequence (Ht)
T−1
t=0 of mappings satisfying (H1)–(H3) induces aggregators

(Gt)
T−1
t=0 of a time-consistent dynamic monetary utility function (ϕt)

T
t=0 on R∞. Indeed, if Ht

satisfies (H1)–(H3), then
Gt(Xt, Xt+1) = Xt +Ht(Xt+1 −Xt)

satisfies (G1)–(G3). (G1) and (G3) are clear, and (G2) holds because for Xt, Yt ∈ L∞(Ft) and
Xt+1, Yt+1 ∈ L∞(Ft+1) such that Xt ≥ Yt and Xt+1 ≥ Yt+1, one obtains from (H2) and (H3) that

Gt(Xt, Xt+1) = Xt +Ht(Xt+1 −Xt) ≥ Xt +Ht(Yt+1 −Xt) ≥ Yt +Ht(Yt+1 − Yt).

We call (Ht)
T−1
t=0 the generators of (ϕt)

T
t=0. It is clear that Gt satisfies (G4) if and only if Ht fulfils

(H4) Ht(λX + (1− λ)Y ) ≥ λHt(X) + (1− λ)Ht(Y ) for all λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1.

3.3 Duality

For t = 1, . . . , T , we define the set

Et :=
{
ξ ∈ L1

+(Ft) : EP [ξ | Ft−1] ≤ 1
}
.

Every sequence (ξt+1, . . . , ξT ) ∈ Et+1 × · · · × ET induces a P-supermartingale (M ξ
r )
T
r=0 by

M ξ
r :=

{
1 for r ≤ t

ξt+1 · · · ξr for r = t+ 1, . . . , T.
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Definition 3.3 A one-step penalty function on Et+1 is a mapping

ψt : Et+1 → L̄+(Ft)

that satisfies the two properties:

(i) ess infξ∈Et+1
ψt(ξ) = 0

(ii) ψt(1Aξ + 1Acξ′) = 1Aψt(ξ) + 1Acψt(ξ
′) for all ξ, ξ′ ∈ Et+1 and A ∈ Ft

A dynamic penalty function on E is a sequence (ψt)
T−1
t=0 of one-step penalty functions.

Theorem 3.4 Let (ψt)
T−1
t=0 be a dynamic penalty function on E. Then

Ht(X) = ess inf
ξt+1∈Et+1

{EP [ξt+1X | Ft] + ψt(ξt+1)} , t = 0, . . . , T − 1, (3.3)

defines generators of a time-consistent dynamic concave monetary utility function (ϕt)
T
t=0 on R∞

with the following representation:

ϕt(X) = Xt + ess inf
(ξt+1,...,ξT )∈Et+1×···×ET

EP

 T∑
j=t+1

Mξ
j∆Xj +Mξ

j−1ψj−1(ξj) | Ft

 (3.4)

for all t ≤ T − 1 and X ∈ R∞.

Proof. It can easily be checked that for every t = 0, . . . , T − 1,

Ht(X) = ess inf
ξt+1∈Et+1

{EP [ξt+1X | Ft] + ψt(ξt+1)}

defines a mapping from L∞(Ft+1) to L
∞(Ft) satisfying (H1)–(H4). Therefore, the family (Ht)

T−1
t=0

induces a time-consistent dynamic concave monetary utility function (ϕt)
T
t=0 on R∞. Let X ∈ R∞

t,s

for some t < s ≤ T and denote

ϕt,s(X) = Xt + ess inf
(ξt+1,...,ξs)∈Et+1×···×Es

EP

 s∑
j=t+1

Mξ
j∆Xj +Mξ

j−1ψj−1(ξj) | Ft

 .
Since

ess inf
(ξs+1,...,ξT )∈Es+1×···×ET

EP

 T∑
j=s+1

Mξ
j−1ψj−1(ξj) | Ft

 = 0,

for all s ≤ T − 1, one has

ϕt,s(X) = Xt + ess inf
(ξt+1,...,ξT )∈Et+1×···×ET

EP

 T∑
j=t+1

Mξ
j∆Xj +Mξ

j−1ψj−1(ξj) | Ft

 .
So it is enough to show that ϕt(X) = ϕt,s(X). We prove this by induction over s. First, assume
that X ∈ R∞

t,t+1. Then,

ϕt(X) = Gt(Xt, ϕt+1(X)) = Gt(Xt, Xt+1) = Xt +Ht(∆Xt+1)

= Xt + ess inf
ξt+1∈Et+1

{EP [ξt+1∆Xt+1 | Ft] + ψt(ξt+1)} = ϕt,t+1(X).
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Now, assume X ∈ R∞
t,s for s ≥ t+ 2 and ϕt(Y ) = ϕt,s−1(Y ) for all Y ∈ R∞

t,s−1. By (3.1), we have
ϕt(X) = ϕt(Y ) for

Y = 1[t,s−1)X + 1[s−1,T ]ϕs−1(X) ∈ R∞
t,s−1,

and therefore,

ϕt(X) = ϕt(Y ) = ϕt,s−1(Y )

= Xt + ess inf
(ξt+1,...,ξs−1)∈Et+1×···×Es−1

EP

 s−1∑
j=t+1

Mξ
j∆Yj +Mξ

j−1ψj−1(ξj) | Ft


= Xt + ess inf

(ξt+1,...,ξs−1)∈Et+1×···×Es−1

EP

 s−2∑
j=t+1

Mξ
j∆Xj +Mξ

s−1[ϕs−1(X)−Xs−2]

+

s−1∑
j=t+1

Mξ
j−1ψj−1(ξj) | Ft


= Xt + ess inf

(ξt+1,...,ξs−1)∈Et+1×···×Es−1

EP

 s−2∑
j=t+1

Mξ
j∆Xj

+Mξ
s−1[∆Xs−1 + ess inf

ξs∈Es

{EP [ξs∆Xs | Fs−1] + ψs−1(ξs)}] (3.5)

+
s−1∑
j=t+1

M ξ
j−1ψj−1(ξj) | Ft

 ,
where for s = t + 2, the term

∑s−2
j=t+1M

ξ
j∆Xj is understood as 0. By condition (ii) of Definition

3.3, the family
EP [ξs∆Xs | Fs−1] + ψs−1(ξs), ξs ∈ Es,

is directed downwards. Therefore, we can take the ess inf in (3.5) outside of the conditional
expectation EP [. | Ft] and arrive at

ϕt(X) = Xt + ess inf
(ξt+1,...,ξs)∈Et+1×···×Es

EP

 s∑
j=t+1

Mξ
j∆Xj +Mξ

j−1ψj−1(ξj)

 = ϕt,s(X).

�
It is easy to see that aggregators of the form (3.3) are continuous from above in the sense of

Definition 2.6 and utility functions of the form (3.4) are continuous from above in the following
more general sense:

Definition 3.5 Let 0 ≤ t ≤ s ≤ T . We call a mapping I : R∞
t,s → L∞(Ft) continuous from above

if I(Xn) → I(X) P-almost surely for all (Xn)n∈N and X in R∞
t,s such that Xn

r decreases to Xr

P-almost surely for all r = t, . . . , s. We call a dynamic monetary utility function (ϕt)
T
t=0 on R∞

continuous from above if every ϕt is continuous from above.

Lemma 3.6 A time-consistent dynamic monetary utility function (ϕt)
T
t=0 is continuous from above

if and only if all of the corresponding aggregators (Gt)
T−1
t=0 are continuous from above, which is the

case if and only if all of the associated generators (Ht)
T−1
t=0 are continuous from above.

15



Proof. It is obvious that (ϕt)
T
t=0 is continuous from above if and only if all aggregators (Gt)

T−1
t=0

are continuous from above. Now, fix t and assume that Gt is continuous from above. If (Xn)n∈N
and X are in L∞(Ft+1) such that (Xn)n∈N decreases to X P-almost surely, then we have

Ht(X
n) = Gt(0, X

n) ↓ Gt(0, X) = Ht(X) P-almost surely.

Hence, Ht is continuous from above. On the other hand, if we assume that Ht is continuous from
above and (Xn

t , X
n
t+1)n∈N is a sequence in L∞(Ft) × L∞(Ft+1) that decreases to (Xt, Xt+1) ∈

L∞(Ft)× L∞(Ft+1) P-almost surely, then

Gt(X
n
t , X

n
t+1) = Xn

t +Ht(X
n
t+1−Xn

t ) ≤ Xn
t +Ht(X

n
t+1−Xt) ↓ Xt+Ht(Xt+1−Xt) = Gt(Xt, Xt+1)

P-almost surely. This shows that Gt is continuous from above. �

Definition 3.7 For a time-consistent dynamic concave monetary utility function (ϕt)
T
t=0 on R∞

with generators (Ht)
T−1
t=0 that are continuous from above, we define for ξt+1 ∈ Et+1 and t =

0, . . . , T − 1,
H#
t (ξt+1) := ess sup

X∈L∞(Ft+1)

{Ht(X)− EP [ξt+1X | Ft]} .

Lemma 3.8 Let (ϕt)
T
t=0 be a time-consistent dynamic concave monetary utility function on R∞

with generators (Ht)
T−1
t=0 that are continuous from above. Then (H#

t )T−1
t=0 is the smallest dynamic

penalty function on E such that

Ht(X) = ess inf
ξt+1∈Et+1

{
EP [ξt+1X | Ft] +H#

t (ξt+1)
}

(3.6)

for all t = 0, . . . , T − 1 and X ∈ L∞(Ft+1).

Proof. Fix t ∈ {0, . . . , T − 1} and consider Ω̂ := {t, t+ 1} × Ω with the σ-algebra F̂t+1 generated

by all sets of the form {j} × Aj for j = t, t + 1 and Aj ∈ Fj . Let P̂ be the probability measure

on (Ω̂, F̂t+1) given by P̂[{j} × Aj ] :=
1
2P[Aj ] for j = t, t + 1 and Aj ∈ Fj . By F̂t we denote the

σ-algebra on Ω̂ generated by all sets of the form {t, t+ 1} ×At for At ∈ Ft. Then one has

L∞(Ft)× L∞(Ft+1) = L∞(Ω̂, F̂t+1, P̂),

and the aggregator Gt can be viewed as a concave monetary utility function from L∞(Ω̂, F̂t+1, P̂)
to L∞(Ω̂, F̂t, P̂). Clearly, it is continuous from above. Therefore, it follows from Lemma 2.8 that

Gt(Xt, Xt+1) = ess inf
(a,ξt+1)∈L∞

[0,1]
(Ft)×Dt+1

{EP [(1− a)Xt + aξt+1Xt+1 | Ft] + ζt(a, ξt+1)} , (3.7)

where
L∞
[0,1](Ft) := {a ∈ L∞(Ft) : 0 ≤ a ≤ 1}

and

ζt(a, ξt+1) := ess sup
(Xt,Xt+1)∈L∞(Ft)×L∞(Ft+1)

{Gt(Xt, Xt+1)− EP [(1− a)Xt + a ξt+1Xt+1 | Ft]}

= ess sup
(Xt,Xt+1)∈L∞(Ft)×L∞(Ft+1)

{Gt(0,∆Xt+1)− EP [a ξt+1∆Xt+1 | Ft]}

= ess sup
X∈L∞(Ft+1)

{Ht(X)− EP [a ξt+1X | Ft]} .
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Hence,

Ht(X) = Gt(0, X) = ess inf
ξt+1∈Et+1

{
EP [ξt+1X | Ft] +H#

t (ξt+1)
}

for all X ∈ L∞(Ft+1). The minimality of H#
t follows because every function ψt : Et+1 → L̄+(Ft)

fulfilling
Ht(X) = ess inf

ξt+1∈Et+1

{EP [ξt+1X | Ft] + ψt(ξt+1)} for all X ∈ L∞(Ft+1)

must also satisfy

Ht(X)− EP [ξt+1X | Ft] ≤ ψt(ξt+1) for all X ∈ L∞(Ft+1) and ξt+1 ∈ Et+1,

and therefore, H#
t ≤ ψt. �

The following corollary is an immediate consequence of Theorem 3.4 and Lemma 3.8.

Corollary 3.9 Let (ϕt)
T
t=0 be a time-consistent dynamic concave monetary utility function that is

continuous from above. Then

ϕt(X) = Xt + ess inf
(ξt+1,...,ξT )∈Et+1×···×ET

EP

 T∑
j=t+1

M ξ
j∆Xj +Mξ

j−1H
#
j−1(ξj) | Ft


for all t ≤ T − 1 and X ∈ R∞.

3.4 Composed generators

We now consider generators of the special form

Ht(X) = ht(φt(X)), (3.8)

where φt : L∞(Ft+1) → L∞(Ft) is a monetary utility function from L∞(Ft+1) to L∞(Ft) and
ht : R → R is a function satisfying

(h1) ht(0) = 0
(h2) ht(x) ≥ ht(y) for x ≥ y
(h3) |ht(x)− ht(y)| ≤ |x− y| for all x, y ∈ R.

Then Ht = ht ◦ φt : L∞(Ft+1) → L∞(Ft) satisfies the properties (H1), (H2) and (H3). Hence,
(ht, φt)

T−1
t=0 induces a time-consistent dynamic monetary utility function (ϕt)

T
t=0 on R∞. If in

addition to (h1)–(h3), ht is concave and φt Ft-concave, then Ht satisfies (H4), and (ϕt)
T
t=0 is a

time-consistent dynamic concave monetary utility function on R∞.
By standard convex duality, every concave function h : R → R can be represented as

h(x) = min
y∈R

xy − h∗(y),

where h∗ is the concave conjugate given by

h∗(y) := inf
x∈R

xy − h(x).

As a consequence, the following representation result holds:
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Proposition 3.10 If φt : L
∞(Ft+1) → L∞(Ft) is given by

φt(X) = ess inf
ξt+1∈Dt+1

{EP [ξt+1X | Ft] + ηt(ξt+1)}

for a one-step penalty function ηt on Dt+1 and ht : R → R is a concave function satisfying (h1)–
(h3). Then Ht = ht ◦ φt can be represented as

Ht(X) = ess inf
ξt+1∈Et+1

{EP [ξt+1X | Ft] + ψt(ξt+1)} , X ∈ L∞(Ft+1),

for the one-step penalty function ψt on Et+1 given by

ψt(ξt+1) = EP [ξt+1 | Ft] ηt
(

ξt+1

EP [ξt+1 | Ft]

)
− h∗t (EP [ξt+1 | Ft]).

Proof. Since ht satisfies (h2) and (h3), we have h∗t (y) = −∞ for y /∈ [0, 1], and therefore

Ht(X) = ht(φt(X))

= ht

(
ess inf

ξt+1∈Dt+1

{EP [ξt+1X | Ft] + ηt(ξt+1)}
)

= ess inf
0≤y≤1 , ξt+1∈Dt+1

{y [EP [ξt+1X | Ft] + ηt(ξt+1)]− h∗t (y)}

= ess inf
ξt+1∈Et+1

{
EP [ξt+1X | Ft] + EP [ξt+1 | Ft] ηt

(
ξt+1

EP [ξt+1 | Ft]

)
− h∗t (EP [ξt+1 | Ft])

}
.

�
In the following we are going to discuss different specifications of the function ht. This leads

to extensions of some of the examples of Section 5 of Cheridito et al. [10].

3.4.1 Risk measures which only depend on the final value

If ht(x) = x, then the aggregators reduce to

Gt(Xt, Xt+1) = Xt + ht(φt(Xt+1 −Xt)) = φt(Xt+1).

So one has
ϕt(X) = Gt(Xt, ϕt+1(X)) = φt(ϕt+1(X)) = φt ◦ · · · ◦ φT−1(XT ),

that is, (ϕt)
T
t=0 is a time-consistent dynamic utility function which only depends on the final value

XT of X.

3.4.2 Risk measures that depend on a weighted average over time

If ht(x) = γtx for γt ∈ L∞(Ft) such that 0 < γt ≤ 1, then

Gt(Xt, Xt+1) = Xt + ht(φt(Xt+1 −Xt)) = (1− γt)Xt + γtφt(Xt+1).

Consider the mappings ϕγt : L∞(FT ) → L∞(Ft) given by

ϕγt (X) = γtφt ◦ γt+1φt+1 ◦ · · · ◦ γT−1φT−1

(
X

γt · · · γT−1

)
.
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Then the time-consistent dynamic monetary utility function (ϕt)
T
t=0 on R∞ induced by the aggre-

gators (Gt)
T
t=0 is given by

ϕt(X) = ϕγt

 T∑
j=t

δtjXj

 , t = 0, . . . T − 1,

where

δtj =

 1− γt for j = t
γt · · · · · γj−1(1− γj) for t < j < T
γt · · · · · γT−1 for j = T

.

In particular, for γt =
T−t
T−t+1 , one obtains

ϕt(X) = ϕγt

 1

T − t+ 1

T∑
j=t

Xj

 .

Observe that for the special case, where all φt have the scaling property φt(γtX) = γtφt(X), the
ϕγt are of the form ϕγt = φt ◦ · · · ◦ φT−1.

3.4.3 Risk measures defined by worst stopping

For ht(x) = x ∧ 0, the aggregators become

Gt(Xt, Xt+1) = Xt + ht(φt(Xt+1 −Xt)) = Xt ∧ φt(Xt+1), (3.9)

and the ϕt are of the form
ϕt(X) = ess inf

τ∈Θt

ϕ̃t(Xτ ), X ∈ R∞,

where Θt is the set of all {t, . . . , T}-valued stopping times and (ϕ̃t)
T
t=0 is the time-consistent

dynamic concave monetary utility function on L∞(FT ) given by

ϕ̃t(X) = φt ◦ · · · ◦ φT−1(X), X ∈ L∞(FT ).

This can be seen by checking that

ess inf
τ∈Θt

ϕ̃t(Xτ ), t = 0, . . . , T

is a time-consistent dynamic monetary utility function on R∞ whose aggregators are given by
(3.9).

3.4.4 Trade-off functions

Instead of specifying the function ht directly, one can start with a continuous decreasing function
gt : R → R such that gt(0) = 0 and define the corresponding aggregator Gt by

Gt(Xt, Xt+1) = ess sup {m ∈ L∞(Ft) : (Xt −m,Xt+1 −m) ∈ Bt} ,

where the one-step acceptance set Bt is given by

Bt = {(Xt, Xt+1) ∈ L∞(Ft)× L∞(Ft+1) : gt(Xt) ≤ φt(Xt+1)} .
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The function gt specifies the trade-off between risk at time t and t + 1 of an acceptable process
X ∈ R∞

t,t+1. It can easily be checked that the inverse ht of the strictly increasing function gt(−x)+x
satisfies (h1)–(h3), and Bt can be written as

Bt = {(Xt, Xt+1) ∈ L∞(Ft)× L∞(Ft+1) : Xt + ht ◦ φt(Xt+1 −Xt) ≥ 0} .

Hence, the generator Ht is given by ht ◦ φt. Note ht is concave if and only if gt is convex.
For gt(x) = 0 we get ht(x) = x, and we are back in the case of Subsection 3.4.1. The case
gt(x) = (1 − 1/γt)x for 0 < γt < 1 corresponds to ht(x) = γtx of Subsection 3.4.2. The function
ht(x) = x∧ 0 of Subsection 3.4.3 is not bijective. Therefore, it cannot be obtained from a trade-off
function gt.

Example 3.11 Our last example is built on trade-off functions of the form gt(x) := exp(−γtx)−1
for γt > 0. In this case there exists no closed form expression for ht. But one has the following
relation between h∗t and the convex conjugate g∗t (y) = supx∈R xy − gt(x) of gt:

h∗t (y) =

{
−yg∗t (1− 1/y) for y ∈ (0, 1]
−∞ for y /∈ (0, 1]

.

Indeed, h∗t (y) = −∞ for y /∈ (0, 1] is an immediate consequence of the fact that ht satisfies
limx→∞ ht(x) = ∞ as well as (h2) and (h3). For y ∈ (0, 1], one can write

h∗t (y) = inf
x∈R

xy − ht(x) = inf
x∈R

h−1
t (−x)y − ht(h

−1
t (−x))

= y inf
x∈R

h−1
t (−x) + x/y = y inf

x∈R
h−1
t (−x) + x+ (1/y − 1)x

= −y sup
x∈R

(1− 1/y)x− gt(x) = −yg∗t (1− 1/y) .

For z < 0, one has

g∗t (z) =
z

γt

(
1− log

(
− z

γt

))
+ 1,

and therefore,

h∗t (y) =
1− y

γt

[
1− log

(
1− y

γty

)]
− y.

We now combine ht with the entropic generator

φt(X) = −α−1
t log EP [exp(−αtX) | Ft] , X ∈ L∞(Ft+1)

with minimal penalty function

φ#
t (ξt+1) = α−1

t EP [ξt+1 log(ξt+1) | Ft] .

It follows from Proposition 3.10 that the minimal dynamic penalty function of the dynamic concave
monetary utility function (ϕt)

T
t=0 on R∞ induced by (ht, φt)

T−1
t=0 is given by

ψt(ξt+1) = α−1
t EP [ξt+1 log(ξt+1) | Ft]− α−1

t λ log(λ) + λ+
1− λ

γt
log

(
1− λ

γtλ

)
− 1− λ

γt
,

for ξt+1 ∈ Et+1 and λ = EP [ξt+1 | Ft].
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[19] Föllmer, H., Schied, A. (2002). Convex measures of risk and trading constraints. Fin. Stoch.
6(4), 429–447.
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