
Conditional Lp-spaces and
the duality of modules over f-algebras

S. Cerreia-Vioglio], M. Kupperx, F. Maccheroni], M. Marinacci], N. Vogelpothy

Abstract. Motivated by dynamic asset pricing, we extend the dual pairs�theory of Dieudonné
(1942) and Mackey (1945) to pairs of modules over a Dedekind complete f -algebra with multi-
plicative unit. The main tools are:
� a Hahn-Banach Theorem for modules of this kind;
� a topology on the f -algebra that has the special feature of coinciding with the norm
topology when the algebra is a Banach algebra and with the strong order topology of
Filipovic, Kupper, and Vogelpoth (2009), when the algebra of all random variables on a
probability space (
;G; P ) is considered.

As a leading example, we study in some detail the duality of conditional Lp-spaces.
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1. Introduction

In order to study the testable implications of the Fundamental Theorem of Asset Pricing in
a dynamic setting, Hansen and Richard [HaRi] consider pricing functions � that map time T
payo¤s, modeled as GT -measurable random variables, into prices that are also random variables,
but are constrained to be in the information set of traders at the time t when the portfolio
decisions are made, that is, are Gt-measurable.1

Denoting by L0 (GT ) = L0 (
;GT ; P ) the space of all GT -measurable random variables,
[HaRi] replace the classical Hilbert space L2 (GT ) = L2 (
;GT ; P ) with its conditional version

LGt2 (GT ) =
�
x 2 L0 (GT ) : E[x2 j Gt] is a.s. �nite

	
and they consider pricing functions � : LGt2 (GT )! L0 (Gt) that are linear in the following sense:

� (ax+ by) = a� (x) + b� (y) for all a; b 2 L0 (Gt) and all x; y 2 LGt2 (GT )
and bounded in the following sense: there exists c 2 L0 (Gt) such that

j� (x)j � c
p
E[x2 j Gt] for all x 2 LGt2 (GT ) .

Then, by means of a conditional counterpart to the Riesz Representation Theorem, they show
that pricing functions that embody conditioning information can be represented as conditional
expectations, thus extending both the unconditional and the conditional results of Harrison and
Kreps [HaKr]. More in general, they show how the main insights and results of unconditional
asset pricing �nd a natural extension in this fundamentally more powerful setting.

The key intuition of [HaRi] is replacing the unconditional duality hx; yi = E [xy] 2 R of the
Hilbert space L2 (GT ) with the conditional duality hx; yiGt = E[xy j Gt] 2 L0 (Gt) of the Hilbert
module LGt2 (GT ).

This paper subsumes a previous manuscript by the second and �fth author titled �Complete L0-normed
modules and automatic continuity of monotone convex functions�and �rst circulated in 2008.

1With the natural convention t < T and Gt � GT .
1
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This paper stems from the observation that a general theory of conditional Lp-spaces can
be developed along the lines suggested by [HaRi]. Then it expands with the objective of
understanding what kind of duality obtains when the real �eld R is replaced by a Dedekind
complete f -algebra A with multiplicative unit (see Aliprantis and Burkinshaw [AlBu]). The
speci�c choice of algebras of this kind is motivated by the possibility of encompassing, together
with L0 (G) also L1 (G), as well as RK , for any nonempty set K, `1 and some other important
Banach algebras.2

The novel ingredient is a strong order topology on the f -algebra A that have the special
feature of coinciding with the norm topology when A is a unitary algebra (see de Jonge and van
Rooij [dJvR]), and with the topology introduced by Filipovic, Kupper, and Vogelpoth [FKV]
when A = L0 (G). The strong order topology on A allows a natural de�nition of weak topologies
on A-modules. A version of the Hahn-Banach Extension Theorem then allows to generalize the
Dual Pairs�Theory of Dieudonné [Di] and Mackey [Ma] to pairs of A-modules.

The paper is concluded by returning to modules of random variables in order to exemplify
the implications of our �ndings.

For technical reasons the order of sections is di¤erent from the one presented above. Specif-
ically: Section 2 introduces the theory of conditional Lp-spaces, thus providing a concrete ex-
ample of modules over an f -algebra. Section 3 presents an Hahn-Banach Extension Theorem,
the corresponding Kantorovich Extension Theorem appears in Section 4, and the related Hahn
Extension Theorem follows in Section 7. The strong order topology appears in Section 5 and
it is used to de�ne weak topologies on A-modules in the subsequent Section 6, where the Dual
Pairs�Theory is faithfully extended to A-modules. As anticipated, additional results on modules
of random variables are presented in the �nal Section 8.

2. Conditional Lp-spaces

In this section we present an important class of modules over an f -algebra: the conditional
Lp-spaces. The treatment here is elementary and the study of these spaces will be continued in
the �nal section where the tools developed in the main part of the paper will be available.

Let (
;F ; P ) be a probability space and G be a sub-�-algebra of F .
We denote by X (F) = X (
;F ; P ) the family of all equivalence classes of extended-real-

valued functions, almost surely de�ned on 
 and almost surely equal to some F-measurable
function from 
 to [�1;1], see Fremlin [Fr, Section 241]. The vector space L0 (F) of F-
measurable random variables, consists of all elements of X (F) which admit a real-valued rep-
resentative, and, as usual, Lp (F) is the subspace of L0 (F) consisting of all random variables
with �nite absolute p-th moment.

Letting X (G) be the subset of X (F) consisting of all equivalence classes which admit a G-
measurable representative, for every x 2 X (F) such that either

R

 x

+dP <1 or
R

 x

�dP <1
(for example because x � 0), there exists a unique x? 2 X (G) such thatZ

G
x?dP =

Z
G
xdP 8G 2 G

such x? is called conditional expectation of x (given G with respect to P ) and denoted EGx. We
refer to Loéve [Lo, Section 27] for the general properties of conditional expectations.

For every p 2 [1;1), the set

LGp (F) =
�
x 2 L0 (F) : EG jxjp 2 L0 (G)

	
2Another natural extension of the approach of [HaRi] is considering general Hilbert modules and their

self-duality, this analysis is carried on by Cerreia-Vioglio, Maccheroni, and Marinacci [CMM].



DUALITY OF MODULES OVER f -ALGEBRAS 3

is the subspace of L0 (F) consisting of all random variables with a.s. �nite conditional absolute
p-th moment. Analogously,

LG1 (F) = fx 2 L0 (F) : jxj � a for some a 2 L0 (G)g :
We call these spaces conditional Lp-spaces. Then we de�ne

kxkGp =
(

p
p
EG jxjp if p 2 [1;1)

infL0(G)fa 2 L0 (G) : jxj � ag if p =1

for all x 2 LGp (F).3
We are ready for the �rst proposition. In reading it remember that the de�nitions of L0 (G)-

module, L0 (G)-norm, and submodule are formally identical to those of vector space, norm, and
linear subspace, where the real �eld R is replaced by L0 (G).

Proposition 1. L0 (F) is an L0 (G)-module and, for every p 2 [1;1],
� LGp (F) is a submodule of L0 (F);
� k � kGp : LGp (F)! L0 (G)+ is an L0 (G)-norm;
� LGp (F) = L0 (G)Lp (F) is the submodule of L0 (F) generated by Lp (F).

Proof. The �rst part is routine. We only check the last point. If x 2 LGp (F), then

x =
�
1 + kxkGp

� h�
1 + kxkGp

��1
x
i

but
�
1 + kxkGp

�
;
�
1 + kxkGp

��1 2 L0 (G)+ and �1 + kxkGp ��1 xG
p
� 1.

� For p 2 [1;1) this implies EG
����1 + kxkGp ��1 x���p � 1 and integrating both sides of the

inequality delivers
�
1 + kxkGp

��1
x 2 Lp (F).

� For p =1 this implies

�����1 + kxkG1��1 x���� � 1 and �1 + kxkG1��1 x 2 L1 (F).
The generic choice of x implies LGp (F) � L0 (G)Lp (F).

Conversely, let x = a1y1 + :::+ anyn with a1; :::; an 2 L0 (G) and y1; :::; yn 2 Lp (F), that is,
assume x belongs to the submodule of L0 (F) generated by Lp (F). For every i = 1; :::; n,

� if p 2 [1;1), EG (jaiyijp) = EG (jaijp jyijp) = jaijpEG (jyijp), but jaijp 2 L0 (G) and
EG (jyijp) 2 L1 (G) � L0 (G), then jaijpEG (jyijp) 2 L0 (G), and aiyi belongs to LGp (F);

� if p =1, jaiyij � jaij jyij � jaij�i where �i 2 R is such jyij � �i, thus aiyi 2 LG1 (F).
Since LGp (F) is a module, a1y1+ :::+ anyn 2 LGp (F), and this implies L0 (G)Lp (F) � LGp (F).�

Remark 1. Notice that, in general, given a subset S of an L0 (G)-module, the submodule
generated by S, denoted by L0 (G)S consists of all elements a1s1 + ::: + ansn with n 2 N,
a1; :::; an 2 L0 (G) and s1; :::; sn 2 S. The proof above shows more, that x 2 LGp (F) if and only
if x = ay for some a 2 L0 (G)+ and y 2 Lp (F).

Given a (normed) L0 (G)-module, the de�nition of (bounded) L0 (G)-linear form � : L !
L0 (G) is formally identical to the one of (bounded) linear functional, where the real �eld R is
replaced by L0 (G) (see the introduction).

For the present analysis, the fundamental example of bounded L0 (G)-linear form is

~EGx = EGx+ � EGx� 8x 2 LG1 (F) :
First notice that EG (x+) ; EG (x�) � EG jxj and so ~EGx is a well de�ned element of L0 (G)
for all x 2 LG1 (F). Moreover, if x 2 LG1 (F), and either

R

 x

+dP < 1 or
R

 x

�dP < 1,

3Notice that kxkG1 is well de�ned and jxj � kxkG1 because L0 (G) is super Dedekind complete.
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then ~EGx = EGx+ � EGx� = EGx. For this reason we can write EGx instead of ~EGx for all
x 2 LG1 (F). The veri�cation that EG : LG1 (F) ! L0 (G) is a bounded L0 (G)-linear form relies
on the basic properties of conditional expectations.

Theorem 1. Let p 2 [1;1) and q be the conjugate exponent of p. If
� : LGp (F)! L0 (G)

is a bounded L0 (G)-linear form, there exists y 2 LGq (F) such that

(2.1) � (x) = EG (xy) 8x 2 LGp (F) :

Conversely, for every y 2 LGq (F), (2.1) de�nes a bounded L0 (G)-linear form on LGp (F).

Proof. Let � : LGp (F) ! L0 (G) be a bounded L0 (G)-linear form. There exists c 2 L0 (G)
such that

j� (x)j � ckxkGp � (1 + jcj) kxkGp 8x 2 LGp (F)
and hence we can de�ne an auxiliary L0 (G)-linear form

~� (x) = (1 + jcj)�1 � (x) 8x 2 LGp (F) :

Then, for all x 2 LGp (F), j~� (x)j � kxkGp and E j~� (x)j
p � E

�
kxkGp

�p
= E

�
EG jxjp

�
= E jxjp.

Therefore, if x 2 Lp (F) then ~� (x) 2 Lp (G), and the Jensen�s inequality implies

jE~� (x)jp � E j~� (x)jp � E jxjp that is jE~� (x)j � p

q
E jxjp = kxkp.

But then E�~� : Lp (F)! R is a bounded linear functional and the classical Riesz Representation
Theorem delivers the existence of z 2 Lq(F) (for future reference, notice that z is positive if �
is positive) such that

E~� (x) =

Z


~� (x) dP =

Z


xzdP 8x 2 Lp (F) :

By L0 (G)-linearity
R
G ~� (x) dP =

R

 ~� (1Gx) dP =

R

 (1Gx) zdP =

R
G (xz) dP for all G 2 G and

x 2 Lp (F), that is,
~� (x) = EG (xz) 8x 2 Lp (F) :

But, by Remark 1, for all u 2 LGp (F) there are a 2 L0(G) and x 2 Lp (F) such that u = ax

and ~� (u) = ~� (ax) = a~� (x) = aEG (xz) = EG (axz) = EG (uz) and � (u) = (1 + jcj) ~� (u) =
(1 + jcj)EG (uz) = EG (uy), where y = (1 + jcj) z 2 LGq (F) because of Remark 1 again (for
future reference, notice that y is positive if � is positive). The rest is routine. �

3. The extension theorem

In this section we present a perfect analogue of the Hahn-Banach Theorem for modules
over f -algebras. Our result jointly extends the pioneer theorem of Vincent-Smith [VS], which
corresponds to the special case in which the algebra is unitary, and the recent result of [FKV] for
modules over L0 (G) (which is not unitary). At the same time, the importance of this theorem
is not the greater generality, but the fact that (as it happens for the classical Hahn-Banach
Theorem for vector spaces) it is the backbone of all duality theory on modules.

We refer the reader to [dJvR] and [AlBu] for an introductory treatment of Riesz spaces
and Riesz algebras.

Definition 1. A Riesz algebra is a Riesz space A endowed with an associative multiplication
such that for every a 2 A the maps b 7! ab and b 7! ba are linear, and ab � 0 for all a; b � 0.

A Riesz algebra A is an f -algebra if b ^ c = 0 implies ab ^ c = ba ^ c = 0 for all a � 0.4

Also recall that:

4The de�nition of f -algebra dates back to Birkho¤ and Pierce [BiPi].
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� A Riesz space is called Dedekind complete whenever every nonempty bounded above
subset has a supremum (or, equivalently, whenever every nonempty bounded below
subset has an in�mum).

� A weak order unit for a Dedekind complete Riesz space A is an element e � 0 such
that e ^ a 6= 0 for all a > 0.

� A multiplicative unit for a Riesz algebra A is an element e 6= 0 such that ea = ae = a
for all a 2 A.

The following proposition provides a geometrically intuitive characterization of Dedekind
complete f -algebras with multiplicative unit.5

Proposition 2. A Dedekind complete Riesz algebra A with multiplicative unit e is an f-
algebra if and only if e is a weak order unit. In this case, A is commutative.

Since we shall consider only this kind of algebras we give them a name.

Definition 2. A Stonean algebra is a Dedekind complete f-algebra with multiplicative unit.

The multiplicative unit will always be denoted by e.6

Theorem 2. Let A be Stonean algebra, E be an A-module, and p : E ! A be a function
satisfying

(3.1)
�
p (ax) = ap (x) 8x 2 E and 8a > 0
p (x+ y) � p (x) + p (y) 8x; y 2 E:

Let L � E be a submodule and f : L! A be an A-linear form such that

f (z) � p (z) 8z 2 L:

Then there exists an A-linear form g : E ! A such that gjL = f and g (x) � p (x) for all x 2 E.

3.1. Proof of Theorem 2. Notice that p (0) = p (2e0) = 2ep (0) = 2p (0) so that p (0) = 0.
We prove the theorem under slightly weaker assumptions, that will be used later. Condition
(3.1) implies that p (ax) = ap (x) for all x 2 E and all a 2 A+, we will instead only assume

(3.2)
�
p (ax) = ap (x) 8x 2 E and 8a 2 A++ [ Ce
p (x+ y) � p (x) + p (y) 8x; y 2 E

where
A++ =

�
a 2 A+ : a�1 exists in A

	
is the set of all positive invertibles, and

Ce =
�
v 2 A+ : v ^ (e� v) = 0

	
is the set of all components of e.7

Consider the set

P =

8<:h : D (h)! A

������
D (h) is a submodule of E that contains L
h is an A-linear form
hjL = f and h (x) � p (x) for all x 2 D (h)

9=; :

Clearly P 3 f so P is nonempty, and the relation de�ned by

h2 � h1 () D (h2) � D (h1) and h2jD(h1) = h1

5It can be easily obtained by combining [dJvR, Theorem 15.9] and [AlBu, Theorem 2.64], and it actually
holds for Archimedean Riesz algebras with multiplicative unit.

6The de�nitions of A-module E, A-submodule L � E, and A-linear form f : L! A are formally identical to
those of vector space, linear subspace, linear form, where the real �eld R is replaced by A.

7These sets are quite important in the theory of f -algebras, see, e.g., Zaanen [Za, Theorem 142.2] and [AlBu,
Theorem 1.49]. Also 0 2 Ce implies p (0) = 0.
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is a partial order on P . We claim that every totally ordered subset Q in P has an upper bound.
Indeed, let Q = fhigi2I � P be a totally ordered subset. If Q is empty, then it is bounded by
f , else set

D (h) =
[
i2I

D (hi) and h (x) = hi (x) if x 2 D (hi) :

It is easy to check that h is well de�ned, belongs to P , and is an upper bound for Q. We can
therefore apply Zorn�s lemma and obtain a maximal element g of P .

If D (g) = E, then the proof is �nished. Suppose D (g) � E, set M = D (g), and choose
z 2 E nM . It is easy to check that

N = fx+ az : (x; a) 2M �Ag

is the smallest submodule of E containing M and z. A contradiction to the maximality of g will
be obtained by �nding an A-linear form h : N ! A such that

(3.3) hjM = g and h (x+ az) � p (x+ az) 8 (x; a) 2M �A:

Remark 2. In looking for such an h, notice that, if it exists,

g (x) + ah (z) � p (x+ az) 8 (x; a) 2M �A

in particular, for (x; a) = (u;�e) and (x; a) = (w; e), this implies �p (u� z) + g (u) � h (z) �
p (w + z)� g (w) for all u;w 2M , and by Dedekind completeness

sup f�p (u� z) + g (u) : u 2Mg � h (z) � inf fp (w + z)� g (w) : w 2Mg :

Claim 1. a (z;M) = sup f�p (u� z) + g (u) : u 2Mg and b (z;M) = inf fp (w + z)� g (w) :
w 2Mg exist in A, they are unique, and a (z;M) � b (z;M).

Proof of Claim 1. Since g 2 P , for every u;w 2M

g (u) + g (w) = g (u+ w) � p (u+ w) = p (u� z + w + z) � p (u� z) + p (w + z)

that is, �p (u� z) + g (u) � p (w + z) � g (w). Then A (z;M) = f�p (u� z) + g (u) : u 2Mg
is bounded above and every element p (w + z) � g (w) of A is an upper bound. By Dedekind
completeness, the least upper bound a (z;M) of A (z;M) exists in A, it is unique, and a (z;M) �
p (w + z)� g (w) for all w 2M . Analogously, B (z;M) = fp (w + z)� g (w) : w 2Mg admits a
unique greatest lower bound b (z;M), so that

inf fp (w + z)� g (w) : w 2Mg = b (z;M) � a (z;M) = sup f�p (u� z) + g (u) : u 2Mg

as wanted. �

Claim 2. For each c 2 [a (z;M) ; b (z;M)] the function

hc (x+ az) = g (x) + ac 8 (x; a) 2M �A

is a well de�ned A-linear form hc : N ! A such that hcjM = g and hc (y) � p (y) for all y 2 N .

This claim concludes the proof which, so far, has been identical to the one of the Hahn-
Banach Theorem.8 When A = R, the proof of Claim 2 is very simple: hc is obviously well
de�ned, linear, and it extends g; while the invertibility of all a 2 R+n f0g, together with the
positive homogeneity of g and p, guarantees that

�p (u� z)+g (u) � c = hc (z) = c � p (w + z)�g (w) 8u;w 2M =) hc (y) � p (y) 8y 2 N:

In our case, the proof Claim 2 is more delicate and requires some lemmata.

Lemma 1. Let A be Stonean algebra, then Ce =
�
v 2 [0; e] : v2 = v

	
.

8See, e.g., Brezis [Br, pages 1�3].
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Proof. If v 2 Ce, then e� v 2 Ce, and e� v � 0 implies v � e. But A is an Archimedean
f -algebra with multiplicative unit, then v ? u if and only if vu = 0 (see [AlBu, page 131]), thus

v ^ (e� v) = 0 =) v ? (e� v) =) v (e� v) = 0 =) v = v2:

Conversely, if v 2 [0; e] and v2 = v, then v � 0 and v � e, that is, e � v � 0. Since A is an
Archimedean f -algebra with multiplicative unit, then

v2 = v =) v (e� v) = 0 =) v ? (e� v) =) v ^ (e� v) = 0:
As wanted. �

Let S be an extremally disconnected compact Hausdor¤space and C1 (S) the collection of all
continuous functions ' : S ! [�1;1] for which the open set dom (') = fs 2 S : �1 < ' (s) <1g
is dense in S. Given '; 2 C1 (S), de�ne '+ and ' as the unique elements of C1 (S) such
that for every s 2 dom (') \ dom ( )

('+  ) (s) = ' (s) +  (s) and (' ) (s) = ' (s) (s) :

Endowed with these operations and the pointwise order, C1 (S) is a Dedekind complete f -
algebra with unit 1S (see [dJvR, page 122] and Luxemburg and Zaanen [LuZa, pages 295 and
323]) that contains C (S) as a subalgebra, notice that the operations in C (S) coincide with the
usual pointwise ones.

Lemma 2. If A is a Stonean algebra, then there exist an extremally disconnected compact
Hausdor¤ space S and a multiplicative Riesz isomorphism

T : A ! Â
a 7! â

of A onto a solid f-subalgebra Â of C1 (S) such that ê = 1S.

The proof is omitted, since it readily follows by the versions of the Ogasawara-Maeda The-
orem of [dJvR, Theorem 15.9], or [AlBu, Theorem 2.64], and the fact that since Â is an order
dense Riesz subspace of the Archimedean Riesz space C1 (S) and Â is Dedekind complete in its
own right, then Â is an ideal of C1 (S) (see [dJvR, Lemma 13.21] or [AlBu, Theorem 2.31]).
In what follows, Lemmata 1 and 2 will be repeatedly used without reference.

Lemma 3. Let A be a Stonean algebra.

(i) If a � "e for some " 2 R++, then a 2 A++.
(ii) For every a 2 A there exists v 2 Ce such that va = a+.

Proof. (i) Notice that "�1a � e � 0, then by [dJvR, Corollary 15.10] there exists b 2 A
such that

�
"�1a

�
b = e, but then a

�
"�1b

�
=
�
"�1a

�
b = e and "�1b = a�1.

(ii) Let a 2 A and set V = fs 2 S : â (s) > 0g. Since â is continuous and S is extremally
disconnected, then V is a clopen set in S and

(3.4) fs 2 S : â (s) > 0g � V � fs 2 S : â (s) � 0g

next we show that 1V 2 Â and 1V â = â+.
Since V is clopen, then 1V 2 C (S) � C1 (S). Since Â is an ideal of C1 (S), then j1V j �

j1S j = 1S 2 Â implies 1V 2 Â. By de�nition, 1V â is the only  2 C1 (S) such that
(3.5)  (s) = 1V (s) â (s) 8s 2 dom (1V ) \ dom (â) = dom (â) :
But the function ' : S ! [�1;1] de�ned by ' (s) = 1V (s) â (s) for all s 2 S is continuous. In
fact, given any net s� ! s in S,

� if s 2 V , then ' (s) = 1V (s) â (s) = â (s) and, since V is open, there exists �V such
that s� 2 V for all � % �V , so that ' (s�) = 1V (s�) â (s�) = â (s�) for all � % �V , but
â (s�)! â (s) and hence ' (s�)! ' (s);
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� else s 2 V c, and ' (s) = 1V (s) â (s) = 0 and, since V c is open, there exists �V such
that s� 2 V c for all � % �V , so that ' (s�) = 1V (s�) â (s�) = 0 for all � % �V , and
hence ' (s�)! ' (s).

Now, the continuous functions '; : S ! [�1;1] coincide on dom (â) which is dense in S,
thus

(1V â) (s) =  (s) = ' (s) = 1V (s) â (s) 8s 2 S:
In turn, by (3.4),

� if â (s) > 0 then s 2 V and (1V â) (s) = 1V (s) â (s) = â (s) = sup fâ (s) ; 0g =
(sup fâ; 0g) (s) = â+ (s);

� if â (s) = 0 then (1V â) (s) = 1V (s) â (s) = 0 = sup fâ (s) ; 0g = (sup fâ; 0g) (s) = â+ (s);
� if â (s) < 0 then s 2 V c and (1V â) (s) = 1V (s) â (s) = 0 = sup fâ (s) ; 0g = (sup fâ; 0g) (s) =
â+ (s);

that is, 1V â = â+.

Since T�1 : Â ! A is a multiplicative Riesz isomorphism too, by setting v = T�1 (1V ), we
have that

� 0 � 1V � 1S implies T�1 (0) � T�1 (1V ) � T�1 (1S), that is, 0 � v � e,
� (1V )2 = 1V implies vv = T�1 (1V )T

�1 (1V ) = T�1 (1V 1V ) = T�1 (1V ) = v,
� 1V â = â+ implies va = T�1 (1V )T

�1 (â) = T�1 (1V â) = T�1 (â+) =
�
T�1 (â)

�+
= a+,

that is, v 2 Ce and va = a+. �
Lemma 4. Let g,M , z, a (z;M), b (z;M) be de�ned as above, then, for each c 2 [a (z;M) ; b (z;M)],

(3.6) g (x) + ac � p (x+ az) 8 (x; a) 2M �A:

Proof. Arbitrarily choose x 2M . Let a � 0, then a+ n�1e � n�1e belongs to A++ for all
n 2 N by Lemma 3.

Since c � inf fp (w + z)� g (w) : w 2Mg, then

c � p
��
a+ n�1e

��1
x+ z

�
� g

��
a+ n�1e

��1
x
�

8n 2 N

by (3.2),
�
a+ n�1e

�
c � p

�
x+

�
a+ n�1e

�
z
�
� g (x) � p (x+ az)� g (x) + n�1p (z) and

g (x) + ac� p (x+ az) � n�1 jp (z)� cj 8n 2 N
since A is Archimedean, then g (x) + ac� p (x+ az) � 0.

Since, c � sup f�p (u� z) + g (u) : u 2Mg, then

c � �p
��
a+ n�1e

��1
x� z

�
+ g

��
a+ n�1e

��1
x
�

8n 2 N

by (3.2), �
�
a+ n�1e

�
c � p

�
x�

�
a+ n�1e

�
z
�
� g (x) and

g (x)� ac� p (x� az) � n�1 jp (�z) + cj 8n 2 N
so that g (x)� ac� p (x� az) � 0. Summing up, we have
(3.7) g (x)� ac � p (x� az) 8a � 0:

Now take any a 2 A. By Lemma 3, there exists v 2 Ce such that va = a+, also e�v 2 Ce and
(e� v) a = a� a+ = �a�, thus

va+ = vva = va = a+(3.8)

� (e� v) a� = (e� v) (e� v) a = (e� v) a = �a�:(3.9)

But then (3.2), (3.7), and (3.8) imply

vg (x) + a+c = v
�
g (x) + a+c

�
� vp

�
x+ a+z

�
= p

�
vx+ va+z

�
= p (vx+ vaz) = vp (x+ az)

while setting �v = e� v � 0, (3.2), (3.7), and (3.9) imply
�vg (x)� a�c = �v

�
g (x)� a�c

�
� �vp

�
x� a�z

�
= p

�
�vx� �va�z

�
= p (�vx+ �vaz) = �vp (x+ az)
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and addition of the two above inequalities delivers (3.6). �

Proof of Claim 2. Arbitrarily choose c 2 [a (z;M) ; b (z;M)]. Assume u + az = w + bz
for some u;w 2 M and a; b 2 A, then (u� w) + (a� b) z = 0 and ((u� w) ; (a� b)) 2 M � A,
by (3.6)

g (u� w) + (a� b) c � p ((u� w) + (a� b) z) = p (0) = 0

whence g (u) + ac � g (w) + bc, and analogously, g (w) + bc � g (u) + ac. Therefore

hc : N ! A
x+ az 7! g (x) + ac

is well de�ned, and (3.6) guarantees hc (y) � p (y) for all y 2 N . Obviously, hc is A-linear and
extends g.

4. Positive extensions

In this section, as a simple, but important, corollary of Theorem 2 we obtain a version of
the Kantorovich Extension Theorem.9

Theorem 3. Let A be a Stonean algebra, E be an ordered A-module, M be a majorizing
submodule, and f : M ! A be a positive A-linear form. Then there exists a positive A-linear
form g : E ! A such that gjM = f .

4.1. Proof of Theorem 3. We will repeatedly use the fact that for any two nonempty
index sets I and J , if a = infi2I ai and b = infj2J bj exist in A, then by [LuZa, Theorem 13.1]

(4.1) a+ b = inf fai + bj : i 2 I and j 2 Jg :
For each x 2 E, set

Mx = fu 2M : u � xg
p (x) = inf

u2Mx

f (u)

that is, p (x) = inf ff (u) :M 3 u � xg. It is routine to check that p is well de�ned, monotone,10
p (z) = f (z) for all z 2M , and p is subadditive.11

Before applying Theorem 2, we need to check that

(4.2) p (ax) = ap (x) 8x 2 E and 8a 2 A++ [ Ce:
First notice that

p (x+ z) = p (x) + f (z) = p (x) + p (z) 8 (x; z) 2 E �M:

In fact, u 2Mx implies M 3 u+ z � x+ z and u+ z 2Mx+z and, conversely, w 2Mx+z implies
w = (w � z) + z with w � z = u 2Mx, that is, Mx+z =Mx + z; therefore, by (4.1),

p (x+ z) = inf f (Mx+z) = inf f (Mx + z) = inf
u2Mx

ff (u) + f (z)g = p (x) + f (z) :

In turn, this allows to show that, given a 2 A,
(4.3) if p (ax) = ap (x) for all x 2 E+, then p (ay) = ap (y) 8y 2 E:
In fact, for each y 2 E there exists z 2M such that �y � z, then y + z � 0, therefore
p (ay) + af (z) = p (ay + az) = p (a (y + z)) = ap (y + z) = a (p (y) + f (z)) = ap (y) + af (z) :

9The de�nitions of ordered A-module E and positive A-linear form f :M ! A are formally identical to those
of ordered vector space and positive linear form, where the real �eld R is replaced by A. Recall that a linear
subspace M � E (and in particular an A-submodule) is majorizing if and only if for each x 2 E there exists
z 2M such that x � z.

10If x � y, then Mx �My, f (Mx) � f (My), and p (x) = inf f (Mx) � inf f (My) = p (y).
11By (4.1), p (x) + p (y) = inf ff (u) + f (w) : u 2Mx and w 2Myg = inf ff (u+ w) : u 2Mx and w 2Myg,

but u + w 2 Mx+y for every u 2 Mx and w 2 My, thus f (u+ w) 2 f (Mx+y); hence f (Mx+y) contains
ff (u+ w) : u 2Mx and w 2Myg and its in�mum, inf f (Mx+y) = p (x+ y), is smaller than p (x) + p (y).
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Now let x 2 E+, v 2 Ce, and set �v = e� v 2 Ce, clearly

vp (x) + �vp (x) = p (x) = inf fvf (z) + �vf (z) :M 3 z � xg
= inf ff (vz) + f (�vz) :M 3 z and vz � vx and �vz � �vxg :

But for every z 2M such that vz � vx and �vz � �vx, vz 2Mvx and �vz 2M�vx; then

f (vz) + f (�vz) 2 ff (u) + f (w) : u 2Mvx and w 2M�vxg

that is, ff (vz) + f (�vz) :M 3 z and vz � vx and �vz � �vxg � ff (u) + f (w) : u 2Mvx and w 2M�vxg
and

p (x) = inf ff (vz) + f (�vz) :M 3 z and vz � vx and �vz � �vxg
� inf ff (u) + f (w) : u 2Mvx and w 2M�vxg = p (vx) + p (�vx)

by (4.1) again. The converse inequality follows by subadditivity of p, in fact, p (x) = p (vx+ �vx) �
p (vx) + p (�vx), summing up,

vp (x) + �vp (x) = p (x) = p (vx) + p (�vx) :

Now, vMx �Mvx, and so vp (x) = v inf f (Mx) � inf vf (Mx) = inf f (vMx) = inf ff (vz) : z 2Mxg,
and

(4.4) inf ff (vz) : z 2Mxg � inf ff (vu) :M 3 u and vu � vxg

in fact, if u 2 M and vu � vx, then taking any w 2 Mx we have �vw � �vx, and setting
zuv = vu+ �vw 2M , it follows

M 3 zuv � vx+ �vx = x and f (vzuv) = f (vu)

hence inf ff (vz) :M 3 z � xg � f (vu), but this is true for every u 2 M such that vu � vx.
We have shown

vp (x) � inf ff (vu) :M 3 u and vu � vxg :
Moreover, for each w 2Mvx, since w � vx � 0, we have w = ew � vw � v2x = vx, so that

f (w) � f (vw) � inf ff (vu) :M 3 u and vu � vxg

and vp (x) � inf ff (vu) :M 3 u and vu � vxg � infw2Mvx f (w) = p (vx). Since this is true for
a generic v 2 Ce, then it also holds for �v, we conclude

vp (x) + �vp (x) = p (vx) + p (�vx) and vp (x) � p (vx) and �vp (x) � p (�vx)

but this implies vp (x) = p (vx) and �vp (x) = p (�vx).12 Together with (4.3) this shows (4.2) for
all a 2 Ce.

If a 2 A++, then a�1 2 A++.13 Moreover, aMx =Max for all x 2 E.14 As a consequence

ap (x) = a inf f (Mx) � inf af (Mx) = inf f (aMx) = inf f (Max) = p (ax)

and hence ap (x) � p (ax) for all x 2 E and all a 2 A++. Therefore,

a�1p (ax) � p
�
a�1ax

�
= p (x) i.e. p (ax) � ap (x) 8a 2 A++ and x 2 E

this shows (4.2) for all a 2 A++. By Theorem 2, we have that there exists an A-linear form
g : E ! A such that gjM = f and g (x) � p (x) for all x 2 E. In particular for every x � 0,
g (�x) � p (�x) � p (0) = 0 and g (x) � 0.

12a1+a2 = b1+b2 and a1 � b1 and a2 � b2, imply a1 = b1+(b2 � a2) and b2�a2 � 0 so a1 � b1, analogously
a2 = (b1 � a1) + b2 and b1 � a1 � 0 so a2 � b2:

13Set b = a�1, then e = a
�
b+ � b�

�
. But b+ ^ b� = 0, A is an f -algebra, and a � 0, then ab+ ^ b� = 0 and

ab+ ^ ab� = 0. Therefore e = ab+ � ab� and ab+ ^ ab� = 0, so that ab+ = e+ = e = ab and b = b+.
14E.g. aMx �Max, a�1Max �Mx, a

�
a�1Max

�
� aMx, Max � aMx.
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5. The strong order topology

In this section a novel topology on Stonean algebras is de�ned. This topology coincides with
the norm topology when A is a unitary algebra (see [dJvR]), and with the topology introduced
by [FKV] when A = L0 (G). Its de�nition and properties are analogous to those of the usual
topology of the real line. More importantly, it will allow us to develop a natural duality theory
for modules over f -algebras in the next section.

The set of positive invertibles A++ of a Stonean algebra has remerkable properties.15

� A++ is a sublattice of A;
� A++ is a commutative l-group with unit e, see Birkho¤ [Birk];
� A++ is contained in the set of all weak order units;
� A++ contains the set of all strong order units.16

Example 1. Let S be an extremally disconnected compact Hausdor¤ space. If A = C1 (S),

A++ = f' 2 C1 (S) : [' > 0] is dense in Sg
coincides with the set of all weak order units of A. While, when the principal ideal Ae = C (S)
of A is considered,

(Ae)
++ = f' 2 C (S) : [' > 0] = Sg

coincides with the set of all strong order units of Ae which is strictly included in Ae \A++.

Needless to say that, if A = R, then A++ = R++. The above properties suggest that this
analogy is rather strong. The next proposition seems to be conclusive in this respect. We will
often denote by r a generic element of A++.

Proposition 3. Let A be a Stonean algebra, and set

a� b () a� b 2 A++

then:
(i) r � 0 () r 2 A++;
(ii) if a 2 A and a � r � 0, then a� 0;
(iii) � is a strict partial order (that is, an antire�exive and transitive binary relation);
(iv) if a� b, then a+ c� b+ c for all c 2 A and ra� rb for all r 2 A++ [ R++.

Proof. The only non-routine point is (ii), which in turn implies that A++ is closed under
addition, and since A++ is also closed under multiplication, the other properties follow.

(ii) By Lemma 2, A can be considered as a f -subalgebra and an ideal of C1 (S), with unit
1S , for some extremally disconnected, compact, and Hausdor¤ space S. Since r is positive and
invertible in A, it is positive and invertible in C1 (S), then [r > 0] is dense in S. But a � r � 0
implies [r > 0] � [a > 0], then [a > 0] is dense in S and a is positive and invertible in C1 (S).
For each s in the open and dense [r > 0] \ dom (r) \ [a > 0] \ dom (a)

r�1 (s) =
1

r (s)
� 1

a (s)
= a�1 (s)

then 0 � a�1 � r�1. Since A++ is a group, r�1 2 A++ � A, but A is an ideal of C1 (S) and
therefore a�1 2 A (because

��a�1�� � ��r�1��). �

We call� the strong order on A (in analogy with the strong order on Rn). De�ne, for every
a 2 A and r 2 A++,

B (a; r) = fb 2 A : jb� aj � rg and �B (a; r) = fb 2 A : jb� aj � rg
and notice that:

15See again [Za, Theorem 142.2].
16If a is a strong order unit, there exists n 2 N such that na � e � 0, that is, a � n�1e � 0, so a 2 A++ by

Lemma 3.
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� a 2 B (a; r),
� for each b 2 B (a; r) we have B (b; r � jb� aj) � B (a; r),17

� if r1; r2 � 0 and r1 � r2, then B (a; r1) � B (a; r2),18

� for each b 2 B (a1; r1) \B (a2; r2) we have
b 2 B (b; (r1 � jb� a1j) ^ (r2 � jb� a2j)) � B (a1; r1) \B (a2; r2).19

That is fB (a; r) : (a; r) 2 A�A++g is a basis for a topology on A that we call strong order
topology, a�

so! a means that the net a� converges to a in this topology.

Proposition 4. Let A be a Stonean algebra, then:
(i) the strong order topology is the order topology generated by the strong order;
(ii) for each a 2 A, fB (a; r)gr�0 and

�
�B (a; r)

	
r�0 are neighborhood bases for the strong

order topology at a;
(iii) a�

so! a implies a�
o! a;

(iv) if e is a strong unit, the strong order topology coincides with the supnorm topology.

Proof. (i) Notice that jaj � b implies �a � jaj � b and a � jaj � b, then �b� a� b, and
conversely �b� a� b implies b�a; b+a 2 A++, which is a lattice, so that (b� a)^(b+ a)� 0,
that is, b� (a _ �a)� 0 and jaj � b. Therefore

B (a; r) = fb 2 A : �r � b� a� rg = fb 2 A : a� r � b� a+ rg

fb 2 A : c� b� dg =
�
b 2 A : d+ c

2
� d� c

2
� b� d+ c

2
+
d� c
2

�
= B

�
d+ c

2
;
d� c
2

�
for all a; c; d 2 A with c� d and all r 2 A++.20

(ii) Obviously fB (a; r)gr�0 is a neighborhood basis at a. Moreover notice that for every
� 2 (0; 1), B (a; �r) � �B (a; �r) and

b 2 �B (a; �r) () ��r � b� a � �r

but r � �r = (1� �) r � 0, then �r � ��r � �r � r, thus B (a; �r) � �B (a; �r) � B (a; r).
(iii) By (ii), a�

so! a if and only if for every r � 0 there exists �r such that ja� � aj � r for
all � % �r. But when A++ is directed by the inverse order (r1 % r2 if and only if r1 � r2), then
the net de�ned by br = r for all r 2 A++ decreases to 0, denoted br # 0. Thus a�

so! a implies
that there exists br # 0 such that for every r there exists �r such that ja� � aj � br for all � % �r,
that is, a�

o! a.21

(iv) For each a 2 A and every � 2 R++, the closed unit ball �B1 (a; �) induced by the supnorm
k�k1 coincides with �B (a; �e). Thus a�

so! a implies a�
k�k1! a. Conversely, each r 2 A++ is a

strong unit, then there exists n = n (r) 2 N such that e � nr and

�B1

�
a;
1

n

�
= �B

�
a;
1

n
e

�
=

�
s 2 S : jb� aj � 1

n
e

�
� �B (a; r) :

Thus a�
k�k1! a implies a�

so! a. �

17In fact, r � jb� aj � 0 and letting r1 = r � jb� aj, for each c 2 B (b; r1) we have
jc� aj � jc� bj+ jb� aj � r1 + jb� aj = r

but a1 � a2 � a3 implies a3 � a1 � a3 � a2 � 0 that is a1 � a3, whence jc� aj � r.
18In fact, b 2 B (a; r1) () r1 � jb� aj, then r2 � r1 � jb� aj, but a3 � a2 � a1 implies a3 � a1 �

a2 � a1 � 0 that is a3 � a1, whence r2 � jb� aj.
19In fact, r1 � jb� a1j ; r2 � jb� a2j 2 A++ and so

A++ 3 (r1 � jb� a1j) ^ (r2 � jb� a2j) � ri � jb� aij
thus B (b; (r1 � jb� a1j) ^ (r2 � jb� a2j)) � B (b; ri � jb� aij) � B (ai; ri) for i = 1; 2.

20Notice that c � d implies 2�1 (d� c) 2 A++ and that A has no largest and no smallest element since
a+ e� a� a� e for all a 2 A.

21See Abramovich and Aliprantis [AbAl, Exercise 1.2.4].
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Theorem 4. Let A be a Stonean algebra, then the strong order topology is Hausdor¤ and
all operations are continuous.

Proof. We have seen that a�
so! a implies that a�

o! a, and order limits are unique.
Addition and lattice operations. If a�

so! a and b�
so! b, then for each r � 0 there exists �1

such that ja� � aj � 2�1r for all � % �1, there exists �2 such that jb� � bj � 2�1r for all � % �2.
Taking �3 % �1; �2, for all � % �3,

j(a� + b�)� (a+ b)j � ja� � aj+ jb� � bj � r

jja�j � jajj � ja� � aj � 2�1r � r

then a� + b�
so! a+ b, ja�j

so! jaj. Moreover, if � 2 R, then for each r � 0, since a�
so! a, there

exists �4 such that ja� � aj � (1 + j�j)�1 r for all � % �4, thus

j�a� � �aj � j�j ja� � aj �
j�j

1 + j�jr � r

and �a�
so! �a. Continuity of the other lattice operations follows, in fact

a�
_
^b� =

1

2
[(a� + b�)� ja� � b�j]

so! 1

2
[(a+ b)� ja� bj] = a_^b:

Multiplication. Notice that

� jc� � cj
so! 0 if and only if for each r � 0 eventually jc� � cj � r, that is, c�

so! c;
� if d�

so! 0 and eventually jc�j � jd�j, then c�
so! 0;

� if c�
so! c and d� 0, for each r � 0 eventually jc� � cj � d�1r, then

jdc� � dcj � jdj jc� � cj � r

so that dc�
so! dc.

Finally, if a�
so! a and b�

so! b, then ja�b� � abj � ja�b� � a�bj + ja�b� abj � ja�j jb� � bj +
ja� � aj jbj, but ja�j

so! jaj implies that eventually ja�j 2 B (jaj ; e+ jbj), then eventually ja�j �
jaj+ e+ jbj and obviously jbj � jaj+ e+ jbj, whence eventually

ja�b� � abj � (jaj+ e+ jbj) jb� � bj+ ja� � aj (jaj+ e+ jbj)
so! 0

and a�b�
so! ab. �

6. Dual A-modules

Let F be a nonempty subset of A-linear forms on E and w = � (E;F ) the weak topology
generated by F on E once A is endowed with the strong order topology.22 The following
�omnibus theorem�regroups the fundamental properties of w. Recall the F is said to be total
if and only if for each x 6= y in E, there exists f 2 F such that f (x) 6= f (y).

Theorem 5. Let A be a Stonean algebra, E be an A-module, F a nonempty set of A-linear
forms f : E ! A, and w = � (E;F ). Then:

(i) x�
w�! x () f (x�)

so�! f (x) for all f 2 F ;
(ii) w is Hausdor¤ if and only if F is total;
(iii) for every xo 2 E, the sets

Vxo (N; r) =

(
x 2 E : sup

f2N
jf (x)� f (xo)j � r

)
where N is a �nite subset of F and r 2 A++ form a neighborhood basis for w at xo,
and they are A-convex;

(iv) the module operations of sum and scalar product are continuous;

22Thus w is the weakest topology on E that makes all the functions f 2 F continuous.
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(v) the submodule of HomA (E;A) generated by F coincides with the set of all A-linear
forms that are w-continuous.

As usual, HomA (E;A) denotes the module of all A-linear forms from E to A.

6.1. Proof of Theorem 5. Point (i) is true for any weak topology.

Assume F is total. If x�
w�! x and x�

w�! y, then f (x�)
so�! f (x) and f (x�)

so�! f (y) for
all f 2 F , since the strong order topology on A is Hausdor¤, this implies f (x) = f (y) for all
f 2 F , and totality of F implies x = y. Thus w-convergent nets have unique limits, that is, w
is Hausdor¤.

Conversely, if F is not total, there are x 6= y such that f (x) = f (y) for all f 2 F and the
constant net x� � x w-converges both to x and y, and w cannot be Hausdor¤. This proves (ii).

Denote by P0 (F ) the class of all nonempty and �nite subsets of F . For each (N; r) 2
P0 (F)�A++ and each xo 2 E, it is easy to check that

Vxo (N; r) = fx 2 E : jf (x)� f (xo)j � r 8f 2 Ng =
\
f2N

fx 2 E : jf (x)� f (xo)j � rg

=
\
f2N

�
x 2 E : f (x) 2 �B (f (xo) ; r)

	
=
\
f2N

f�1
�
�B (f (xo) ; r)

�
As a consequence, for each (N; r), Vxo (N; r) �

�T
f2N f

�1 (B (f (xo) ; r))
�
3 xo; therefore

Vxo (N; r) is a neighborhood of xo in w;
23 Vxo (N; r) is also A-convex (and hence R-convex), in

fact, let x; y 2 Vxo (N; r) and a 2 [0; e], then for every f 2 N
f (xo)� r � f (x) � f (xo) + r
f (xo)� r � f (y) � f (xo) + r

�
=) f (xo)� r � af (x) + (e� a) f (y) � f (xo) + r

that is, jf (ax+ (e� a) y)� f (xo)j � r and ax+ (e� a) y 2 Vxo (N; r).
Next we show that the class of neighborhoods Vxo = fVxo (N; r) : (N; r) 2 P0 (F )�A++g is

actually a decreasing net in the class Nw
xo of all neighborhoods of xo.

Lemma 5. For every xo 2 E, the relation
(N1; r1) % (N2; r2) () N1 � N2 and r1 � r2

is a direction on P0 (F )�A++ such that
(N1; r1) % (N2; r2) =) Vxo (N1; r1) � Vxo (N2; r2) :

Moreover, each net
�
x(N;r)

	
in E, such that x(N;r) 2 Vxo (N; r) for all (N; r) 2 P0 (F ) � A++,

w-converges to xo.

Proof. Clearly, % is a preorder, moreover,
(N1 [N2; r1 ^ r2) % (N1; r1) ; (N2; r2) 8 (N1; r1) ; (N2; r2) 2 P0 (F )�A++

so that % is a direction and fVxo (N; r)g(N;r) is a net in Nw
xo .

If (N1; r1) % (N2; r2), then N1 � N2 and r1 � r2, thus for each x 2 Vxo (N1; r1)
sup
f2N2

jf (x)� f (xo)j � sup
f2N1

jf (x)� f (xo)j � r1 � r2

so that x 2 Vxo (N2; r2), and Vxo (N1; r1) � Vxo (N2; r2), that is, fVxo (N; r)g(N;r) is decreasing.
Let

�
x(N;r)

	
be a net in E such that x(N;r) 2 Vxo (N; r) for all (N; r). Fix f 2 F , for each

d� 0 there exists
(Nd; rd) := (ffg ; d) 2 P0 (F )�A++

23B (f (xo) ; r) is open in A and each f is continuous.
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such that for all (N; r) % (Nd; rd), since x(N;r) 2 Vxo (N; r) � Vxo (ffg ; d),��f �x(N;r)�� f (xo)�� � d

that is, f
�
x(N;r)

� so�! f (xo). Since this is true for all f 2 F , then x(N;r)
w�! xo. �

Lemma 6. Let (X; �) be a topological space, xo 2 X, fV�g�2� a decreasing net of neighbor-
hoods of xo. The following conditions are equivalent:

(i) fV� : � 2 �g is a neighborhood basis at xo;
(ii) Each net fx�g�2� in X such that x� 2 V� for all � 2 � converges to xo.

Proof. (i) implies (ii). Let fx�g�2� be a net in X such that x� 2 V� for all � 2 �.
For each U 2 N �

xo there exists
�� = �� (U) such that V�� � U . Since fV�g�2� is decreasing,

x� 2 V� � V�� � U for all � % ��, that is, x� ��! xo.
(ii) implies (i). Assume each net fx�g�2� in X such that x� 2 V� for all � 2 � converges to

xo, and per contra fV� : � 2 �g is not a neighborhood basis. Then there exists a neighborhood
U of xo such that U c \ V� 6= ? for all � 2 �. Choose arbitrarily x� 2 U c \ V� for all � 2 �.
Then x�

��! xo and it never meets U 2 N �
xo , which is absurd. �

Summing up: for every xo 2 E, Vxo = fVxo (N; r) : (N; r) 2 P0 (F )�A++g is a neighbor-
hood basis for w at xo consisting of A-convex sets and (iii) holds.

Next we show that operations are continuous, thus also (iv) holds:

� if (x�; y�) �! (x; y) in the w � w topology on E � E, then

x�
w�! x and y�

w�! y =) f (x�)
so�! f (x) and f (y�)

so�! f (y) 8f 2 F

=) f (x�) + f (y�)
so�! f (x) + f (y) 8f 2 F

=) f (x� + y�)
so�! f (x+ y) 8f 2 F

=) x� + y�
w�! x+ y:

� if (a�; x�)! (a; x) in the so� w topology on A� E, then

a�
so�! a and x�

w�! x =) a�
so�! a and f (x�)

so�! f (x) 8f 2 F

=) a�f (x�)
so�! af (x) 8f 2 F

=) f (a�x�)
so�! f (ax) 8f 2 F

=) a�x�
w�! ax:

Finally, we turn to point (v). Clearly, AF is a is a submodule of the module HomwA (E;A) of
all w-continuous A-linear forms and 0 2 AF . Conversely, let f 6= 0 be a w-continuous A-linear
form. Since f is continuous at 0, there exist k 2 N, f1; f2; :::; fk 2 F , and r � 0 such that

(6.1) f (fx 2 E : jfi (x)j � r 8i = 1; :::; kg) = f (V0 (ff1; f2; :::; fkg ; r)) � �B (0; e)

but then for all y 2
Tk
i=1 ker fi, y 2 V0 (ff1; f2; :::; fkg ; r), and so f (y) � �B (0; e), that is,

f

 
k\
i=1

ker fi

!
� �B (0; e)

but f
�Tk

i=1 ker fi

�
is a submodule ofA, therefore f

�Tk
i=1 ker fi

�
= f0g (becauseA is Archimedean)

and
Tk
i=1 ker fi � ker f . Then

fi (y) = fi (z) 8i = 1; :::; k
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implies f (y) = f (z). The map

T : E ! Ak

y 7! (f1 (y) ; f2 (y) ; :::; fk (y))

is an A-module homomorphism and so T (E) is a submodule of Ak. Moreover, the map ' :
T (E) ! A de�ned by ' (f1 (y) ; f2 (y) ; :::; fk (y)) = f (y) is a well de�ned A-linear form. Next
we show that ' is bounded by the A-sublinear function

p (a1; a2; :::; ak) = r�1 sup
i=1:::k

jaij

on Ak. We know that,

(6.2) jfj (x)j � r 8j = 1; :::; k =) jf (x)j � e:

Given a generic y 2 E and a generic n 2 N,

jf (y)j =
�����supi=1:::k jfi (y)j+ 1

nr

r
f

 
r

supi=1:::k jfi (y)j+ 1
nr
y

!�����
=

�����supi=1:::k jfi (y)j+ 1
nr

r

�����
�����f
 

r

supi=1:::k jfi (y)j+ 1
nr
y

!�����
but for each j = 1; :::; k�����fj

 
r

supi=1:::k jfi (y)j+ 1
nr
y

!����� = jfj (y)j
supi=1:::k jfi (y)j+ 1

nr
r

and jfj (y)j � supi=1:::k jfi (y)j+ 1
nr 2 A

++, multiplication by
�
supi=1:::k jfi (y)j+ 1

nr
��1

yields

jfj (y)j
supi=1:::k jfi (y)j+ 1

nr
� e and

�����fj
 

r

supi=1:::k jfi (y)j+ 1
nr
y

!����� � r for all j = 1; :::; k

but then, by (6.2),
���f � r

supi=1:::kjfi(y)j+ 1
n
r
y
���� � e and

jf (y)j =
�����supi=1:::k jfi (y)j+ 1

nr

r

�����
�����f
 

r

supi=1:::k jfi (y)j+ 1
nr
y

!����� � r�1 sup
i=1:::k

jfi (y)j+
1

n
e:

Since A is Archimedean, then jf (y)j � r�1 supi=1:::k jfi (y)j for all y 2 E. Since for every
(a1; a2; :::; ak) 2 T (E) there exists y 2 E such that (a1; a2; :::; ak) = (f1 (y) ; f2 (y) ; :::; fk (y)),24���������'

0BBB@
a1
a2
...
ak

1CCCA
��������� =

���������'
0BBB@

f1 (y)
f2 (y)
...

fk (y)

1CCCA
��������� = jf (y)j � r�1 sup

i=1:::k
jfi (y)j = p

0BBB@
a1
a2
...
ak

1CCCA :

By Theorem 2 there exists an A-linear extension  : Ak ! A of '. Therefore, for every x 2 E,

f (x) = '

0BBB@
f1 (x)
f2 (x)
...

fk (x)

1CCCA =  

0BBB@
f1 (x)
f2 (x)
...

fk (x)

1CCCA =  

0BBB@
f1 (x)
0
...
0

1CCCA+ :::+  
0BBB@

0
0
...

fk (x)

1CCCA

=  

0BBB@
e
0
...
0

1CCCA f1 (x) + :::+  

0BBB@
0
0
...
e

1CCCA fk (x) =
kX
i=1

bifi (x)

24For notational convenience we indi¤erently use rows or columns to denote the elements of Ak.
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where bi =  
�
(�ije)

k
j=1

�
and �ij is the Kronecker delta, that is, f =

kX
i=1

bifi 2 AF .

7. Normed A-modules

In this section the strong order is used to de�ne a topology on a normed A-module. Like
in the previous one, this topology turns out to be very well behaved in terms of continuity of
A-linear forms, and the analogy with (normed) vector spaces remains completely faithful.

The de�nition of a norm k�k : E ! A+ on an A-module E is again formally identical to the
usual one, where the real �eld R is replaced by A, and it generates a topology with basis

BE (x; r) = fy 2 E : ky � xk � rg 8x 2 E and 8r � 0

�BE (x; r) is de�ned analogously (with � instead of �). It is easy to show that:
� BE (x; r) = fy 2 E : ky � xk 2 BA (0; r)g = x+BE (0; r);
� x 2 BE (x; r),
� for each y 2 BE (x; r) we have BE (y; r � ky � xk) � BE (x; r),
� if r1; r2 � 0 and r1 � r2, then BE (x; r1) � BE (x; r2),
� for each y 2 BE (x1; r1) \ BE (x2; r2), y 2 BE (y; (r1 � ky � x1k) ^ (r2 � ky � x2k)) �
BE (x1; r1) \BE (x2; r2),

� fBE (x; r)gr�0 and
�
�BE (x; r)

	
r�0 are neighborhood bases for the norm topology at

x;

� x�
k�k! x () kx� � xk

so! 0;
� the norm topology is Hausdor¤;
� the module operations of sum and scalar product are continuous;
� if e is a strong order unit, then

kxke = min f� � 0 : kxk � �eg 8x 2 E
is a (real valued) norm on E and it generates the the same topology as k�k.25

Proposition 5. Let A be Stonean algebra (with the strong order topology), E be a normed A-
module (with the norm topology), and f : E ! A be an A-linear form. The following properties
are equivalent:

(i) f is continuous;
(ii) f is continuous at 0;
(iii) there exists r � 0 such that

jf (x)j � r kxk 8x 2 E;
(iv) f is bounded, that is, there exists a 2 A such that

jf (x)j � a kxk 8x 2 E:

Proof. We only prove that (ii) implies (iii), the rest being routine. For every x 2 E, n 2 N,
and r � 0, we have the following chain of implications

kxk+ n�1e� kxk =) e� kxk
�
kxk+ n�1e

��1
=) r �

r �kxk+ n�1e��1 x :
By continuity at 0, there exists r � 0 such that f (BE (0; r)) � BA (0; e) � �BA (0; e), but we
have just shown that r

�
kxk+ n�1e

��1
x 2 BE (0; r) for all x 2 E and n 2 N, then���f �r �kxk+ n�1e��1 x���� � e =) r

�
kxk+ n�1e

��1 jf (x)j � e =) jf (x)j � r�1
�
kxk+ n�1e

�
which yields jf (x)j � r�1 kxk because A is Archimedean. �

25By de�nition kxke is the k�k1 of kxk 2 A, it is actually a norm on E, when the latter is regarded as a vector

space, and x�
k�k! x () kx� � xk so! 0 () kx� � xk

k�k1! 0 () k(kx� � xk)k1 ! 0 () kx� � xke ! 0.
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Following the usual analogy, it is easy to show that the set of all bounded A-linear forms on
a normed A-module E form an A-module E� that can be normed by setting

kfk� = min
�
a 2 A+ : jf (x)j � a kxk 8x 2 E

	
= sup
kxk�e

jf (x)j

for all f 2 E�.26 At this point, we can state, without proof, the corresponding version of the
Hahn Extension Theorem.

Proposition 6. Let A be Stonean algebra, E be a normed A-module, L � E be a submodule,
and f : L ! A be a continuous A-linear form. Then there exists a continuous A-linear form
g : E ! A such that gjL = f and kgk�E� = kfk

�
L�.

The only non-routine observation in the proof is that the topology inherited by L as a
submodule of E coincides with the one generated by the restriction to L of the norm of E.

We conclude with a pioneer result of Haydon, Levy, and Raynaud [HLR] showing that
when the Stonean algebra A = L0 (G) is considered, a �fth equivalent point can be added to
Proposition 5. Before stating it we recall that

dL0(G) (a; b) =

Z


(ja� bj ^ 1) dP 8a; b 2 A

is a metric on A that induces the topology of convergence in probability.

Proposition 7 (Haydon-Levy-Raynaud). Let A = L0 (G) and E be a normed A-module.
Then the translation invariant metric

dE (x; y) = dL0(G) (kx� yk ; 0) 8x; y 2 E

induces a linear topology on E,27 and the following properties are equivalent for an A-linear form
f : E ! A:

(iv) f is bounded;
(v) f is dE-dL0(G)-continuous.

8. Modules of random variables

Like in our opening example, the focus of this �nal section is on L0 (G)-submodules of L0 (F)
which we call modules of random variables. They form a large family of �concrete�A-modules
that proved to be useful in �nancial modelling.28

Remark 3. As we already observed, A = L0 (G) is a Stonean algebra, moreover:
� e = 1;
� A++ = fa 2 L0 (G) : a (!) > 0 for almost all ! 2 
g;29
� Ce = f1G : G 2 Gg.30

The L0 (G)-linearity of conditional expectations and the duality results of Section 6 suggest
the following de�nition.

26The veri�cation of the above claims builds on a remarkable property of Stonean algebras: if B � A is
nonempty and bounded above (resp. below) and c 2 A+, then c supB = sup (cB) (resp. c inf B = inf (cB)). In
fact, the map a 7! ca is a positive orthomorphism of A ([AlBu, Theorem 2.62]), as such it is an order continuous
([AlBu, Theorem 2.44]) lattice homomorphism ([AlBu, page 115]), and therefore it preserves arbitrary suprema
and in�ma ([AlBu, page 106]).

27It also makes the module scalar product continuous: if an
dL0(G)�! a in A and xn

dE�! x, then anxn
dE�! ax.

28Like in the cited [HaRi] and in the more recent Frittelli and Maggis [FrMa] and Filipovic, Kupper, and
Vogelpoth [FKV2].

29With the usual abuse of notation, a (�) denotes the generic representative of the equivalence class a. We
tacitly choose real-valued and G-measurable representatives in what follows.

30Here the converse abuse is performed by writing a representative instead of the corresponding equivalence
class.
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Definition 3. A pair (L;L0) of modules of random variables is called a conditional dual
pair if and only if:

(i) EG jxyj 2 L0 (G) for all (x; y) 2 L� L0;
(ii) EG (xy) = 0 for all y 2 L0 implies x = 0;
(iii) EG (xy) = 0 for all x 2 L implies y = 0.

In this case, we set
hx; yiG = EG (xy) 8 (x; y) 2 L� L0

and by identy�ng y 2 L0 with
h�; yiG : L ! L0 (G)

x 7! hx; yiG

L0 can be seen as a total submodule of HomL0(G) (L;L0 (G)).31 By the previous Theorem 5,
L0 = HomwL0(G) (L;L0 (G)) when L is endowed with the � (L;L

0) topology w.

Corollary 1. If (L;L0) is a conditional dual pair, then � (L;L0) is Hausdor¤, and for every
� (L;L0)-continuous L0 (G)-linear form � on L, there exists one and only one y 2 L0 such that

(8.1) � (x) = EG (xy) 8x 2 L:
Conversely, (8.1) de�nes a � (L;L0)-continuous L0 (G)-linear form � on L, for every y 2 L0.

In particular, when the conditional dual pair
�
LGp (F) ; LGq (F)

�
with 1 � p <1 is considered,

the above result shows that LGq (F) is not only the �strong�dual of LGp (F), as shown in Theorem
1, but also its �weak�dual. This suggests an even deeper analogy between classical Lp-spaces
and conditional Lp-spaces. The �nal part of this paper is speci�cally devoted to investigate this
analogy in greater detail.

8.1. The conjugate space of LGp (F), 1 � p <1. We can now complete the conditional
�Riesz�representation Theorem 1.

Theorem 6. Let p 2 [1;1) and q be the conjugate exponent of p. The operator
I : LGq (F) ! LGp (F)

�

y 7! h�; yiG

is a module isomorphism such that kykGq = kI (y)k
� for all y 2 LGq (F).

Proof. Theorem 1 guarantees that I is well de�ned and onto and it is easy to check it is a
homomorphism. Next we show that it preserves the L0 (G)-norms of the two spaces.

Let y 2 LGq (F) and set Iy = I (y). By the conditional Hölder inequality

jIy (x)j � EG jxyj � kykGq kxkGp 8x 2 LGp (F)

and hence kIyk� � kykGq for all p 2 [1;1).
If p > 1, let z = jyjq�1 sgn (y) and notice that jzj = jyjq�1, therefore

jzjp = jyjq and zy = jyjq�1 sgn (y) y = jyjq

then EG jzjp = EG jyjq 2 L0 (G) and so z 2 LGp (F), moreover

jIy (z)j =
��EG (zy)�� = EG jyjq :

Now if a 2 L0 (G)+ is such that jIy (x)j � a kxkGp for all x 2 LGp (F), then taking x = z we obtain

a
�
EG jyjq

� 1
p = a kzkGp � jIy (z)j = EG jyjq :

31Notice that point (i) of the de�nition guarantees that h�; �iG is well de�ned; while points (ii) and (iii) are
automatically satis�ed if L0 and L contain the (equivalence classes of) indicators of all elements of F .
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But notice that, given a; b 2 L0 (G)+,

ab
1
p � b () a � b

1
q

which, for b = EG jyjq, delivers a � kykGq . The arbitrariness of a delivers

kIyk� = inf
n
a 2 L0 (G)+ : jIy (x)j � a kxkGp 8x 2 LGp (F)

o
� kykGq :

Else p = 1. Let D =
n
a 2 L0 (G)+ : jIy (x)j � a kxkG1 8x 2 LG1 (F)

o
, we already observed that

kykG1 2 D. Assume, per contra, that there exists a 2 D such that kykG1 � a, then for all
x 2 LG1 (F)

jIy (x)j � a kxkG1 and jIy (x)j � kyk
G
1 kxk

G
1

imply jIy (x)j � a kxkG1 ^kyk
G
1 kxk

G
1 =

�
a ^ kykG1

�
kxkG1 and so b = a^kykG1 2 D and b < kykG1.

Since b 2 L0 (G), b � jyj would imply b � kykG1 > b, then F = f! 2 
 : b (!) < jy (!)jg 2 F and
1F b < 1F jyj. Set z = 1F sgn (y) 2 LG1 (F) and notice that jzj = 1F , then

jIy (z)j =
��EG (1F sgn (y) y)�� = EG (1F jyj)

(but EG is strictly positive, so) > EG (1F b) = bEG (1F ) = b kzkG1
which contradicts b 2 D. Therefore kykG1 is the minimum of D, that is, kykG1 = kIyk�.

Finally, I is injective because I (y) = 0 implies kykGq = kI (y)k
� = 0, and so ker (I) = f0g.�

8.2. Metric completeness of LGp (F), 1 � p < 1. In this section we consider LGp (F)
endowed with its Lévy metric

dp (x; y) = dL0(G)

�
kx� ykGp ; 0

�
= E 

�
kx� ykGp

�
8x; y 2 LGp (F)

where  (t) = t ^ 1 for all t 2 R+. By the conditional Hölder inequality kxkG1 � kxk
G
r � kxk

G
p

if 1 � r � p < 1. Therefore by the conditional Jensen inequality and since  is concave and
monotone, for every x 2 LGp (F),

E 
�
kxkGp

�
� E 

�
kxkG1

�
= E 

�
EG jxj

�
� E 

�
EG (jxj ^ 1)

�
� E

�
EG (jxj ^ 1)

�
= E (jxj)

and so

dp (x; y) = E 
�
kx� ykGp

�
� E (jx� yj) = dL0(F) (x; y) 8x; y 2 LGp (F) :

We can conclude that every Cauchy sequence in LGp (F) is a Cauchy sequence in L0 (F).

Theorem 7. For every p 2 [1;1),
�
LGp (F) ; dp

�
is a Frechet lattice.

Proof. Let p 2 [1;1). We already observed that LGp (F) is a submodule and hence a vector
subspace of L0 (F), and the topology induced by dp is linear (see Proposition 7).

Moreover if x 2 LGp (F) and y 2 L0 (F), then

(8.2) jyj � jxj =) EG jyjp � EG jxjp

in turn this means that y 2 LGp (F), showing that LGp (F) is an ideal in L0 (F). Inequality (8.2)
also shows that every open ball centered at 0 in

�
LGp (F) ; dp

�
is solid, thus

�
LGp (F) ; dp

�
is a

locally solid Riesz space. At this point we only have to prove completeness.
Let fyng be a Cauchy sequence in LGp (F), it is enough to prove that it admits a subsequence

that converges in LGp (F). Since fyng is also a Cauchy sequence in L0 (F), then it converges in
probability to some x 2 L0 (F) and it admits a subsequence that converges to x a.s., but such
a subsequence is a Cauchy sequence in LGp (F). Therefore, it su¢ ces to prove that if fxng is a



DUALITY OF MODULES OVER f -ALGEBRAS 21

Cauchy sequence in LGp (F) that a.s. converges to x 2 L0 (F) it also converges to x in LGp (F).
For every n 2 N, by the conditional Fatou Lemma

E 

�
p

q
EG jxn � xjp

�
= E 

�
p

r
EG
h
lim
m!1

jxn � xmjp
i�
� E 

�
p

q
limm!1E

G jxn � xmjp
�
:

Moreover,
' =  � p

p
: R+ ! [0; 1]

is continuous and increasing, and so ' (limm!1tm) = limm!1' (tm) for any sequence ftmg �
R+. Thus, for every n 2 N, by the unconditional Fatou Lemma

0 � E 

�
p

q
EG jxn � xjp

�
� E'

�
limm!1E

G jxn � xmjp
�
= E

�
limm!1'

�
EG jxn � xmjp

��
� limm!1E'

�
EG jxn � xmjp

�
= limm!1dp (xn; xm)

and the latter quantity vanishes as n!1 since fxng is a Cauchy sequence in LGp (F).
In particular, for each " 2 (0; 1=3), there is n = n" 2 N such that E

�
p
p
EG jxn � xjp ^ 1

�
<

"2, and by the Markov inequality

P

�
! 2 
 : p

q
EG jxn � xjp (!) > "

�
= P

�
! 2 
 : p

q
EG jxn � xjp (!) ^ 1 > "

�

�
E
�

p
p
EG jxn � xjp ^ 1

�
"

� ":

If, per contra, EG jxjp =2 L0 (G), then there exists G 2 G such that P (G) > 0 and EG jxjp (!) =1
for all ! 2 G. Let " = P (G) =6 and n = n", by the conditional Minkowski inequality and since
xn 2 LGp (F), there exists W 2 F with P (W ) = 1 such that

p

q
EG jxjp (!) � p

q
EG jxnjp (!) + p

q
EG jxn � xjp (!)

and p
p
EG jxnjp (!) 2 R, for all ! 2 W . But then p

p
EG jxn � xjp (!) = 1 for all ! 2 G \W ,

and since P (G \W ) = P (G) = 6" it follows that

" � P

�
! 2 
 : p

q
EG jxn � xjp (!) > "

�
� P

�
! 2 
 : p

q
EG jxn � xjp (!) =1

�
� 6"

a contradiction. We conclude that EG jxjp 2 L0 (G), x 2 LGp (F), and

dp (xn; x) = E 

�
p

q
EG jxn � xjp

�
! 0

as n!1, as wanted. �

Corollary 2. Let p 2 [1;1) and q be the conjugate exponent of p. A map � : LGp (F) !
L0 (G) is a positive L0 (G)-linear form if and only if there exists y 2 LGq (F)

+ such that

(8.3) � (x) = EG (xy) 8x 2 LGp (F) :

Proof. We only prove su¢ ciency. Notice that � : LGp (F) ! L0 (G) is a positive linear
operator between Frechet lattices, therefore by Aliprantis and Border [AlBo, Theorem 9.6], �
is
�
LGp (F) ; dp

�
-
�
L0 (G) ; dL0(G)

�
-continuous. By Proposition 7, � is bounded. As observed in the

proof of Theorem 1, since � is positive, it can be represented in the sense of (8.3) by y 2 LGq (F)
+.

�

First notice that by Theorem 6, y is unique. More importantly the argument we just dis-
cussed leads to the following, very general remark.
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Remark 4. Let E be a normed L0 (G)-module such that the metric dE is complete, and E+
be a dE-closed convex cone such that E = E+�E+. If f : E ! L0 (G) is convex and monotone,
then, by Borwein [Bor, Corollary 2.4], f is dE-dL0(G)-continuous.
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