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Abstract

If the random future evolution of values is modelled in continuous time, then a risk
measure can be viewed as a functional on a space of continuous-time stochastic pro-
cesses. We extend the notions of coherent and convex risk measures to the space of
bounded càdlàg processes that are adapted to a given filtration. Then, we prove repre-
sentation results that generalize earlier results for one- and multi-period risk measures,
and we discuss some examples.
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1 Introduction

The notion of a coherent risk measure was introduced in [ADEH1] and [ADEH2], where it
was also shown that every coherent risk measure on the space of all random variables on a
finite probability space can be represented as a supremum of linear functionals. In [De1]
(see also [De2]), the concept of a coherent risk measure was extended to general probability
spaces, and applications to risk measurement, premium calculation and capital allocation
problems were presented. It turned out that the definitions and results of [ADEH1] and
[ADEH2] have a direct analog in the setting of a general probability space if one restricts
risk measures to the space of bounded random variables. On the space of all random
variables, coherent risk measures can in general only exist if they are allowed to take
the value ∞. In [ADEHK1] and [ADEHK2], the results of [ADEH1] and [ADEH2] were
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generalized to multi-period models. In [FS1] and [FS2] the more general concept of a
convex risk measure was introduced and representation results of [De1] were generalized
to convex risk measures on the space of all bounded variables on a general probability
space.

The purpose of this paper is the study of risk measures that take into account the
future evolution of values over a whole time-interval rather than at just finitely many
times. Our main focus will be on representation results for such risk measures.

We model the future evolution of a discounted value by a stochastic process (Xt)t∈[0,T ],
and we call such a process X a discounted value process. The use of discounted values is
common practice in finance. It just means that we use a numéraire (which may also be
modelled as a stochastic process) and measure all values in multiples of the numéraire. A
few of the many possible interpretations of a discounted valued process are:

- the evolution of the discounted market value of a firm’s equity
- the evolution of the discounted accounting value of a firm’s equity
- the evolution of the discounted market value of a portfolio of financial securities
- the evolution of the discounted surplus of an insurance company

(see also Subsection 2.1 of [ADEHK2]).
Since one might want to build new discounted value processes from old ones by adding

and scaling them, it is natural to let the class of discounted value processes considered for
risk measurement be a vector space. In this paper the class of discounted value processes
is the space R∞ of bounded càdlàg processes that are adapted to the filtration of a
filtered probability space (Ω,F , (Ft)0≤t≤T , P ) that satisfies the usual assumptions. Strictly
speaking, by bounded, we mean essentially bounded, and we identify indistinguishable
processes. In doing so we are referring to the probability measure P . However, the
space R∞ stays invariant if we change to an equivalent probability measure. Hence, by
introducing P , we only specify the set of events with probability zero. For modelling
purposes, the space R0 of all càdlàg processes that are adapted to the filtration (Ft) is
more interesting than R∞. Note that R0 is also invariant under change to an equivalent
probability measure. The reason why in this paper we work with R∞ is that in contrast
to R0, it easily lends itself to the application of duality theory, which will be crucial in the
proof of Theorem 3.3, the main result of this paper. In a forthcoming paper we will study
risk measures on R0 and discuss conditions under which a convex risk measure on R∞
can be extended to R0. Whereas we require coherent and convex risk measures on R∞ to
be real-valued, we will allow coherent and convex risk measures on R0 to take values in
(−∞,∞].

Although we consider continuous-time discounted value processes, the risk measures
treated in this paper are static as we only measure the risk of a discounted value process
at the beginning of the time period. In [ADEHK1], [ADEHK2] and [ES] one can find a
discussion of dynamic risk measures for random variables in a discrete-time framework.
Dynamic risk measures for stochastic processes in a continuous-time setup is the subject
of ongoing research.

The structure of the paper is a follows: Section 2 contains notation and definitions.
In Section 3, we state results on the representation of coherent and convex risk measures
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for bounded càdlàg processes and sketch those proofs that are simple generalizations of
proofs in [De1] or [FS1]. We will also show how results of [De1] and [FS1] can be extended
to representation results for real-valued coherent and convex risk measures on the spaces
Rp :=

{
X ∈ R0 | sup0≤t≤T |Xt| ∈ Lp

}
for p ∈ [1,∞). In Section 4, we give that part of

the proofs of the results of Section 3 which is not a straightforward extension of arguments
from [De1] or [FS1]. Section 5 contains examples of coherent and convex risk measures for
continuous-time stochastic processes.

2 Notation and Definitions

Let T ∈ (0,∞) and (Ω,F , (Ft)0≤t≤T , P ) be a filtered probability space that satisfies the
usual assumptions, that is, the probability space (Ω,F , P ) is complete, (Ft) is right-
continuous and F0 contains all null-sets of F . For all p ∈ [1,∞], we write Lp for the space
Lp(Ω,F , P ).

As in [DM2] we set for an (Ft)-adapted, càdlàg process (Xt)t∈[0,T ] and p ∈ [1,∞],

||X||Rp := ||X∗||p , where X∗ := sup
0≤t≤T

|Xt| .

Obviously, equipped with this norm, the space

Rp :=

X : [0, T ]× Ω → R
X càdlàg
(Ft)-adapted
||X||Rp < ∞


is a Banach space. For a stochastic process b : [0, T ]×Ω → R with right-continuous paths
of finite variation, there exists a unique decomposition b = b+−b− such that b+ and b− are
stochastic processes with right-continuous, non-decreasing paths, and almost surely, the
nonnegative measures induced by b+ and b− on [0, T ] have disjoint support. The variation
of such a process is given by the random variable Var (b) := b+(T )+b−(T ). If b is optional
(predictable), both processes b+ and b− are optional (predictable).

For q ∈ [1,∞], we set

Aq :=

a : [0, T ]× Ω → R2

a = (apr, aop)
apr, aop right continuous, finite variation
apr predictable, apr

0 = 0
aop optional, purely discontinuous
Var (apr) + Var (aop) ∈ Lq

 ,

It can be shown that Aq with the norm

||a||Aq := ||Var (apr) + Var (aop) ||q , a ∈ Aq ,

is also a Banach space. We set

Aq
+ := {a = (apr, aop) ∈ Aq | apr and aop are non-decreasing} .
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It can easily be checked that for all p, q ∈ [1,∞] such that p−1 + q−1 = 1,

〈X, a〉 := E

[∫
]0,T ]

Xt−dapr
t +

∫
[0,T ]

Xtdaop
t

]
(2.1)

is a well-defined bilinear form on Rp ×Aq, and

|〈X, a〉| ≤ ||X||Rp ||a||Aq for all X ∈ Rp and a ∈ Aq . (2.2)

Remark 2.1
It is easy to see that two different elements a and b of Aq induce different linear forms on
Rp. But there exist other pairs of processes in the more general space

Ãq :=

a : [0, T ]× Ω → R2

a = (apr, aop)
apr, aop right continuous, finite variation
apr predictable, apr

0 = 0
aop optional
Var (apr) + Var (aop) ∈ Lq

 ,

that define the same linear form on Rp as a given a ∈ Aq, for instance, (apr + c, aop − c)
for any continuous, adapted, finite variation process c such that c0 = 0 and Var (c) ∈ Lq.
However, if (ãpr, ãop) ∈ Ãq induces the same linear form on Rp as (apr, aop) ∈ Aq, the
process ãop can be split into a purely discontinuous, optional, finite variation process ãd and
a continuous, finite variation process ãc such that ãc

0 = 0. Then, (apr, aop) = (ãpr + ãc, ãd)
and Var (ãop) = Var (ãc) + Var

(
ãd

)
. Hence,

Var (apr) + Var (aop) = Var (ãpr + ãc) + Var(ãd)
≤ Var (ãpr) + Var (ãc) + Var (ãop)−Var (ãc) = Var (ãpr) + Var (ãop) ,

which shows that

||Var (apr) + Var (aop) ||q ≤ ||Var (ãpr) + Var (ãop) ||q .

Definition 2.2 A convex risk measure on R∞ is a mapping ρ : R∞ → R that satisfies
the following properties:

(1) ρ (λX + (1− λ)Y ) ≤ λρ (X) + (1− λ)ρ (Y ), for all X, Y ∈ R∞ and λ ∈ [0, 1]

(2) ρ(X) ≥ ρ(Y ) for all X, Y ∈ R∞ such that X ≤ Y

(3) ρ (X + m) = ρ (X)−m, for all X ∈ R∞ and m ∈ R.

A coherent risk measure on R∞ is a convex risk measure ρ on R∞ that satisfies the
additional property:

(4) ρ (λX) = λρ (X), for all X ∈ R∞ and λ ∈ R+.
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We find it more convenient to work with the negative of a risk measure φ := −ρ. We
call φ the utility functional corresponding to the risk measure ρ. In terms of φ, Definition
2.2 can be rephrased as follows:

Definition 2.2’ A concave money based utility functional on R∞ is a mapping φ : R∞ →
R that satisfies the following properties:

(1) φ (λX + (1− λ)Y ) ≥ λφ (X) + (1− λ)φ (Y ), for all X, Y ∈ R∞ and λ ∈ [0, 1]

(2) φ(X) ≤ φ(Y ) for all X, Y ∈ R∞ such that X ≤ Y

(3) φ (X + m) = φ (X) + m, for all X ∈ R∞ and m ∈ R.

A coherent utility functional on R∞ is a concave money based utility functional ρ on R∞
that satisfies the additional property:

(4) φ (λX) = λφ (X), for all X, Y ∈ R∞ and λ ∈ R+.

We say that a concave money based utility functional φ on R∞ satisfies the Fatou property
if

lim sup
n→∞

φ (Xn) ≤ φ (X)

for every bounded sequence (Xn)n≥1 ⊂ R∞ and X ∈ R∞ such that (Xn −X)∗ P→ 0.

We say that φ is continuous for bounded decreasing sequences if

lim
n→∞

φ(Xn) = φ(X)

for every decreasing sequence (Xn)n≥1 ⊂ R∞ such that (Xn−X)∗ P→ 0 for some X ∈ R∞.

Remark 2.3 It can be deduced from the properties (2) and (3) of Definition 2.2’ that
every concave money based utility functional φ onR∞ is Lipschitz-continuous with respect
to the R∞-norm, that is,

|φ(X)− φ(Y )| ≤ ||X − Y ||R∞ , for all X, Y ∈ R∞ . (2.3)

The acceptance set C corresponding to a concave money based utility functional φ on R∞
is given by

C := {X ∈ R∞ |φ(X) ≥ 0} .

Obviously, it is convex and has the following property: If X, Y ∈ R∞, X ∈ C and X ≤ Y ,
then Y ∈ C as well. If φ is coherent, then C is a convex cone.
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3 Representation results

In this section we give results on the representation of coherent and concave money based
utility functionals on R∞ that extend Theorem 3.2 of [De1] and Theorem 6 of [FS1]. At
the end of the section we also discuss representation results for real-valued concave money
based utility functionals on Rp for p ∈ [1,∞).

In our framework the set

Dσ := {a ∈ A1
+ | ||a||A1 = 1}

plays the role that is played by the set {f ∈ L1 | f ≥ 0 , E [f ] = 1} in the papers [De1] and
[FS1].

Definition 3.1 We call a function γ : Dσ → [−∞,∞) a penalty function if

−∞ < sup
a∈Dσ

γ(a) < ∞ .

Definition 3.2 For a given concave money based utility functional φ on R∞ we define
the conjugate function φ∗ : A1 → [−∞,∞) by

φ∗(a) := inf
X∈R∞

{〈X, a〉 − φ(X)} , a ∈ A1 .

As in [FS1], one can deduce from the translation invariance of φ that for all a ∈ Dσ,

φ∗(a) = inf
X∈C

〈X, a〉 .

Theorem 3.3 The following are equivalent:

(1) φ is a mapping defined on R∞ that can be represented as

φ(X) = inf
a∈Dσ

{〈X, a〉 − γ(a)} , X ∈ R∞ , (3.1)

for a penalty function γ : Dσ → [−∞,∞).

(2) φ is a concave money based utility functional on R∞ whose acceptance set C :=
{X ∈ R∞ |φ(X) ≥ 0} is σ(R∞,A1)-closed.

(3) φ is a concave money based utility functional on R∞ that satisfies the Fatou property.

(4) φ is a concave money based utility functional on R∞ that is continuous for bounded
decreasing sequences.

Moreover, if (1)-(4) are satisfied, then the restriction of φ∗ to Dσ is a penalty function,
φ∗(a) ≥ γ(a) for all a ∈ Dσ, and the representation (3.1) also holds if γ is replaced by φ∗.
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Proof. Here, we prove or sketch a proof of the implications (2) ⇒ (1), (1) ⇒ (3) and (3)
⇒ (4), as well as the second part of the theorem, all of which can be shown by adapting
the corresponding demonstrations in [De1] and [FS1]. For the implication (4) ⇒ (2) we
need a new proof. It is the main mathematical contribution of this paper and is given in
Section 4.

(2) ⇒ (1):
The function

−φ∗ : A1 → (−∞,∞]

can be viewed as a generalized Fenchel transform of the convex function

X 7→ −φ(−X) .

Since φ is translation invariant, it follows from (2) that the set {X ∈ R∞ |φ(X) ≥ m}
is σ(R∞,A1)-closed for all m ∈ R. Therefore, one can extend standard arguments from
convex analysis (see, for instance, the proof of Theorem 3.1 in [Au]) to the locally convex
topological vector space (R∞, σ(R∞,A1)) to conclude that

φ(X) = inf
a∈A1

{〈X, a〉 − φ∗(a)} .

Since φ is not only concave but a concave money based utility functional, it can also be
proved that

φ(X) = inf
a∈Dσ

{〈X, a〉 − φ∗(a)} . (3.2)

For details we refer to the proof of Theorem 5 in [FS1]. Note that it follows from (3.2)
that φ∗ is a penalty function.

(1) ⇒ (3):
It can easily be checked that (3.1) defines a concave money based utility functional φ on
R∞. To see that it satisfies the Fatou property, let (Xn)n∈N be a bounded sequence in

R∞ with
(
Xn − X

)∗ P−→ 0 for some X ∈ R∞. For every ε > 0 there exists an a ∈ Dσ

such that

φ (X) + ε ≥ E

[∫
]0,T ]

Xt−dapr
t +

∫
[0,T ]

Xtdaop
t

]
− γ(a)

= lim
n→∞

E

[∫
]0,T ]

Xn
t−dapr

t +
∫

[0,T ]
Xn

t daop
t

]
− γ(a)

≥ lim sup
n→∞

inf
b∈Dσ

{〈Xn, b〉 − γ(b)}

= lim sup
n→∞

φ(Xn) .

Hence, we have lim supn→∞ φ(Xn) ≤ φ(X), and (3) is proved.
(3) ⇒ (4):

Let (Xn)n≥1 be a decreasing sequence in (R∞) such that (Xn−X)∗ P→ 0 for some X ∈ R∞.
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If (3) is satisfied, then lim supn→∞ φ(Xn) ≤ φ(X), which, by monotonicity (property (2)
of Definition 2.2’) of φ, implies that limn→∞ φ(Xn) = φ(X). Hence, (4) holds as well.

It remains to be shown that if φ is a concave money based utility functional on R∞
that can be represented in the form (3.1) for a penalty function γ : Dσ → [−∞,∞), then
φ∗(a) ≥ γ(a), for all a ∈ Dσ. Note that (3.1) implies that

γ(a) ≤ 〈X, a〉 − φ(X) ,

for all X ∈ R∞ and a ∈ Dσ. Hence, γ(a) ≤ φ∗(a), for all a ∈ Dσ. �

Corollary 3.4 The following are equivalent:

(1) φ is a mapping defined on R∞ that can be represented as

φ(X) = inf
a∈Qσ

〈X, a〉 , X ∈ R∞ , (3.3)

for a non-empty set Qσ ⊂ Dσ.

(2) φ is a coherent utility functional on R∞ whose acceptance set C := {X ∈ R∞ | φ (X) ≥ 0}
is σ

(
R∞,A1

)
-closed.

(3) φ is a coherent utility functional on R∞ that satisfies the Fatou property.

(4) φ is a coherent utility functional on R∞ that is continuous for bounded decreasing
sequences.

Proof. It can easily be verified that (1) implies (3). That (2), (3) and (4) are equivalent
follows directly from Theorem 3.3. Finally, if one of the properties (2), (3) or (4) holds,
then it follows from Theorem 3.3 that for all X ∈ R∞,

φ(X) = inf
a∈Dσ

{〈X, a〉 − φ∗(a)} . (3.4)

Since φ is positively homogenous (property (4) of Definition 2.2’), the conjugate function
φ∗ takes only the values 0 and −∞. Thus, the representation (3.4) can be written in the
form (3.3) for Qσ := {a ∈ Dσ |φ∗(a) = 0}. �

Remark 3.5 Let φ be a coherent utility functional on R∞ that has a representation of
the form (3.3) for a non-empty subset Qσ ⊂ Dσ. Then, the σ(A1,R∞)-closure convQσ of
the convex hull of Qσ induces the same coherent utility functional φ.

Remark 3.6 The set Dσ is contained in the set

D̂σ :=

a : [0, T ]× Ω → R2
a = (al, ar) , al

0 = 0
al, ar measurable, right-continuous, non-decreasing
E

[
al

T + ar
T

]
= 1

 .
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As in (2.1), we set for all X ∈ R∞ and a ∈ D̂σ,

〈X, a〉 := E

[∫
]0,T ]

Xt−dal
t +

∫
[0,T ]

Xtdar
t

]
.

For every a ∈ D̂σ, there exists a unique Π∗a ∈ Dσ such that for all X ∈ R∞,

〈X, a〉 = 〈X, Π∗a〉 . (3.5)

Indeed, denote for each a ∈ D̂σ by ãl the dual predictable projection of al and by ãr the
dual optional projection of ar. Then, ã = (ãl, ãr) is in the set Ã1 introduced in Remark
2.1.1 and for all X ∈ R∞,

〈X, a〉 = 〈X, ã〉 .

Hence, it follows from what we have shown in Remark 2.1.1 that there exists a unique
Π∗a ∈ Dσ that satisfies (3.5).

For a function γ̂ : D̂σ → [−∞,∞) that satisfies

−∞ < sup
a∈D̂σ

γ̂(a) < ∞ ,

the mapping γ : Dσ → [−∞,∞) given by

γ(a) := sup {γ̂(â) |Π∗â = a} ,

is a penalty function and for all X ∈ R∞,

φ(X) := inf
â∈D̂σ

{〈X, â〉 − γ̂(â)} = inf
a∈Dσ

{〈X, a〉 − γ(a)} ,

which shows that φ is a concave money based utility functional on R∞ that satisfies the
Fatou property.

If Q̂σ is a non-empty subset of D̂σ, then for all X ∈ R∞,

φ(X) := inf
â∈Q̂σ

〈X, â〉 = inf
a∈Π∗Q̂σ

〈X, a〉 ,

and therefore, φ is a coherent utility functional on R∞ that satisfies the Fatou property.

We finish this section by discussing a variation of Theorem 3.3 and giving some reasons
why we stated Theorem 3.3 as we did.

First note that it follows from (2.2) that for all p, q ∈ [0,∞] such that p−1 + q−1 = 1,
every element a ∈ Aq induces a continuous linear functional on the space Rp. By Theorem
65 on page 254 of [DM2], for 1 < p < ∞, the Banach space Aq can be identified with the
dual (Rp)′ of Rp. On the other hand, the fact that (L∞)′ can be embedded into (R∞)′,
shows that (R∞)′ contains functionals that are not sigma-additive. Hence, A1 corresponds
to a strict subspace of (R∞)′. It follows from Theorem 67 on page 255 of [DM2] that if
the filtration (Ft)t∈[0,T ] is constant over time, then A∞ = (R1)′. However, if the filtration
is not constant, then A∞ is smaller than (R1)′.
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Proposition 3.7 Consider a p ∈ [1,∞] and let φ be a mapping from Rp to R that satisfies
the properties (1), (2) and (3) of Definition 2.2’ for all X, Y ∈ Rp, λ ∈ [0, 1] and m ∈ R.
Then φ can be represented as

φ(X) = inf
a∈Dp

{〈X, a〉 − γ(a)} , X ∈ Rp , (3.6)

where
Dp :=

{
a ∈ (Rp)′+ | 〈1, a〉 = 1

}
and γ is a function from Dp to [−∞,∞) such that

−∞ < sup
a∈Dp

γ(a) < ∞ .

Remark 3.8 Note that for p ∈ (1,∞), the set Dp can be identified with Dσ ∩ Aq, where
1
p + 1

q = 1.

Before we prove Proposition 3.7, we shortly explain why our main result, Theorem 3.3, is
about concave money based utility functionals on R∞ that satisfy the Fatou property or
are continuous for bounded decreasing sequences. There are two reasons why of all the
spaces Rp, p ∈ [1,∞], Theorem 3.3 deals only with R∞. First, in real risk management
situations it is often not clear what probability to assign to possible future events, and a
whole set of different probability measures is taken into consideration. The space R∞ (as
well as R0) is the same for all these measures as long as they are equivalent. This is not
true for the spaces Rp for p ∈ [1,∞). Secondly, a representation result of the form (3.6)
for p ∈ [1,∞) is of minor importance because of the following: Since a coherent or convex
risk measure is meant to give the amount of cash that has to be added to a financial
position to make it acceptable (see [ADEH2], [De1] or [FS1]), it is natural to require such
a measure on R∞ to be real-valued. On the other hand, it will be shown in a forthcoming
paper that for an interesting theory of coherent and convex risk measures on R0, one has
to allow them to take values in (−∞,∞] (equivalently, coherent and concave money based
utility functionals should be allowed to take values in [−∞,∞)). So if one restricts oneself
to real-valued coherent or convex risk measures on Rp for some p ∈ [1,∞), one might miss
interesting examples of coherent and convex risk measures on R∞ that can be extended
to R0 but are equal to ∞ for certain X ∈ Rp.

Proposition 3.7 also includes that every concave money based utility functional on R∞
has a representation in terms of D∞ ⊂ (R∞)′. However, not all elements of the dual
(R∞)′ of R∞ have a nice representation. Theorem 3.3 characterizes those concave money
based utility functionals on R∞ that can be represented with elements of the “nicer”
space A1. Note that it is in general not easy to check whether the acceptance set of a
concave money based utility functional onR∞ is σ(R∞,A1)-closed, nor has this property a
direct economic interpretation. The Fatou property and continuity for bounded decreasing
sequences on the other hand, are very intuitive conditions and can in many cases easily
be verified.
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In the following proof we associate to a concave money based utility functional on Rp

a coherent utility functional that is defined on Rp × R. This allows us to use properties
of coherent utility functionals to conclude something for a concave money based utility
functional.
Proof of Proposition 3.7. It is enough to show that the acceptance set

C := {X ∈ Rp | φ(X) ≥ 0} is norm-closed in Rp . (3.7)

Then the proposition follows from the arguments in the proof of Theorem 5 of [FS1].
For p = ∞, (3.7) follows directly from (2.3). For p ∈ [1,∞), we show (3.7) by a

homogenization argument. Since φ is translation invariant, C is norm-closed in Rp if and
only if

C̃ :=
{

X ∈ Rp | φ̃(X) ≥ 0
}

,

is, where φ̃(X) := φ(X)− φ(0), for all X ∈ Rp. Consider the convex cone

Ĉ :=
⋃
λ>0

{(λX, λ) |X ∈ C̃} ∪ {(X, 0) |X ∈ 0+C̃} ,

where
0+C̃ :=

{
X ∈ C̃ | λX ∈ C̃ for all λ ≥ 0

}
.

It can easily be checked that the function

φ̂(X, x) := sup
{

α ∈ R | (X, x)− (α, α) ∈ Ĉ
}

, X ∈ Rp , x ∈ R ,

is real-valued and satisfies the following properties:

(1) φ̂(X + Y, x + y) ≥ φ̂(X, x) + φ̂(Y, y) for all (X, x), (Y, y) ∈ Rp × R
(2) (X, x) ≥ 0 implies φ̂(X, x) ≥ 0
(3) φ̂(X + m, x + m) = φ̂(X, x) + m for all (X, x) ∈ Rp × R and m ∈ R
(4) φ̂(λ(X, x)) = λφ̂(X, x) for all (X, x) ∈ Rp × R and λ ≥ 0 .

In the next step we show that

Ĉ = {(X, x) ∈ Rp × R | φ̂(X, x) ≥ 0 } .

The inclusion “⊂” follows directly from the definition of φ̂. To show the other inclusion,
it is enough to prove that

φ̂(X, x) < 0 for all (X, x) /∈ Ĉ . (3.8)

If x < 0, this is obvious. If (X, x) /∈ Ĉ and x = 0, then X /∈ 0+C̃, and we show (3.8) by
contradiction. So assume that φ̂(X, 0) ≥ 0. Then,

1
β

(X + β) ∈ C̃
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for all β > 0, and therefore also
λ

β
X + λ ∈ C̃

for all β > 0 and λ ∈ [0, 1]. This implies that X ∈ 0+C̃, which is a contradiction. Hence,
φ̂(X, 0) < 0. To prove (3.8) for a (X, x) /∈ Ĉ with x > 0, note that X

x /∈ C̃ and for all
Y, Z ∈ Rp, the function λ 7→ φ̃(λY + (1− λ)Z) is concave and therefore also continuous.
Hence, the set{

λ ∈ [0, 1] | λY + (1− λ)Z ∈ C̃
}

=
{

λ ∈ [0, 1] | φ̃ (λY + (1− λ)Z) ≥ 0
}

is closed in [0, 1]. This implies that also the set

{
λ ∈ [0, 1] | λ(1, 1) + (1− λ)(X, x) ∈ Ĉ

}
=

{
λ ∈ [0, 1] |

λ + (1− λ)xX
x

λ + (1− λ)x
∈ C̃

}

is closed in [0, 1]. Therefore, there exists a λ > 0 such that λ(1, 1) + (1 − λ)(X, x) /∈ Ĉ.
Hence, φ̂ (λ(1, 1) + (1− λ)(X, x)) ≤ 0, and by the properties (3) and (4),

φ̂(X, x) ≤ −λ

1− λ
< 0 .

Now, let (fi)i∈I be the family of all linear functions fi : Rp × R → R such that

φ̂(X, x) ≤ fi(X, x) for all (X, x) ∈ Rp × R .

It follows from the Hahn-Banach theorem in its standard form that

φ̂(X, x) = inf
i∈I

fi(X, x) . (3.9)

In particular, all fi, i ∈ I, are positive. It then follows from a classical result of Namioka,
see [Na], that the fi, i ∈ I, are continuous with respect to the norm || · ||Rp + |·|. This
implies that

Ĉ = {(X, x) ∈ Rp × R | φ̂(X, x) ≥ 0} =
⋂
i∈I

{(X, x) ∈ Rp × R | fi(X, x) ≥ 0}

is (|| · ||Rp + |·|)-closed. Therefore,

C̃ × {1} = Ĉ ∩ (Rp × {1})

is (|| · ||Rp + |·|)-closed, which shows that C̃ is || · ||Rp-closed. �
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4 Proof of (4) ⇒ (2) in Theorem 3.3

A coherent or concave money based utility functional on L∞ is a map φ̃ : L∞ → R that
satisfies the corresponding properties of Definition 2.2’. It satisfies the Fatou property if

lim sup
n→∞

φ̃(Xn) ≤ φ̃(X) ,

for all bounded sequences (Xn)n≥1 ⊂ L∞ and X ∈ L∞ such that Xn P→ X. We say that
φ̃ is continuous for bounded decreasing sequences if

lim
n→∞

φ̃(Xn) = φ̃(X) ,

for every decreasing sequence (Xn)n≥1 ⊂ R∞ such that Xn P→ X for some X ∈ R∞.
We need the following two lemmas for concave money based utility functionals on

L∞. They are part of the statement of Theorem 3.2 in [De1]. To make clear why these
lemmas cannot immediately be generalized to the framework of continuous-time stochastic
processes, we provide detailed proofs.

Lemma 4.1 Let φ̃ be a concave money based utility functional on L∞ that is continuous
for bounded decreasing sequences. Then it also satisfies the Fatou property.

Proof. Assume that φ̃ is continuous for bounded decreasing sequences, but there exists a
bounded sequence (Xn)n≥1 in L∞ and an X ∈ L∞ such that Xn P→ X and

lim sup
n→∞

φ̃(Xn) > φ̃(X) .

Then, there exists a subsequence (Xnj )j≥1 such that Xnj → X almost surely, and

lim sup
j→∞

φ̃(Xnj ) > φ̃(X) . (4.1)

The sequence
Y j := sup

m≥j
(Xnm ∨X) , j ≥ 1 ,

is non-increasing and converges to X almost surely. Therefore, limj→∞ φ̃(Y j) = φ̃(X). On
the other hand, limj→∞ φ̃(Y j) ≥ lim supj→∞ φ̃(Xnj ). This contradicts (4.1), and therefore
lim supn≥1 φ̃(Xn) ≤ φ̃(X), which proves the lemma. �

Lemma 4.2 Let φ̃ be a concave money based utility functional on L∞ that satisfies the
Fatou property. Then the acceptance set

C̃ :=
{

X ∈ L∞
∣∣∣ φ̃(X) ≥ 0

}
is σ(L∞, L1)-closed.
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Proof. The key ingredient of this proof is the following result, which follows immediately
from the Krein-Šmulian theorem (Theorem 5 in [KS]):

A convex set G in the dual E′ of a Banach space E is σ(E′, E)-closed

if and only if for all m > 0, the set

G ∩ {x ∈ E′ | ||x||E′ ≤ m} is σ(E′, E)-closed. (4.2)

Clearly , the set C̃ is convex. Hence, by (4.2), it is enough to show that for every m > 0,
the convex set

C̃m := C̃ ∩ {X ∈ L∞ | ||X||∞ ≤ m} is σ(L∞, L1)-closed . (4.3)

Let (Xn)n≥1 be a sequence in C̃m and X ∈ L1 such that ||Xn −X||L1 → 0. It can easily
be checked that ||X||∞ ≤ m. Since φ̃ satisfies the Fatou property,

φ̃(X) ≥ lim sup
n→∞

φ̃(Xn) ≥ 0 ,

which shows that X ∈ C̃m. Hence, C̃m is a norm-closed subset of L1. It follows from
Theorem 3.12 of [Ru] that it is also a σ(L1, L∞)-closed subset of L1. This implies that it
is a σ(L∞, L1)-closed subset of L∞, and the proof is complete. �

Remark 4.3 Together, Lemma 4.1 and Lemma 4.2 imply that for a concave money based
utility functional φ̃ on L∞ that is continuous for bounded decreasing sequences, the ac-
ceptance set

C̃ :=
{

X ∈ L∞
∣∣∣ φ̃(X) ≥ 0

}
is σ(L∞, L1)-closed. The proof of Lemma 4.1 cannot be generalized to concave money
based utility functionals on R∞ because for a sequence (Xn)n≥1 of bounded càdlàg pro-
cesses the supremum process Y := supn≥1 Xn does not need to be càdlàg. The reason why
the proof of Lemma 4.2 cannot be generalized to the setting of Theorem 3.3 is that R∞
is not the dual of a metrizable locally convex topological vector space, and therefore, nor
the Krein-Šmulian theorem nor the slightly more general Banach-Dieudonné theorem (see
Theorem 2 on page 159 of [Gr]) can be applied. In fact, it can be shown with standard ar-
guments from functional analysis that R∞ cannot even be isomorphic to a complemented
subspace of the dual of a metrizable locally convex topological vector space. But this is
beyond the scope of this paper.

Besides the Lemmas 4.1 and 4.2 we also need

Lemma 4.4 Assume that Ft = F , for all t ∈ [0, T ], and let Z ∈ L1. Then the set{
a ∈ A1 |Var (a) ≤ |Z|

}
is σ(A1,R∞)-compact . (4.4)
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Proof. Since the filtration is constant over time, it follows from Theorem 67 of [DM2] page
255 that A∞ is the dual of R1. Therefore, Alaoglu’s theorem implies that the set

{a ∈ A∞ |Var (a) ≤ 1}

is σ(A∞,R1)-compact. It can easily be checked that the map

A∞ → A1 , a 7→ |Z| a

is σ(A∞,R1)/σ(A1,R∞)-continuous. Hence, the lemma follows because{
a ∈ A1 |Var (a) ≤ |Z|

}
,

is the image of the set
{a ∈ A∞ |Var (a) ≤ 1}

under this map. �

We are now ready to prove the implication (4) ⇒ (2) of Theorem 3.3:
a) We first assume that Ft = F for all t ∈ [0, T ]:
Obviously, C is convex. It follows from Mackey’s theorem (see for instance, Corollary
to Theorem 9, Section 13, Chapter 2 in [Gr]) that A1 is the dual of R∞ equipped with
the Mackey topology τ(R∞,A1). Hence, it follows from Theorem 3.12 of [Ru] that C is
σ(R∞,A1)-closed if we can show that it is τ(R∞,A1)-closed. So let (Xλ)λ∈Λ be a net in
C and X ∈ R∞ such that Xλ → X in τ(R∞,A1). In order to show that X ∈ C, we first
construct a refining sequence (Sn)n≥1 of increasing stopping times sequences. Since for all
t ∈ [0, T ], Ft = F , stopping times are just random times. Define Sn

0 := 0 and recursively,

Sn
k := inf

{
t > Sn

k−1

∣∣∣∣ t ∈
{

Sn−1
j , j ≥ 1

}
or |Xt −XSn

k−1
| ≥ 1

n

}
∧ T .

By construction, we clearly have {Sn−1
k , k ≥ 1} ⊂ {Sn

k , k ≥ 1} almost surely. Moreover, it
can be deduced from the fact that X has càdlàg paths that for every n ≥ 1,

P

[ ∞⋃
k=1

{Sn
k = T}

]
= 1 .

Let N be the set of all subsets of N and define the measure ν on (N,N ) by ν(k) := 2−k,
k ∈ N. An element

Y ∈ L∞(Ω× N) := L∞(Ω× N,FT ⊗N , P ⊗ ν)

can be viewed as a bounded sequence (Yk)k≥1 in L∞(Ω).
We define the maps

ξn : R∞ → L∞(Ω× N)
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and
ξn : L∞(Ω× N) → R∞

as follows: For Y ∈ R∞, we set

(ξnY )k :=

{
supSn

k−1≤t<Sn
k

Yt if k ≤ Kn

YT if k > Kn ,

where the random variable Kn is given by

Kn := inf {k ≥ 1 |Sn
k = T} .

For Y ∈ L∞(Ω× N), we set

(ξnY )t :=
{

Yk if Sn
k−1 ≤ t < Sn

k

YKn+1 if t = T
.

Note that for all Y ∈ R∞ and n ≥ 1,

Y ≤ ξnξnY . (4.5)

Furthermore, it can easily be checked that the mapping

φn := φ ◦ ξn : L∞(Ω× N) → R

is a concave money based utility functional on L∞(Ω × N). Moreover, if (Zm)m≥1 is a

decreasing sequence in L∞(Ω×N) such that Zm P⊗ν−→ Z for some Z ∈ L∞(Ω×N), then the
sequence (ξnZm)m≥1 is decreasing and (ξnZm − ξnZ)∗ P→ 0 because Kn is almost surely
finite. Hence,

lim
m→∞

φn(Zm) = lim
m→∞

φ ◦ ξnZm = φ ◦ ξnZ = φnZ ,

which shows that φn is continuous for bounded decreasing sequences.
Let Z ∈ L1(Ω × N), that is, Z is a sequence (Zk)k≥1 of random variables such that

E
[∑

k≥1 2−k |Zk|
]

< ∞. By Lemma 4.4, the set

K :=

a ∈ A1

∣∣∣∣ Var (a) ≤
∑
k≥1

2−k |Zk|


is σ(A1,R∞)-compact, and obviously, it is absolutely convex. For the natural bilinear
form on (

L∞(Ω× N) , L1(Ω× N)
)

,

we use the same notation 〈., .〉 as for the bilinear form on (R∞,A1) defined in (2.1).
Furthermore, for all k ≥ 1, we denote by Θk the set of random variables θ such that
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Sn
k−1 ≤ θ ≤ Sn

k . Then, we can write

〈
ξnXλ − ξnX, Z

〉
= E

∑
k≥1

(
(ξnXλ)k − (ξnX)k

)
2−kZk


≤

Kn∑
k=1

E

[
sup

Sn
k−1≤t<Sn

k

∣∣∣Xλ
t −Xt

∣∣∣ 2−k |Zk|

]
+

∑
k≥Kn+1

E
[∣∣∣Xλ

T −XT

∣∣∣ 2−k |Zk|
]

≤
∑
k≥1

sup
θk∈Θk

E
[∣∣∣Xλ

θk
−Xλ

θk

∣∣∣ 2−k |Zk|
]

≤ sup
a∈K

E

[∫
]0,T ]

(Xλ
t− −Xλ

t−)dapr
t +

∫
[0,T ]

(Xλ
t −Xλ

t )daop
t

]
= sup

a∈K

〈
Xλ −X, a

〉
.

Since (Xλ)λ∈Λ converges to X in τ(R∞,A1), we have supa∈K
〈
Xλ −X, a

〉
→ 0, and

therefore also,
ξnXλ → ξnX in σ(L∞(Ω× N), L1(Ω× N)) . (4.6)

The fact that all Xλ are in C and (4.5) imply that all ξnXλ are in

Cn := {Y ∈ L∞(Ω× N) |φn(Y ) = φ ◦ ξn(Y ) ≥ 0} .

Therefore, it follows from (4.6), Lemma 4.1 and Lemma 4.2 that all ξnX are in Cn as well,
and hence, all ξnξnX are in C. Since the sequence (Sn)n≥1 of sequences of increasing stop-
ping times is refining, the sequence (ξnξnX)n≥0 of stochastic processes is non-increasing,
and by construction of (Sn)n≥1, for all n ≥ 1,

X ≤ ξnξnX ≤ X +
1
n

.

In particular,
(ξnξnX −X)∗ P→ 0 .

Hence, since φ is continuous for bounded decreasing sequences,

φ(X) = lim
n→∞

φ(ξnξnX) ≥ 0 ,

which shows that X ∈ C.

b) Now, let (Ft)t∈[0,T ] be a general filtration that satisfies the usual assumptions. We
define the filtration (F̂t)t∈[0,T ] by

F̂t := F for all t ∈ [0, T ] ,
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and denote the corresponding dual pair by (R̂∞, Â1). By Πop we denote the optional
projection from R̂∞ to R∞. Theorem 47 on page 108 in [DM2] guarantees that the
optional projection of a measurable, bounded, càdlàg process is again càdlàg. It can easily
be checked that the mapping φ̂ := φ ◦ Πop : R̂∞ → R is a concave money based utility
functional on R̂∞. To see that φ̂ is continuous for bounded decreasing sequences, let
(Xn)n≥1 be a decreasing sequence in R̂∞ such that (Xn − X)∗ P→ 0 for some X ∈ R̂∞.
Then, also the sequence (ΠopX

n)n≥1 is decreasing. Furthermore, ||(Xn − X)∗||L2 → 0.
Let the martingale (Mn

t )t∈[0,T ] be given by

Mn
t := E [(Xn −X)∗ | Ft] , t ∈ [0, T ] .

It follows from Doob’s L2-inequality that

||(ΠopX
n −ΠopX)∗||2 = || sup

t∈[0,T ]
E [Xn

t −Xt | Ft] ||2 ≤ ||(Mn)∗||2

≤ 2||Mn
T ||2 ≤ 2||(Xn −X)∗||2 ,

which shows that (ΠopX
n−ΠopX)∗ → 0 in probability. Since φ is continuous for bounded

decreasing sequences, we have

lim
n→∞

φ̂(Xn) = lim
n→∞

φ ◦Πop(Xn) = φ ◦Πop(X) = φ̂(X) ,

that is, φ̂ is also continuous for bounded decreasing sequences. It follows from part a) of
the proof that the set

Ĉ :=
{

X ∈ R̂∞
∣∣∣ φ ◦Πop(X) ≥ 0

}
is σ(R̂∞, Â1)-closed. Let (Xλ)λ∈Λ be a net in C ⊂ Ĉ and X ∈ R∞ such that Xλ → X in
σ(R∞,A1). The projection Π∗ of Remark 3.6 can be extended to Â1, and for all â ∈ Â1,〈

Xλ −X, â
〉

=
〈
Xλ −X, Π∗â

〉
→ 0 ,

that is, Xλ → X in σ(R̂∞, Â1). Therefore, X ∈ Ĉ ∩ R∞ = C. This shows that C is
σ(R∞,A1)-closed, and the proof is complete. �

5 Examples

In this section we will repeatedly make use of the set

D̃σ :=
{
f ∈ L1 | f ≥ 0 , E [f ] = 1

}
and the set

D̂σ :=

a : [0, T ]× Ω → R2
a = (al, ar) , al

0 = 0
al, ar measurable, right-continuous, non-decreasing
E

[
al

T + ar
T

]
= 1
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introduced in Remark 3.6.
Before we start with concrete examples, note that different coherent or concave money

based utility functionals on R∞ can easily be combined to form new ones. Indeed, if
(φj)j≥1 is a sequence of coherent utility functionals on R∞ and (λj)j≥1 a sequence of
numbers in [0, 1] such that

∑
j≥1 λj = 1, then

∑
j≥1 λjφj is again a coherent utility

functional on R∞, and it satisfies the Fatou property if φj does for every j such that
λj > 0. The same is true for a sequence (φj)j≥1 of concave money based utility functionals
on R∞ if the series

∑
j≥1 λjφ(0) is convergent.

The obvious interpretation of the following examples in the context of risk management
is left to the reader.

Example 5.1 For every subset Pσ of D̃σ, the function

φ̃(X) := inf
f∈Pσ

E [Xf ] , X ∈ L∞ ,

is a coherent utility functional on L∞ that satisfies the Fatou property. If θ is a random
variable taking values in [0, T ], then

Q̂σ :=
{(

0, f1{θ≤t}
)
| f ∈ Pσ

}
,

is a subset of D̂σ, and the corresponding coherent utility functional on R∞ is given by

φ(X) := inf
â∈Q̂σ

〈X, â〉 = inf
f∈Pσ

E [Xθf ] = φ̃(Xθ) .

In terms of elements of Dσ, φ can be represented as

φ(X) = inf
a∈Π∗Q̂σ

〈X, a〉 ,

where Π∗ is the projection from D̂σ to Dσ explained in Remark 3.6. It can easily be
checked that if θ is a stopping time, then

Π∗Q̂σ =
{(

0,E [f | Fθ] 1{θ≤t}
) ∣∣ f ∈ Pσ

}
.

Example 5.2 As in Example 5.1, consider a subset Pσ of D̃σ and let

φ̃(X) := inf
f∈Pσ

E [Xf ] , X ∈ L∞ .

be the associated coherent utility functional on L∞. The set

Q̂σ :=
{(

0, (f
t

T
)t∈[0,T ]

)
| f ∈ Pσ

}
,

is a subset of D̂σ, and the corresponding coherent utility functional is given by

φ(X) := inf
â∈Q̂σ

〈X, â〉 = inf
f∈Pσ

E
[

1
T

∫ T

0
Xt dt f

]
= φ̃

(
1
T

∫ T

0
Xt dt

)
.
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In terms of elements of Dσ, φ can be represented as

φ(X) = inf
a∈Π∗Q̂σ

〈X, a〉 ,

where Π∗ is the projection from D̂σ to Dσ explained in Remark 3.6. Note that the pro-
jection Π∗ maps an element

(
0, (f t

T )t∈[0,T ]

)
∈ Q̂σ to a = (apr, aop), where apr is the

continuous part of the dual optional projection
(
E [f | Ft] t

T

)
t∈[0,T ]

of
(
f t

T

)
t∈[0,T ]

and aop

is the purely discontinuous part of
(
E [f | Ft] t

T

)
t∈[0,T ]

.

Example 5.3 Let Pσ be a subset of D̃σ. Then

φ̃(X) := inf
f∈Pσ

E [Xf ] , X ∈ L∞ ,

is a coherent utility functional on L∞ that satisfies the Fatou property. The set

Q̂σ :=
{(

0, f1{θ≤t}
) ∣∣ f ∈ Pσ , θ a [0, T ]-valued random variable

}
,

is again a subset of D̂σ, and for all X ∈ R∞,

φ(X) := inf
a∈Π∗Q̂σ

〈X, a〉 = inf
â∈Q̂σ

〈X, â〉 = φ̃

(
inf

t∈[0,T ]
Xt

)
. (5.1)

The last equality in (5.1) can been shown as follows: Obviously, for all X ∈ R∞,

φ̃

(
inf

t∈[0,T ]
Xt

)
≤ E [Xθf ] ,

for all f ∈ Pσ and all [0, T ]-valued random variables θ. Therefore,

φ̃

(
inf

t∈[0,T ]
Xt

)
≤ φ(X) .

On the other hand, for all ε > 0, there exists an f ∈ Pσ such that

E
[

inf
t∈[0,T ]

Xt f

]
≤ φ̃

(
inf

t∈[0,T ]
Xt

)
+

ε

2
.

Furthermore, it can be deduced from the cross section theorem (see for example, Theorem
44 of Chapter III in [DM1]) that there exists a [0, T ]-valued random variable θ such that

Xθ ≤ inf
t∈[0,T ]

Xt +
ε

2
.

Hence,

E [Xθf ] ≤ E
[

inf
t∈[0,T ]

Xt f

]
+

ε

2
≤ φ̃( inf

t∈[0,T ]
Xt) + ε ,

and it follows that

φ(X) ≤ φ̃

(
inf

t∈[0,T ]
Xt

)
.
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Example 5.4 Let γ̃ : D̃σ → [−∞,∞) be a penalty function and

φ̃(X) = inf
f∈D̃σ

{〈X, f〉 − γ̃(f)} , X ∈ L∞ ,

the corresponding concave money based utility functional on L∞. For a [0, T ]-valued
random variable θ we define the function γ̂ : D̂σ → [−∞,∞) by

γ̂(â) :=
{

γ̃(f) , if â is of the form
(
0, f1{θ≤t}

)
for some f ∈ D̃σ

−∞ , otherwise
.

As in Remark 3.6, one can construct from γ̂ a penalty function γ : Dσ → [−∞,∞) such
that

inf
a∈Dσ

{〈X, a〉 − γ(a)} = inf
â∈D̂σ

{〈X, â〉 − γ̂(â)} = φ̃(Xθ) .

Example 5.5 Consider a penalty function γ̃ : D̃σ → [−∞,∞) and the associated concave
money based utility functional

φ̃(X) = inf
f∈D̃σ

{〈X, f〉 − γ̃(f)} , X ∈ L∞ .

Define the function γ̂ : D̂σ → [−∞,∞) as follows

γ̂(â) :=

{
γ̃(f) , if â is of the form

(
0,

(
f t

T

)
t∈[0,T ]

)
for some f ∈ D̃σ

−∞ , otherwise
.

As in Remark 3.6, one can construct a penalty function γ : Dσ → [−∞,∞) such that

inf
a∈Dσ

{〈X, a〉 − γ(a)} = inf
â∈D̂σ

{〈X, â〉 − γ̂(â)} = φ̃

(
1
T

∫ T

0
Xt dt

)
.

Example 5.6 Let φ̃ : L∞ → R be a concave money based utility functional on L∞ that
can be represented as

φ̃(X) = inf
f∈D̃σ

{〈X, f〉 − γ̃(f)} , X ∈ L∞ ,

for some penalty function γ̃ : D̃σ → [−∞,∞). Define the function γ̂ : D̂σ → [−∞,∞) as
follows:

γ̂(â) :=


γ̃(f) , if â is of the form

(
0, f1{θ≤t}

)
for some f ∈ D̃σ

and a [0, T ]-valued random variable θ
−∞ , otherwise

.

By Remark 3.6, there exists a penalty function γ : Dσ → [−∞,∞) such that

inf
a∈Dσ

{〈X, a〉 − γ(a)} = inf
â∈D̂σ

{〈X, â〉 − γ̂(â)} ,

and, as in Example 5.3, it can be deduced from the cross section theorem that

inf
â∈D̂σ

{〈X, â〉 − γ̂(â)} = φ̃

(
inf

t∈[0,T ]
Xt

)
.
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Example 5.7 The set

Qσ :=
{(

0, 1{τ≤t}
) ∣∣ τ a [0, T ]-valued stopping time

}
⊂ Dσ

induces the coherent utility functional

φ(X) := inf {E [Xτ ] | τ a [0, T ]-valued stopping time} , X ∈ R∞ .

It follows from the theory of optimal stopping (see for instance, page 417 of [DM2]) that
for all X ∈ R∞,

φ(X) = S0(X) ,

where (St(X))t∈[0,T ] is the largest submartingale that is dominated by the process X.
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[FS2] Föllmer, H., Schied, A. (2002). Robust preferences and convex measures of risk.
Advances in Finance and Stochastics, Springer-Verlag.
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[KS] Krein, M., Šmulian, V. (1940). On regulary convex sets in the space conjugate to a
Banach space. Ann. Math. 41, 556-583.

[Na] Namioka, I. (1957), Partially Ordered Linear Topological Spaces 24, Mem. Amer.
Math. Soc. Princeton University Press, Princeton.

[Ru] Rudin, W. (1973). Functional Analysis. Mc Graw Hill, New York.

23


