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Abstract

In this paper we derive a numerical representation for general complete preferences respect-
ing the following two principles: a) more is better than less, b) averages are better than extremes.
To be able to distinguish between risk and ambiguity we work in an Anscombe–Aumann frame-
work. Our main result is a quasi-concave numerical representation for a class of preferences
wide enough to accommodate Ellsberg- as well as Allais-type behavior. Instead of assuming
the usual monotonicity we suppose that our preferences are monotone with respect to first or-
der stochastic dominance. Preference for averages expresses uncertainty-aversion. We do not
make independence assumptions of any form. In general, our preferences intertwine attitudes
towards risk and ambiguity. But if one assumes a weak form of Savage’s sure thing principle,
there is separation between risk and ambiguity attitudes, and the representation decomposes into
state-dependent preference functionals over the consequences and a quasi-concave functional
aggregating the preferences of the decision maker in different states of the world.
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1 Introduction
The goal of this paper is to derive a numerical representation that can describe general complete
preference relations that respect the following two principles:

a) more is better than less

b) averages are better than extremes.
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To be able to distinguish between risk and ambiguity we work in an Anscombe–Aumann framework
of horse lotteries whose outcomes are roulette lotteries. a) is a natural property for any preference
over scarce goods. The standard approach in the literature is to consider an abstract set of prizes
and formalize a) by requiring a preference to be monotone with respect to the order it induces on
the roulette lotteries. But this relates the rankings of roulette lotteries in different states of the world
to each other and implies weak forms of the sure thing principle and state-independence. In this
paper we consider monetary prizes and use the natural order among real numbers to describe a).
This keeps our formulation of a) free of implicit assumptions that go beyond any pure notion of
monotonicity and allows for general orderings of roulette lotteries in different states of the world as
well as intertwinement of risk and ambiguity attitudes. The mathematical description of b) is that
the preference is convex. It has been used as a definition of uncertainty-aversion by e.g. Schmeidler
(1989), Gilboa and Schmeidler (1989), Maccheroni et al. (2006) or Cerreia-Vioglio et al. (2011),
which have all generalized the subjective expected utility representation of Anscombe and Aumann
(1963) by weakening the independence axiom. Here, we do not make independence assumptions of
any form. This leads to a class of preferences with the following features:

• In general, they intertwine attitudes towards risk and ambiguity.

• If they separate risk and ambiguity attitudes, the induced preference orders on the roulette
lotteries are state-dependent.

• They can accommodate the following two well-documented violations of expected utility the-
ory: Ellsberg-type behavior, which is inconsistent with any preference order based on a single
probability distribution over possible outcomes (see Ellsberg, 1961), and Allais-type behavior,
which contradicts the independence axiom even in situations where uncertain events occur
according to known objective probabilities (see Allais, 1953).

Allais- and Ellsberg-type behavior are two of the most extensively studied deviations from ex-
pected utility theory and have given rise to a large body of literature aiming at extending standard
models of decision making under uncertainty. Most of the existing work concentrates on one of
the two phenomena. Approaches that address both at the same time include Gul and Pesendorfer
(2013), Dean and Ortoleva (2014) and Bommier (2015). The first work with Savage acts and sub-
jective sources. The other two consider Anscombe–Aumann acts. But Dean and Ortoleva (2014)
replace the standard mixture by an outcome mixture in the style of Ghirardato et al. (2003), while
Bommier (2015) does not concentrate on convex preferences but instead, assumes a comonotonic
sure-thing principle.

In this paper we use the standard mixture corresponding to the convex combination of acts viewed
as mappings from the state space to a set of measures. More precisely, we work with the collection L
of Anscombe–Aumann acts f : S → Pc, where S = {1, . . . ,m} is a finite state space and Pc denotes
the set of all Borel probability measures on R with compact support. Anscombe–Aumann acts have
been used in more general form. But an element f ∈ L has the straightforward interpretation of a
monetary payoff subject to two different types of uncertainty. If the state of the world is s ∈ S, the
payoff is distributed according to fs ∈ Pc. In the terminology of Anscombe and Aumann (1963),
the draw of the true state s ∈ S is a horse lottery and the payoff according to fs a roulette lottery.
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An individual might have beliefs on which of the elements of S is the true state of the world. But
there are no objective probabilities associated with them. Such a situation is also referred to as
Knightian uncertainty, model uncertainty or ambiguity. In case the true state is s ∈ S, f yields a
payoff governed by the distribution fs ∈ Pc. This kind of uncertainty is usually called measurable
uncertainty or risk.

For a number α ∈ [0, 1], the mixture αf + (1− α)g of two acts f, g ∈ L is defined to be the act
with consequences αfs + (1− α)gs, s ∈ S, where αfs + (1− α)gs is the convex combination of fs
and gs in the vector space Mc of signed Borel measures of bounded variation with compact support
on R. So L is a convex subset of the vector space MS

c consisting of all functions f : S → Mc. The
following two sets can be embedded in L:

• Roulette lotteries over R: Pc

• Horse lotteries over R: H := {h : S → R} = RS .

A roulette lottery µ ∈ Pc can be identified with the constant act fµ defined by fµs = µ, s ∈ S, and
a horse lottery h ∈ H with the deterministic act fs = δh(s), s ∈ S, where δh(s) denotes the Dirac
measure at h(s). However, for h, h′ ∈ H the mixture of the deterministic acts δh, δh′ ∈ L does not
correspond to the convex combination of h and h′ in RS; that is, in general, αδh(s) + (1− α)δh′(s) is
different from δαh(s)+(1−α)h′(s). We refer to the latter as the deterministic mixture of acts h ∈ H .

In the whole paper < is a complete preference on L; that is, it satisfies

(A1) Weak order:
< is a transitive binary relation on L with the property that for all f, g ∈ L, f < g or f 4 g.

As usual, ∼ and � denote the symmetric and asymmetric part of <, respectively. We formalize
principle a) above as follows:

(A2) Monotonicity with respect to first order stochastic dominance:
For all f, g ∈ L satisfying fs D1 gs for every s ∈ S, one has f < g,

where D1 denotes first order stochastic dominance1 between lotteries in Pc. In the general theory,
acts typically take values in an abstract set, and the usual monotonicity condition is as follows:

(SM) Standard monotonicity:2 For all f, g ∈ L satisfying fs <∗ gs for every s ∈ S, one has f < g,

where µ <∗ ν means fµ < f ν for the constant acts fµ and f ν corresponding to µ and ν. But
(SM) has consequences that go beyond pure notions of monotonicity. For instance, it implies3 the
following weak versions of Savage’s sure thing principle P2 and ordinal event independence P3
(Savage, 1954):

1That is, µ D1 ν means µ [x,∞) ≥ ν [x,∞) for all x ∈ R, or equivalently,
∫
R hdµ ≥

∫
R hdν for all nondecreasing

continuous functions h : R→ R.
2(SM) has been used in e.g. Schmeidler (1989), Gilboa and Schmeidler (1989), Maccheroni et al. (2006) and Cerreia-

Vioglio et al. (2011). Anscombe and Aumann (1963) also assumed (SM) but with respect to a preference on the roulette
lotteries that is given from the beginning.

3That (P3’) is a consequence of (SM) is clear. Moreover, if (SM) holds, then µ1A + f1Ac � ν1A + f1Ac implies
µ �∗ ν, from which it follows that µ1A + g1Ac < ν1A + g1Ac . This shows that (SM) implies (P2’).
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(P2’) For all µ, ν ∈ Pc, f, g ∈ L and A ⊆ S, µ1A + f1Ac � ν1A + f1Ac implies µ1A + g1Ac <
ν1A + g1Ac

(P3’) For all µ, ν ∈ Pc, f ∈ L and A ⊆ S, µ <∗ ν implies µ1A + f1Ac < ν1A + f1Ac .

Axiom (A2) has the advantage that it does not mix notions of monotonicity with implicit assumptions
of separability or state-independence. Moreover, it makes it possible to derive general representation
results under weak continuity assumptions that are easy to test.

A preference is said to exhibit risk-aversion if it is averse to mean preserving spreads, or equiva-
lently, monotone with respect to the concave order. Under (A2), this is equivalent4 to

(A2’) Monotonicity with respect to second order stochastic dominance:
If f, g ∈ L satisfy fs D2 gs for all s ∈ S, then f < g,

where D2 denotes second order stochastic dominance5.
If principle b) is understood with respect to the standard mixture of Anscombe–Aumann acts, it

corresponds to

(A3) Convexity: If f, g, h ∈ L satisfy f < h and g < h, then αf + (1−α)g < h for all α ∈ (0, 1),

which means that the upper contour sets of < are convex. If (A1) holds, (A3) is equivalent to the
simpler condition: for all f, g ∈ L satisfying f < g, one has αf +(1−α)g < g for every α ∈ (0, 1).

Schmeidler (1989), as well as e.g., Gilboa and Schmeidler (1989), Maccheroni et al. (2006) and
Cerreia-Vioglio et al. (2011) used (A3) as definition of uncertainty-aversion. It is important to note
that it differs from the following convexity with respect to deterministic mixtures of deterministic
acts:

(A3’) d-convexity: If f, g, h ∈ H = RS satisfy δf < δh and δg < δh, then δαf+(1−α)g < δh for all
α ∈ (0, 1).

A related notion of convexity naturally arises in applications in optimal asset allocation. Asset
prices under model uncertainty can be modeled with the set K of all bounded measurable functions
X : (Ω,F) → R on a measurable space equipped with different probability measures P1, . . . ,Pm.
If an asset X ∈ K is assessed purely based on its distributions µXs under the measures Ps, s =
1, . . . ,m, it is enough to consider its image under the mapping ψ(X) := (µX1 , . . . , µ

X
m) ∈ L. Convex

combinations αX + (1 − α)Y of elements in K describe portfolio diversification. So, adapting
Definition 2 of Dekel (1989) to our setup, we say a preference relation < on L exhibits diversification
if the following holds:

(A3”) D-convexity6: For every specification of (Ω,F ,P1, . . . ,Pm), the induced preferenceX <ψ Y ,
given by ψ(X) < ψ(Y ), is convex onK; that is, for allX, Y, Z ∈ K satisfying ψ(X) < ψ(Z)
and ψ(Y ) < ψ(Z), one has ψ(αX + (1− αY )) < ψ(Z) for every α ∈ (0, 1).

4See, e.g., Proposition 2.1 in Dana (2005).
5Defined by

∫
R hdµ ≥

∫
R hdν for all nondecreasing concave functions h : R→ R.

6Note that depending on the form of (Ω,F ,P1, . . . ,Pm), the image of the mapping ψ : K → L might not be all
of L. But one has ψ(K) = L if (Ω,F ,P1, . . . ,Pm) is rich enough; for instance if Ω is the unit interval (0, 1] with the
Borel σ-algebra and Ps are the uniform distributions on ((s− 1)/m, s/m], s = 1, . . .m. So in contrast to (A3’), (A3”)
is a condition on the full preference order < and not only its restriction to a subset of L.
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(A3”) is stronger7 than (A3’). On the other hand, it follows8 from the arguments in the proof of
Proposition 3 in Dekel (1989) that (A3”) follows from (A2’) and (A3).

Our main result is a numerical representation for preferences satisfying (A1)–(A3) together with
a weak semicontinuity condition. It is of the form

V (f) = inf
u∈IS

A (u, 〈u, f〉) , (1.1)

where

• I is the set of continuous nondecreasing functions h : R→ R

• 〈u, f〉 :=
∑

s∈S
∫
R usdfs

• A : IS × R→ R ∪ {±∞} is a function that is nondecreasing in the second argument.

For stochastic order-monotone preferences that are uncertainty-averse and risk-averse, we derive a
representation of the form

V (f) = inf
u∈ISc

A (u, 〈u, f〉) , (1.2)

for the set of nondecreasing concave functions Ic ⊆ I and a mapping A : ISc × R → R ∪ {±∞}
nondecreasing in the second argument. In general, (1.1) and (1.2) intertwine risk and ambiguity
attitudes. But under a suitable version of the sure thing principle and a condition ensuring that
state-wise certainty equivalents exist, (1.1) simplifies to

V (f) = inf
u∈IS

A

(
u,
∑
s∈S

us(cs(fs))

)
, (1.3)

where cs are certainty equivalents of the preferences on Pc induced by < in the different states of the
world s ∈ S. If in addition, < is d-convex, it is representable as

V (f) = inf
p∈∆

B
(
p,
∑
s∈S

pscs(fs)
)
, (1.4)

where ∆ is the set of all probability measures on the state space S and B : ∆× R→ R ∪ {±∞} a
function that is nondecreasing in the second argument. We show that as a special case, (1.4) includes
risk-averse uncertainty-averse preferences which separate attitudes towards risk and ambiguity. Sim-
ilarly, if < satisfies a sure thing principle and in every state s ∈ S, the von Neumann–Morgenstern
axioms for preferences over roulette lotteries hold, it can be represented as

V (f) = inf
p∈∆

B
(
p,
∑
s∈S

ps

∫
R
usdfs

)
, (1.5)

7Choose for instance, Ω = {1, . . . ,m}, F = 2Ω and Ps = δs, s = 1, . . . ,m. Then the induced preference <ψ is
convex on K if and only if < is d-convex.

8See Lemma 4.5 below for details.
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for nondecreasing right-continuous functions us : R → R. This is a variant of the representation
derived by Cerreia-Vioglio et al. (2011). The main difference is that in (1.5), us can depend on the
state s while in Cerreia-Vioglio et al. (2011) it does not. Like the preference of Cerreia-Vioglio et al.
(2011), (1.5) can accommodate Ellsberg-type behavior. But since it is affine on Pc, it cannot explain
Allais’ paradox. The representations (1.1)–(1.4) on the other hand, can cope with both.

In the special case where S consists of only one element, L reduces to the roulette lotteries Pc,
and (1.1) becomes

V (µ) = inf
u∈I

D
(
u,

∫
R
udµ

)
, µ ∈ Pc, (1.6)

for a function D : I × R → R ∪ {±∞} that is nondecreasing in
∫
R udµ. For every u ∈ I ,

∫
R udµ

is an expected utility. But (1.6) takes different evaluation functions u ∈ I into account and weighs
them according to D. Maccheroni (2002) and Cerreia-Vioglio (2009) derived versions of (1.6) with
no monotonicity but stronger continuity assumptions. Under monotonicity and slightly different
continuity assumptions, (1.6) was previously derived by Drapeau and Kupper (2013) as well as
Cheridito et al. (2013).

Coming back to our general representation result, is easy to see that every preference < with a
representation of the form (1.1) fulfills (A1)–(A3). But to derive (1.1) from (A1)–(A3), an additional
continuity assumption is needed. If, for instance, one requires < to be σ(L,CS)-upper semicontinu-
ous, where C is the set of all continuous functions h : R→ R, it follows from general convex duality
arguments that a representation of the form (1.1) exists. However, σ(L,CS)-upper semicontinuity is
a technical condition, which is hard to test in practice. In its place we use the following axiom:

(A4) Upper semicontinuity:
a) For all f, g, h ∈ L with f < g � h, there exists an α ∈ (0, 1) such that g � αf + (1− α)h.
b) For all f, g ∈ L, Tεf < g for each ε > 0 implies f < g, where Tε denotes the ε-shift
defined by (Tεf)s(E) := fs(E − ε) for the Borel sets E in R.

(A4.a) is a one-sided version of the classical

(AA) Archimedean axiom:
For all f, g, h ∈ L with f � g � h, there exist α, β ∈ (0, 1) such that αf + (1 − α)h � g �
βf + (1− β)h.

(A4.b) means that the preference is upper semicontinuous under translation. For instance, if µ =∑n
i=1 λiδxi is a simple lottery with finitely many possible payoffs xi ∈ R and probabilities λi ≥ 0

summing up to 1, then Tεµ =
∑n

i=1 λiδxi+ε. That is, Tε shifts the payoffs xi by ε and keeps the
probabilities λi unchanged. (A4.b) says that if an act f state-wise shifted to the right by an arbitrary
small amount ε > 0 is weakly preferred to another act g, then f itself is weakly preferred to g. In
particular, (A4.a) and (A4.b) are both one-dimensional semicontinuity conditions with a normative
appeal that can be tested in experiments.

The rest of the paper is organized as follows. Section 2 contains our main result, which shows
that every preference on L satisfying the axioms (A1)–(A4) has a numerical representation of the
form (1.1). As a special case we derive the representation (1.2) for risk-averse preferences fulfilling
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(A1)–(A4). In Section 3 we concentrate on the case where the state space S contains just one
element. Then < becomes a preference over the roulette lotteries Pc, and the general representation
(1.1) takes on the form (1.6). We show that very simple non-affine specifications of (1.6) are enough
to accommodate Allais-style behavior. We also derive a von Neumann–Morgenstern representation
under weak continuity assumptions. In Section 4 we introduce additional axioms guaranteeing that
a preference over L separates attitudes towards risk and ambiguity. For such preferences, numerical
representations of the form (1.3)–(1.5) are derived. All proofs are given in the appendix.

2 General representation results
In this section we provide two representation results for uncertainty-averse preferences on L. Our
main result, Theorem 2.1, gives a numerical representation for general preferences satisfying (A1)–
(A4). Corollary 2.3 provides the analog for risk-averse preferences.

We denote by A the set of all functions A : IS × R→ R ∪ {±∞} satisfying the condition

(R1) A(u, x) is nondecreasing and right-continuous in x,

and by Amin those functions A ∈ A which also fulfill

(R2) A(u, x) is quasi-convex in (u, x)

(R3) supxA(u, x) = supxA(u′, x) for all u, u′ ∈ IS

(R4) A−(u, x) := supy<xA(u, y) is σ(IS, L)-lower semicontinuous in u

(R5) A(λu, x) = A(u, x/λ) for all λ ∈ R+ \ {0}.

It is straightforward to check that for every function A ∈ A,

V (f) = inf
u∈IS

A(u, 〈u, f〉) (2.1)

defines a quasi-concave functional V : L→ R ∪ {±∞} respecting first order stochastic dominance
D1. As a consequence, the corresponding preference relation satisfies (A1)–(A3). Furthermore, the
following holds:

Theorem 2.1. For a preference < on L, the following are equivalent:

(i) < satisfies (A1)–(A4)

(ii) < has a numerical representation of the form (2.1) for a function A ∈ A.

Moreover, if (ii) holds, there exists a unique function Â ∈ Amin inducing the same preference func-
tional V as A, and this Â satisfies Â ≤ A.

Remark 2.2. Theorem 2.1 shows that there is a one-to-one correspondence between preference
functionals V of the form (2.1) and functions A ∈ Amin. But of course, it is possible that different
preference functionals in the class (2.1) represent the same preference order on L; for instance, V
and exp(V ). In particular, the aggregator A in (2.1) can be monotonically transformed so that it
takes values in any non-trivial closed subinterval of R, such as for instance, [0,∞] or [0, 1].
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The following is a version of Theorem 2.1 for risk-averse preferences. Denote by Ac the set of
all functions A : ISc × R → R ∪ {±∞} satisfying (R1) and by Amin

c the subset of those A ∈ Ac
satisfying (R1)–(R5).

Corollary 2.3. For a preference < on L, the following are equivalent:

(i) < satisfies (A1), (A2’), (A3), (A4)

(ii) < has a numerical representation of the form V (f) = infu∈ISc A (u, 〈u, f〉) for a function
A ∈ Ac.

Moreover, if (ii) holds, there exists a unique function Â ∈ Amin
c inducing the same numerical repre-

sentation V as A, and one has Â ≤ A.

3 Preferences on roulette lotteries
If there is only one state of the world s ∈ S, the set L reduces to the roulette lotteries Pc, and the
axioms (A1)–(A4), (A2’) become

(a1) Weak order:
< is a transitive binary relation on Pc with the property that for all µ, ν ∈ Pc, either µ < ν or
µ 4 ν.

(a2) Monotonicity with respect to first order stochastic dominance:
For all µ, ν ∈ Pc satisfying µD1 ν, one has µ < ν.

(a3) Convexity:
If µ, ν, η ∈ Pc satisfy µ < η and ν < η, then αµ+ (1− α)ν < η for all α ∈ (0, 1).

(a4) Upper semicontinuity:
a) For all µ, ν, η ∈ Pc with µ < ν � η, there exists an α ∈ (0, 1) such that ν � αµ+ (1−α)η.
b) For all µ, ν ∈ Pc, Tεµ < ν for each ε > 0 implies µ < ν.

(a2’) Monotonicity with respect to second order stochastic dominance:
For all µ, ν ∈ Pc satisfying µD2 ν, one has µ < ν.

3.1 Numerical representation of convex preferences over roulette lotteries
Denote by D the set of all functions D : I ×R→ R∪{±∞} satisfying condition (R1) and by Dmin

the subset of those D ∈ D with the properties (R1)–(R5). Analogously, Dc is the set of all functions
D : Ic×R→ R∪{±∞} satisfying (R1) and Dmin

c the subset of those D ∈ Dc fulfilling (R1)–(R5).
The following is an immediate consequence of Theorem 2.1 and Corollary 2.3:

Corollary 3.1. For a preference < on Pc, the implications (i)⇔ (ii)⇐ (iii)⇔ (iv) hold among the
conditions
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(i) < satisfies (a1)–(a4)

(ii) < has a numerical representation of the form V (µ) = infu∈I D
(
u,
∫
R udµ

)
for a function

D ∈ D

(iii) < satisfies (a1), (a2’), (a3), (a4)

(iv) < has a numerical representation of the form V (µ) = infu∈Ic D
(
u,
∫
R udµ

)
for a function

D ∈ Dc

Moreover, if (ii) holds, there exists a unique D̂ ∈ Dmin inducing the same preference functional V
as D, and this D̂ satisfies D̂ ≤ D. Similarly, if (iv) holds, there exists a unique D̂ ∈ Dmin

c inducing
the same numerical representation V as D, and one has D̂ ≤ D.

3.2 Allais paradox
In this subsection we show that a simple non-affine specification of the representation (iv) in Corol-
lary 3.1 can resolve Allais’ paradox. Various experiments have shown that most people prefer A to B
and D to C, where A is a lottery that pays $1 million for sure, B a lottery paying nothing with prob-
ably 1%, $1 million with probability 89% and $5 million with probability 10%, C a lottery paying
nothing with probability 89% and $1million with probability 11%, and D a lottery paying noth-
ing with probability 90% and $5 million with probability 10% . This contradicts the independence
axiom for preferences over roulette lotteries:

(ia) Independence axiom:
For all µ, ν, η ∈ Pc, µ � ν implies αµ+ (1− α)η � αν + (1− α)η for every α ∈ (0, 1),

which is satisfied by any preference with a von Neumann–Morgenstern representation of the form
V (µ) =

∫
R udµ; see Allais (1953). This has given rise to a number of alternatives to excepted utility

theory such as prospect theory (Kahneman and Tversky, 1979), weighted expected utility (Chew
and MacCrimmon, 1979), rank-dependent utility (Quiggin, 1982) and cumulative prospect theory
(Tversky and Kahneman, 1992). However, Allais-style behavior is also consistent with e.g. the
following version of (iv) in Corollary 3.1:

V (µ) := min
i=1,2

Vi(µ) for Vi :=

∫
R
uidµ,

where u1(x) = x and u2 is a continuous function such that

u2(0) = 100, 000

u2(1, 000, 000) = 1, 000, 000

u2(5, 000, 000) = 1, 050, 000.

Indeed, V1(A) = V2(A) = 1, 000, 000, V1(B) = 1, 390, 000, V2(B) = 991, 000, V1(C) = 110, 000,
V2(C) = 199, 000, V1(D) = 500, 000, V2(D) = 195, 000, and therefore,

V (A) = 1, 000, 000 > V (B) = 991, 000 and V (C) = 110, 000 < V (D) = 195, 000.
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3.3 Certainty equivalents
Preferences with a representation as in Corollary 3.1 do not always admit certainty equivalents. But
the next proposition shows that they do if the following holds:

(ce) Existence of unique certainty equivalents:
a) δx � δy for all x, y ∈ R such that x > y
b) if x ∈ R and µ ∈ Pc are such that δx � µ, there exists an ε > 0 such that δx−ε < µ.

(ce.a) means that the preference restricted to deterministic outcomes is strictly monotone, and (ce.b)
is a one-dimensional lower semicontinuity condition. Both have normative appeal and can be tested.
Also, it is clear that any complete preference on Pc having the monotonicity property (a2) must
satisfy (ce) if it admits unique certainty equivalents.

Proposition 3.2. Let < be a preference on Pc satisfying (a1)–(a4) and (ce). Then the mapping

c(µ) := inf {x ∈ R : δx < µ} (3.1)

provides unique certainty equivalents and can be written as

c(µ) = inf
u∈I

D
(
u,

∫
R
udµ

)
(3.2)

for a unique function D ∈ Dmin. If in addition, < satisfies (a2’), it has a representation of the form

c(µ) = inf
u∈Ic

D
(
u,

∫
R
udµ

)
(3.3)

for a unique D ∈ Dmin
c .

3.4 Von Neumann–Morgenstern representations
For later use, we here derive a von Neumann–Morgenstern representation of the form

V (µ) =

∫
R
udµ (3.4)

for a nondecreasing upper semicontinuous function u : R → R. Note that if u is not continuous,
there exist lotteries µ ∈ Pc without a certainty equivalent. Moreover, if u is not strictly increasing
there are numbers x > y such that δx ∼ δy. But of course, a preference with representation (3.4)
always satisfies (ia) together with

(aa) Archimedean axiom:
For all µ, ν, η ∈ Pc, with µ � ν � η, there exist α, β ∈ (0, 1) such that

αµ+ (1− α)η � ν � βµ+ (1− β)η.

If u does not attain its infimum and supremum, the preference induced by (3.4) also satisfies

10



(ub) Unboundedness: For all x ∈ R, there exist y, z ∈ R such that δy � δx � δz.

As a consequence of Corollary 3.1, the following version of the representation result of von
Neumann and Morgenstern (1947) can be derived.

Proposition 3.3. Every preference order on Pc satisfying (a1), (a2), (a4.b), (ia) and (aa) has a
numerical representation of the form (3.4) for a nondecreasing right-continuous function u : R→ R,
and the representation is unique up to strictly increasing affine transformations. If in addition, the
preference satisfies (ce), u is continuous. If the preference fulfills (a2’), u is concave. If (ub) holds,
then u does not attain its infimum or supremum.

Instead of making the usual strong continuity assumptions, Proposition 3.3 derives the von
Neumann–Morgenstern representation (3.4) for complete preferences satisfying the independence
axiom (ia) from the monotonicity condition (a2) and the one-dimensional continuity assumptions
(aa) and (a4.b). In Delbaen et al. (2011), conditions are given that imply a von Neumann–Morgenstern
representation with a nondecreasing u that is not necessarily right-continuous.

4 Separation of risk and ambiguity attitudes
In this section we introduce additional axioms, which guarantee that a preference < over L separates
attitudes towards risk and ambiguity. In the following three subsections we discuss different special
cases.

4.1 Separability and state-independence
The following is a separability condition slightly weaker than Savage’s sure thing principle P2:

(A5) Separability:
For all s ∈ S, µ, ν ∈ Pc and f, g ∈ L, µ1s + f1S\s < ν1s + f1S\s implies µ1s + g1S\s <
ν1s + g1S\s.

If (A5) holds, then for every state s ∈ S, µ1s + f1S\s < ν1s + f1S\s defines a preference <s among
µ, ν ∈ Pc that does not depend on f .

If in addition to (A5), the preference < fulfills

(A6) State-wise existence of unique certainty equivalents:
For every s ∈ S, the induced preference <s satisfies (ce),

we denote by c(f) the vector of state-wise certainty equivalents cs(fs), s ∈ S.
If (A5) holds together with

(A7) State-independence:
For all s, s′ ∈ S, µ, ν ∈ Pc and f ∈ L, µ1s + f1S\s < ν1s + f1S\s implies µ1s′ + f1S\s′ <
ν1s′ + f1S\s′ ,

11



then <s does not depend on the state s ∈ S. (A7) is a weak version of Savage’s ordinal event
independence axiom P3.

Our first representation result for preferences separating risk and ambiguity attitudes is as fol-
lows:

Proposition 4.1. A preference < on L satisfying (A1)–(A6) has a representation of the form

V (f) = inf
u∈IS

A
(
u,
∑
s∈S

us(cs(fs))
)
, (4.1)

where A is a function in Amin, and for every s ∈ S, cs : Pc → R is a mapping that provides unique
certainty equivalents for the induced preference <s and is of the form

cs(µ) = inf
u∈I

Ds

(
u,

∫
R
udµ

)
for a unique function Ds ∈ Dmin. Moreover, if < satisfies (A1)–(A7), then cs and Ds do not depend
on the state s ∈ S.

Remark 4.2. It is easy to see that a preference < on L with a representation of the form (4.1)
satisfies (A1), (A2) and (A4). If in addition, it is strictly monotone on H = RS ⊆ L, it also fulfills
(A5)–(A6). On the other hand, < does not necessarily have the convexity property (A3). However,
it follows from Theorem 2.1 that (A3) holds if one has

V (f) = inf
u∈IS

A
(
u,
∑
s∈S

us(cs(fs))
)

= inf
u∈IS

A (u, 〈u, f〉) for all f ∈ L.

4.2 d-convexity, D-convexity and risk-aversion
Denote by ∆ the set of all probability measures on S, by B the family of all functions B : ∆×R→
R ∪ {±∞} satisfying (R1) with respect to ∆ instead of IS and by Bmin the subset of those B ∈ B
fulfilling (R1)–(R4). The following result gives a representation for d-convex convex preferences
separating risk and ambiguity attitudes.

Proposition 4.3. A preference < on L satisfying (A1)–(A6) and (A3’) has a representation of the
form

V (f) = inf
p∈∆

B
(
p,
∑
s∈S

pscs(fs)
)
, (4.2)

where B is a function in Bmin, and for every s ∈ S, cs : Pc → R is a mapping providing unique
certainty equivalents for the induced preference <s of the form

cs(µ) = inf
u∈I

Ds

(
u,

∫
R
udµ

)
(4.3)

for a unique function Ds ∈ Dmin. Moreover, B is the only function in Bmin inducing the numerical
representation V , and B ≤ B̃ for every B̃ ∈ B leading to the same V . If < also satisfies (A7), then
cs and Ds do not depend on the state s ∈ S.
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Remark 4.4. Any preference < on L with a representation (4.2) for a function B ∈ B and unique
certainty equivalent mappings cs of the form (4.3) satisfies (A1), (A2) and (A4). Moreover, if < is
strictly monotone onH = RS ⊆ L, then it also fulfills (A5)–(A6). The convexity property (A3) does
not always hold. But if the mappings cs : Pc → R are concave, it follows from the quasi-concavity
of x 7→ infp∈∆ B(p,

∑
s∈S psxs) that < satisfies (A3).

The next lemma shows that a risk-averse uncertainty-averse preference exhibits diversification.
It follows from the same arguments as Proposition 3 of Dekel (1989).

Lemma 4.5. Every preference < on L with the properties (A2’) and (A3) satisfies (A3”).

Since D-convexity implies d-convexity, one obtains from Proposition 4.3 and Lemma 4.5 the
following

Corollary 4.6. A preference < on L satisfying (A1), (A2’), (A3), (A4), (A5), (A6) has a represen-
tation of the form

V (f) = inf
p∈∆

B
(
p,
∑
s∈S

pscs(fs)
)

(4.4)

where B is a function in Bmin, and for every s ∈ S, cs : Pc → R is a mapping providing unique
certainty equivalents for the induced preference <s of the form

cs(µ) = inf
u∈Ic

Ds

(
u,

∫
R
udµ

)
for a unique function Ds ∈ Dmin

c . Moreover, B is the only function in Bmin inducing V , and B ≤ B̃
for every B̃ ∈ B generating the same V . If in addition, < satisfies (A7), then cs and Ds do not
depend on the state s ∈ S.

4.3 Risk-independence
A special subclass of preferences on L with the properties (A1)–(A4) are those which satisfy (A5)
together with the condition

(A8) Risk-independence, Archimedean property and unboundedness:
For every s ∈ S, the induced preference <s satisfies (ia), (aa) and (ub).

Proposition 4.7. A preference < on L satisfying (A1)–(A5) and (A8) has a representation of the
form

V (f) = inf
p∈∆

B
(
p,
∑
s∈S

ps

∫
R
usdfs

)
, (4.5)

whereB is an element of Bmin, and for every s ∈ S, us : R→ R is a nondecreasing right-continuous
function not attaining its infimum or supremum such that

∫
R usdµ represents the induced preference

<s on Pc. Every us is unique up to strictly increasing affine transformation, and for for given us,
s ∈ S, B is the smallest of all functions in B generating the same V . If in addition, (A2’) holds,
then all us are concave. If < satisfies (A7), then us does not depend on the state s ∈ S.
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Remark 4.8. If for every s ∈ S, us : R → R is a nondecreasing right-continuous function, then
the mapping ϕ : L → RS , given by ϕs(f) :=

∫
R usdfs, is affine. Moreover, for any B ∈ B, x 7→

infp∈∆B(p,
∑

s∈S psxs) defines a quasi-concave functional on RS . As a consequence, a preference
< on L with a numerical representation of the form (4.5) for a function B ∈ B, satisfies (A1)–(A4).
Moreover, if it is strictly monotone on H = RS ⊆ L, then all the functions us must be strictly
increasing, and < fulfills (A5) as well as (A8).

In particular, a preference over L that is strictly increasing on H = RS ⊆ L has a representation
of the form (4.5) if and only if it satisfies (A1)–(A5) and (A8).

A Proofs of Theorem 2.1 and Corollary 2.3
The most difficult part in the proof of Theorem 2.1 is to show the implication (i)⇒ (ii). The crucial
step in the derivation is to prove that the upper contour sets of the preference < are closed in the
σ(L,CS)-topology. We recall that a Fréchet space is a locally convex topological vector space
X which is complete with respect to a translation-invariant metric generating the topology. The
absolute polar U◦ of a subset U ⊆ X is the following set in the topological dual X∗ of X:

U◦ := {x∗ ∈ X∗ : |〈x∗, x〉| ≤ 1 for all x ∈ U} .

It follows from the Banach–Dieudonné theorem (see e.g. Schaefer and Wolff, 1986) that a convex
set Y in X∗ is σ(X∗, X)-closed if and only if Y ∩U◦ is σ(X∗, X)-closed for every 0-neighborhood
U in X .

Denote by C the set of all continuous functions h : R → R. The subspace Cb of bounded
continuous functions with the supremum norm ‖h‖∞ := supx∈R |h(x)| is a Banach space. Moreover,
‖h‖k :=

∥∥h1[−k,k]

∥∥
∞, k ∈ N, is a sequence of seminorms on C generating the translation-invariant

metric

d(h, h′) :=
∑
k≥1

2−k
‖h− h′‖k

1 + ‖h− h′‖k
,

under which C becomes a Fréchet space. More generally, CS is a Fréchet space with respect to the
metric

dS(u, u′) :=
∑
s∈S

∑
k≥1

2−k
‖us − u′s‖k

1 + ‖us − u′s‖k
.

Every continuous linear functional ϕ : C → R has a unique representation ϕ(h) = 〈h, µ〉 :=
∫
R udµ

for a signed Borel measure µ ∈ Mc. So the topological dual of C can be identified with Mc and the
topological dual of CS with MS

c , where f ∈MS
c acts on CS like

〈u, f〉 :=
∑
s∈S

∫
R
usdfs.

It is well-known that the Lévy metric, given by

ρ(µ, ν) := inf {ε ∈ R+ : µ(−∞, x− ε]− ε ≤ ν(−∞, x] ≤ µ(−∞, x+ ε] + ε} ,
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induces the σ(Pc, Cb)-topology on Pc. For k ∈ N, we denote by P (k) the set of all probability
measures µ ∈ Pc with support in [−k, k]. Then one has the following

Lemma A.1. Fix k ∈ N, µ ∈ P (k), α ∈ (0, 1] and ε > 0. Let (µj) be a sequence in P (k) converging
to µ with respect to the Lévy metric ρ. Then αδk + (1− α)TεµD1 µ

j for j large enough.

Proof. Let (µj) be a sequence in P (k) converging to µ in P (k) with respect to ρ. Denote G(x) =
µ(x,∞), H(x) = µ[x,∞) and Hj(x) = µj[x,∞). The point x∗ := sup {x : H(x) = 1} is in
[−k, k], and

Hα,ε(x) := α1{x≤k} + (1− α)H(x− ε) = 1

for all x ≤ (x∗ + ε) ∧ k. In particular, Hα,ε(x) ≥ Hj(x), x ≤ (x∗ + ε) ∧ k for all j. Now assume
there exists a sequence (xn) in [x∗ + ε, k] such that

Hα,ε(xn) < H(xn − 1/n) + 1/n.

By passing to a subsequence one can assume that xn → x̄ ∈ [x∗ + ε, k]. Then

α(1−H(x̄)) ≤ (1− α)G(x̄− ε) + α−H(x̄) ≤ lim inf
n

Hα,ε(xn)−H(xn − 1/n)− 1/n ≤ 0.

But this implies H(x̄) = 1, contradicting x∗ < x̄. Therefore, there exists an h > 0 such that

Hα,ε(x) ≥ H(x− h) + h for all x ∈ [x∗ + ε, k],

from which it follows thatHα,ε ≥ Hj , and therefore, αδk+(1−α)TεµD1µ
j for j large enough.

Lemma A.2. Every subset E ⊆ L satisfying the following four properties is σ(L,CS)-closed.

(i) If f ∈ L satisfies fs D1 gs, s ∈ S, for some g ∈ E, then f ∈ E

(ii) Convexity

(iii) For all f, g ∈ L, {α ∈ [0, 1] : αf + (1− α)g ∈ E} is a closed subset of [0, 1]

(iv) If f ∈ L satisfies Tεf ∈ E for all ε > 0, then f ∈ E.

Proof. Since E is convex and L is a σ(MS
c , C

S)-closed subset of MS
c , it follows from the Banach–

Dieudonné theorem that E is σ(L,CS)-closed if and only if E ∩ U◦ is σ(L,CS)-closed for every
0-neighborhood U in CS . The sets

Uk,l :=

{
u ∈ CS :

∑
s∈S

‖us‖k ≤ 1/l

}
, k, l ∈ N,

form a neighborhood base of 0 inCS . Therefore, it is enough to show thatE∩U◦k,l is σ(L,CS)-closed
for all k, l ∈ N. However,

U◦k,l∩L = {f ∈ L : |〈u, f〉| ≤ 1 for all u ∈ Uk,l} ⊆ Lk := {f ∈ L : supp(fs) ⊆ [−k, k] for all s ∈ S} .
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So it suffices to show that E ∩ Lk is a σ(L,CS)-closed subset of Lk for all k ∈ N. To do that, fix
k ∈ N and assume E ∩ Lk 6= ∅. Since E ∩ Lk is σ(L,CS)-closed if and only if it is σ(L,CS

b )-
closed, and σ(L,CS

b ) is metrizable, it is enough to show that f ∈ Lk belongs to E ∩ Lk if it is the
σ(L,CS

b )-limit of a sequence (f j) in E ∩ Lk. In this case, for every s ∈ S, (f js ) is a sequence in
P (k) converging to fs ∈ P (k) with respect to σ(Pc, Cb), and therefore also in the Lévy metric ρ.
Choose α ∈ (0, 1] and ε > 0. It follows from Lemma A.1 that fα,εs := αδk + (1− α)Tεfs D1 f

j
s for

j large enough. By assumption (i), fα,ε belongs to E. So it follows from assumption (iii) that Tεf is
in E, and since E has property (iv), f belongs to E.

Lemma A.3. For a convex subset E of L the following are equivalent:

(i) For all f ∈ E and g /∈ E, there exists an α ∈ (0, 1) such that αf + (1− α)g /∈ E

(ii) For all f, g ∈ L, {α ∈ [0, 1] : αf + (1− α)g ∈ E} is a closed subset of [0, 1].

Proof. The implication (ii) ⇒ (i) is clear. To show (i) ⇒ (ii), let (αj) be a sequence in [0, 1] con-
verging to α such that αjf + (1−αj)g ∈ E for all j. Assume αf + (1−α)g /∈ E. If infinitely many
αj are below α, choose j0 such that αj0 < α. Since E is convex, one has βf + (1 − β)g ∈ E for
all β ∈ [αj0 , α). On the other hand, if condition (i) holds, there must exist a β ∈ (αj0 , α) such that
βf + (1− β)g /∈ E, a contradiction. This shows that αf + (1−α)g ∈ E and (ii) holds. If infinitely
many αj are above α, the proof works analogously.

Proof of Theorem 2.1
(ii)⇒ (i): If a preference < on L has a representation of the form V (f) = infu∈IS A(u, 〈u, f〉) for a
function A ∈ A, it can easily be checked that it satisfies (A1)–(A3). Moreover, if f, g, h ∈ L satisfy
f < g � h, there exists an u ∈ IS such that A(u, 〈u, f〉) ≥ V (f) ≥ V (g) > A(u, 〈u, h〉). Since
A(u, x) is non-decreasing and right-continuous in x, there exists an α ∈ (0, 1) such that

V (g) > A(u, 〈u, αf + (1− α)h〉) ≥ V (αf + (1− α)h).

This shows that < fulfills (A4.a). Similarly, if f, g are acts in L such that Tεf < g for all ε > 0, then

A(u, 〈u, Tεf〉) ≥ V (g) for all u ∈ IS and ε > 0.

Therefore,
V (f) = inf

u∈IS
A(u, 〈u, f〉) ≥ V (g),

showing that < satisfies (A4.b).
(i) ⇒ (ii): If < has the properties (A1)–(A4), one obtains from Lemma A.3 that the upper

contour sets {f ∈ L : f < g}, g ∈ L, satisfy conditions (i)–(iv) of Lemma A.2. Therefore, they
are σ(L,CS)-closed. So it follows from the convex duality arguments in the proof of Theorem 7 in
Drapeau and Kupper (2013) that < has a representation of the form V (f) = infu∈IS A(u, 〈u, f〉) for
a mapping Â ∈ Amin. Moreover, Â is the only mapping in Amin inducing V , and Â ≤ A for all
A ∈ A inducing the same V . This completes the proof of the theorem.
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Proof of Corollary 2.3
The implication (ii)⇒ (i) follows as in the proof of Theorem 2.1. To show (i)⇒ (ii), one notices that
(A2’) is stronger than (A2). So if (i) holds, one obtains from Theorem 2.1 that the upper contour sets
{f ∈ L : f < g}, g ∈ L, are σ(L,CS)-closed. Moreover, Ic is the polar cone generated by second
order stochastic dominance. Therefore, (ii) and the rest of the corollary follow as in Theorem 2.1
from the proof of Theorem 7 in Drapeau and Kupper (2013) by replacing I with Ic.

B Proofs of the results in Section 3
Proof of Proposition 3.2
Let < be a preference on Pc satisfying (a1)–(a4) and (ce). By (ce.a), a given µ ∈ Pc can have at
most one certainty equivalent. Moreover, it follows from (a2) and (ce.a) that there exist x, y, z ∈ R
such that δx < µ < δy � δz, guaranteeing that the mapping (3.1) is real-valued. Due to (a4.b), one
has δc(µ) < µ, and by (ce.b), it cannot be that δc(µ) � µ. This shows δc(µ) ∼ µ, and hence, c(µ) is the
unique certainty equivalent of µ. Since < satisfies (a1)–(a4), it follows from the proof of Theorem
2.1 that the upper contour sets

{µ ∈ Pc : c(µ) ≥ x} = {µ ∈ Pc : µ < δx} , x ∈ R,

are σ(Pc, C)-closed. So the mapping c : Pc → R is monotone with respect to D1, quasi-concave and
σ(Pc, C)-lower semicontinuous. Therefore it follows from the second part of the proof of Theorem
7 in Drapeau and Kupper (2013) that it has a representation of the form (3.2). If (a2’) holds, then c
is monotone with respect to D2. So, since Ic is the polar cone generated by second order stochastic
dominance, < is representable as in (3.3).

Proof of Proposition 3.3
Since < satisfies (ia) and (aa), it follows from the von Neumann–Morgenstern theorem that it has an
affine representation V : Pc → R that is unique up to strictly increasing affine transformations, (see
e.g. Föllmer and Schied, 2004). As a consequence, it satisfies (a3) and (a4.a), and one obtains from
Corollary 2.3 that the upper contour sets of < are σ(Pc, C)-closed. Since V : Pc → R is affine, its
image V (Pc) is an interval. Therefore, it follows from

{µ ∈ Pc : V (µ) ≥ V (ν)} = {µ ∈ Pc : µ < ν}

that V is σ(Pc, C)-upper semicontinuous. In particular, the function u : R → R given by u(x) :=
V (δx), is nondecreasing and right-continuous. By affinity, one has V (µ) =

∫
R u(x)µ(dx) for every

µ ∈ Pc which is a finite convex combination of Dirac measures. A general µ ∈ Pc can be approx-
imated from above in the Lévy metric by a sequence (µj) of finite convex combinations of Dirac
measures. Due to upper semicontinuity, one has

V (µ) = lim
j
V (µj) = lim

j

∫
R
u(x)µj(dx) =

∫
R
u(x)µ(dx).

This proves the representation (3.4). If < satisfies (ce), it has certainty equivalents, from which it
follows that u must be continuous. If < fulfills (a2’), u must be concave. Finally, if the preference
satisfies (ub), u cannot attain its infimum or supremum.
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C Proofs of the results in Section 4
Proof of Proposition 4.1
If < is a preference relation on L with the properties (A1)–(A6), it follows from Theorem 2.1 that it
has a representation of the form

V (f) = inf
u∈IS

A(u, 〈u, f〉)

for a function A ∈ Amin. Due to (A5),

µ <s ν :⇔ µ1s + f1S\s < ν1s + f1S\s

defines for every s ∈ S, a complete preference relation on Pc that does not depend on f . Since (A6)
holds, it follows from Proposition 3.2 that <s has a unique certainty equivalent mapping cs : Pc → R.
Due to (A1)–(A4), <s satisfies (a1)–(a4). So one obtains from Proposition 3.2 that it is of the form

cs(µ) = inf
u∈I

Ds

(
u,

∫
udµ

)
for a unique function Ds ∈ Dmin. Denote by c : L → RS the mapping defined by cs(f) := cs(fs)
and note that if f, g ∈ L are two acts satisfying fs <s gs for all s ∈ S, one has

f < g11 + f1S\1 < g1{1,2} + f1S\{1,2} < · · · < g1S\m + f1m < g.

It follows that
V (f) = V (δc(f)) = inf

u∈IS
A
(
u,
∑
s∈S

us(cs(fs))
)
.

Proof of Proposition 4.3
As in the proof of Proposition 4.1, it follows from (A1)–(A6) that < has a representation

V (f) = inf
u∈IS

A (u, 〈u, f〉)

for a function A ∈ Amin and induces for every s ∈ S, a complete preference <s on Pc with a unique
certainty equivalent mapping cs : Pc → R of the form

cs(µ) = inf
u∈I

Ds

(
u,

∫
udµ

)
for a unique Ds ∈ Dmin. The mapping v : RS → R∪{±∞} defined by v(x) := V (δx) is monotone
with respect to the component-wise order on RS and upper semicontinuous. By (A3’), it is quasi-
convex. So it follows from Theorem 6 in Drapeau and Kupper (2013) that it is representable as

v(x) = inf
p∈∆

B

(
p,
∑
s∈S

psxs

)
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for a unique function B ∈ Bmin. Moreover, B ≤ B̃ for any B̃ ∈ B inducing the same mapping v.
Since f ∼ c(f) for any act f ∈ L, one obtains

V (f) = V (c(f)) = inf
p∈∆

B

(
p,
∑
s∈S

pscs(fs)

)
.

It is clear that if (A7) holds, then cs and Ds do not depend on s ∈ S.

Proof of Lemma 4.5
Consider a measurable space (Ω,F) equipped with m probability measures Ps, s ∈ S. Let X, Y, Z :
Ω → R be bounded measurable functions such that ψ(X), ψ(Y ) < ψ(Z), where ψ(X) denotes the
vector (µX1 , . . . , µ

X
m) of distributions ofX under P1, . . . ,Pm. Since µαX+(1−α)Y

s D2αµ
X
s +(1−α)µYs ,

it follows from (A2’) and (A3) that

ψ(αX + (1− α)Y ) < αψ(X) + (1− α)ψ(Y ) < ψ(Z).

Proof of Corollary 4.6
By Lemma 4.5, < satisfies (A3”) and therefore also (A3’). Now the corollary follows as Proposition
4.3 except that the certainty equivalents cs are representable as

cs(µ) = inf
u∈Ic

Ds

(
u,

∫
R
udµ

)
for unique functions Ds ∈ Dmin

c due to Corollary 3.1.

Proof of Proposition 4.7
Due to (A1)–(A5), one obtains from Theorem 2.1 that < has a representation

V (f) = inf
u∈IS

A (u, 〈u, f〉)

for a mapping A ∈ Amin and induces for every s ∈ S, a complete preference <s on Pc. Since <s

satisfies (a1), (a2), (a4), (ia), (aa) and (ub), it follows from Proposition 3.3 that it has a representation
of the form

∫
R usdµ for a nondecreasing right-continuous function us : R → R that does not attain

its infimum or supremum and is unique up to strictly increasing affine transformations. Define the
function ϕ : L→ RS by ϕs(f) :=

∫
R usdfs and the vectors a, b ∈ (R ∪ {±∞})S by

as := inf
x∈R

us(x), bs := sup
x∈R

us(x).

Then Im(ϕ) = (a, b). Since ϕ(f) = ϕ(g) implies f ∼ g, the function v : (a, b)→ R∪{±∞} given
by

v(x) := V (f), where x = ϕ(f),
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is well-defined. Moreover, v is monotone with respect to the component-wise order on RS , and since
ϕ is affine, the superlevel sets

Cz := {x ∈ (a, b) : v(x) ≥ z} = ϕ {f ∈ L : V (f) ≥ z} , z ∈ R,

are convex. Now consider a sequence (xj) in Cz converging to some x ∈ (a, b). By passing to
a subsequence, one can assume that |xj − x| ≤ R2−j/j > 0 for R := infs(bs − xs) > 0. Then
y = x+

∑
j j(x

j − x)+ is in (a, b), and for all λ ∈ [0, 1), one has

λx+ (1− λ)y ≥ x+ (1− λ)j(xj − x)+ ≥ xj ∈ Cz if j ≥ 1

1− λ
.

So, by monotonicity, λx + (1 − λ)y belongs to Cz for all λ ∈ [0, 1). Choose f, g ∈ L such that
x = ϕ(f) and y = ϕ(g). Then one obtains from the σ(L,CS)-upper semicontinuity of V that the
set

{λ ∈ [0, 1] : λx+ (1− λ)y ∈ Cz} = {λ ∈ [0, 1] : V (λf + (1− λ)g) ≥ z}
is closed. It follows that x is in Cz, which shows that Cz is relatively closed in (a, b). Denote
by v̂ : RS → R ∪ {±∞} the minimal monotone quasi-concave lower semicontinuous function
dominating v on (a, b). Its superlevel sets Dz :=

{
x ∈ RS : v̂(x) ≥ z

}
are given by

Dz =
⋂
z′<z

cl(Cz′ + RS
+).

Since Cz is monotone and relatively closed in (a, b), one has

cl
(
Cz + RS

+

)
∩ (a, b) = cl

(
(Cz + RS

+) ∩ (a, b)
)
∩ (a, b) = cl(Cz) ∩ (a, b) = Cz.

Therefore,
Dz ∩ (a, b) =

⋂
z′<z

Cz′ = Cz.

which shows that v̂(x) = v(x) for x ∈ (a, b). By Theorem 6 of Drapeau and Kupper (2013), v̂ is
representable as v̂(x) = infp∈∆B(p,

∑
s psxs) for a unique elementB ∈ Bmin, andB ≤ B′ for every

B′ ∈ B inducing the same v̂. Finally, if B̃ is a function in B such that v(x) = infp∈∆ B̃(p,
∑

s psxs)
for x ∈ (a, b), then ṽ(x) = infp∈∆ B̃(p,

∑
s psxs), x ∈ RS , is a monotone quasi-concave upper

semicontinuous extension of v. Therefore, v̂ ≤ ṽ and B ≤ B̃.
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