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Abstract

We consider an economic agent with dynamic preferences over a set of uncertain mon-
etary payoffs. We assume that preferences are updated in a time-consistent way as
more information is becoming available. Our main result is that the agent’s indiffer-
ence prices are recursive if and only if the preferences are translation-invariant. The
proof is based on a characterization of time-consistency of dynamic preferences in
terms of indifference sets. As a special case, we obtain that expected utility leads to
recursive indifference prices if and only if absolute risk aversion is constant, that is,
the Bernoulli utility function is linear or exponential.
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1 Introduction

The standard way of pricing financial assets is by taking expectations of discounted payoffs
under a probability measure Q which is equivalent to the objective probability measure
P. This leads to prices that are linear in the payoffs and discounted price processes which
are martingales under Q. In particular, prices are recursive, that is, the price of a future
payoff can be calculated directly or in two steps backwards in time; both give the same
result. As a consequence, in discrete-time models, prices can be computed by backwards
induction, and in continuous time, provided that state variables are Markovian, they can
be expressed as solutions to partial differential equations. However, while in complete
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markets the pricing measure is unique, there exist infinitely many of them in incomplete
markets, and often it is not clear which one should be used.

An alternative valuation method for incomplete market situations is indifference pric-
ing. Since its introduction by Hodges and Neuberger [15] it has been extended to different
setups and used for the valuation of various products from equity options and credit deriva-
tives to real options and complex insurance contracts. An indifference price is the maximal
amount of money for which a given economic agent would be willing to buy an uncertain
future payoff or the least amount for which s/he would be willing to sell it. In contrast
to prices obtained by taking expectations, indifference prices are not linear. In particular,
they depend on whether an asset is bought or sold; see for instance, Henderson and Hobson
[14] for an introduction to indifference pricing, examples and further literature. Almost
all studies of indifference pricing so far have assumed that investor preferences are given
by expected utility and many of them that the Bernoulli utility function is exponential.
It has been shown by Rouge and El Karoui [24], Mania and Schweizer [19], Becherer [3]
in different setups that in the expected exponential utility case, the dynamics of indiffer-
ence prices can be described by the solution of a non-linear backward stochastic differential
equation, from which it follows that they are recursive. Musiela and Zariphopoulou [20, 21]
have shown that indifference prices corresponding to expected exponential utility can be
obtained through a family of non-linear pricing operators satisfying the semigroup prop-
erty, also yielding that they are recursive. In Klöppel and Schweizer [16] it is shown that
indifference prices stay recursive when preferences are given by time-consistent dynamic
convex risk measures.

In this paper we investigate the question whether indifference prices are always recur-
sive, or if not, what is the largest class of preferences that lead to recursive indifference
prices. To keep technicalities at a minimum we work in a discrete-time setup and with
a finite probability space. Our main result, Theorem 3.4 shows that indifference prices
are recursive if and only if preferences are translation-invariant. As a special case we ob-
tain that expected utility leads to recursive indifference prices if and only if absolute risk
aversion is constant, that is, the Bernoulli utility function is linear or exponential.

The structure of the paper is as follows: In Section 2 we specify conditional preferences
through utility functions and discuss properties of certainty equivalents and indifference
prices. In Section 3 we provide different characterizations of time-consistency of dynamic
utility functions and show that time-consistent preferences are uniquely determined by
the initial preference order. Then we state our main result, which shows that indifference
prices are recursive if and only if preferences are translation-invariant. Its proof is given
in the appendix in a framework where the only investment opportunity is a money market
account. In Section 4 we discuss the case of a more general financial market.

2 Conditional preferences

For the sake of simplicity we consider a finite sample space Ω = {ω1, . . . ωN}, whose
elements describe all possible states of the world. Time is discrete and runs through the
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set {0, 1, . . . , T} for a finite horizon T ∈ N. The evolution of information is modelled by
a filtration (Ft)T

t=0. Since Ω is finite, every Ft is an algebra of subsets of Ω generated
by finitely many non-empty, disjoint sets A1

t , . . . , A
Nt
t such that Ω = A1

t ∪ · · · ∪ ANt
t . We

call A1
t , . . . , A

Nt
t the atoms of Ft and assume Ω = A1

0 and that the partitions have the
following strong refinement property: for all t ≤ T − 1, every time t atom Ak

t splits into
at least two parts at time t + 1. One can think of this information structure in terms of
an event tree in which every non-terminal node has at least two descendants. By L(Ft)
we denote the set of all Ft-measurable functions from Ω to R. An element of L(FT ) is
understood as an uncertain monetary payoff at time T . If it is in L(Ft), then its value
is known by time t. We assume that there exists a money market account where money
can be lent to and borrowed from at the same risk-free rate and use it as numeraire, that
is, payoffs are expressed in multiples of one dollar put into the money market account at
time zero. Equalities and inequalities between uncertain payoffs are understood ω-wise.
For instance, X ≥ Y means X(ω) ≥ Y (ω) for all ω ∈ Ω.

2.1 Utility functions

We consider an agent whose preferences at time t are given by a function Ut : L(FT ) →
L(Ft). In the event Ak

t , the agent prefers X to Y if Ut(X) > Ut(Y ) on Ak
t .

We call Ut a utility function at time t if it has the following three properties:

(LP) Local property: If X, Y ∈ L(FT ) and A ∈ Ft are such that 1AX = 1AY , then
1AUt(X) = 1AUt(Y ).

(SM) Strict monotonicity: For all X ∈ L(FT ), ε > 0 and ω ∈ Ω:

Ut(X + ε1{ω}) > Ut(X) on the Ft-atom Ak
t containing the state ω.

(C) Continuity: Ut is continuous with respect to the norm ||X||∞ := maxω∈Ω |X(ω)|,
X ∈ L(FT ).

The economic interpretation of (LP) is that in an event A ∈ Ft, the utility Ut(X) of a
payoff X ∈ L(FT ) only depends on values X can take in states of the world contained in
A. (LP) and (SM) imply

(M) Monotonicity: Ut(X) ≥ Ut(Y ) for all X,Y ∈ L(FT ) such that X ≥ Y .

It is natural to assume strict monotonicity (SM) if in each event Ak
t , the agent believes that

every state ω ∈ Ak
t is possible. It will ensure that certainty equivalents and indifference

prices are unique. (C) is a technical assumption. Together with (SM), it will guarantee
existence of certainty equivalents and indifference prices.

If Ut satisfies the

(T) Translation property: Ut(X+m) = Ut(X)+m for all X ∈ L(FT ) and m ∈ L(Ft),

then the corresponding preference order is translation-invariant, that is, the agent prefers
X to Y if and only if s/he prefers X + m to Y + m for all m ∈ L(Ft).
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Other properties that we will play a role in this paper are:

(LS) Loss sensitivity: For all X, Y ∈ L(FT ) and ω ∈ Ω, there exists m ∈ R such that

Ut(X + m1{ω}) ≤ Ut(Y ) on the Ft-atom Ak
t containing the state ω.

(CQC) Conditional quasi-concavity: Ut(λX + (1− λ)Y ) ≥ min {Ut(X) , Ut(Y )}
for all X, Y ∈ L(FT ) and λ ∈ L(Ft) such that 0 ≤ λ ≤ 1.

(CC) Conditional concavity: Ut(λX + (1− λ)Y ) ≥ λUt(X) + (1− λ)Ut(Y )
for all X, Y ∈ L(FT ) and λ ∈ L(Ft) such that 0 ≤ λ ≤ 1.

If Ut satisfies (CQC), then diversification increases utility in the sense that λX +(1−λ)Y
is weakly preferred to X and Y for all X,Y ∈ L(FT ) with Ut(X) = Ut(Y ) and λ ∈ L(Ft)
such that 0 ≤ λ ≤ 1. (CC) is obviously stronger than (CQC). On the other hand, one has

Lemma 2.1 For any function Ut : L(FT ) → L(Ft), the following hold:

(1) If Ut satisfies (T) and (CQC), then it also satisfies (CC)

(2) If Ut satisfies (SM) and (CC), then it also satisfies (LS)

Proof.
(1) If Ut : L(FT ) → L(Ft) satisfies (T) and (CQC), then

Ut(λX + (1− λ)Y )− λUt(X)− (1− λ)Ut(Y )
= Ut(λ[X − Ut(X)] + (1− λ)[Y − Ut(Y )])
≥ min {Ut(X − Ut(X)) , Ut(Y − Ut(Y ))} = 0

for all X, Y ∈ L(FT ) and λ ∈ L(Ft) such that 0 ≤ λ ≤ 1. This shows that Ut satisfies
(CC).
(2) For fixed X ∈ L(FT ) and an Ft-atom Ak

t , denote the value of Ut(X) on Ak
t by Ut,k(X).

Then, by (SM) and (CC), m 7→ Ut,k(X + m1{ω}) is for every ω ∈ Ak
t a strictly increasing

concave function from R to R. Therefore, limm→−∞ Ut,k(X+m1{ω}) = −∞. In particular,
Ut satisfies (LS). ¤

A probability measure Q on Ω is given by the weights q1, . . . , qN it gives the states
ω1, . . . , ωN . We call Q strictly positive if q1, . . . , qN > 0.

Examples 2.2
Consider a function Ut : L(FT ) → L(Ft) of the form

Ut(X) = min
Q∈Q

{EQ[u(X) | Ft] + c(Q)} (2.1)

for a non-empty set Q of strictly positive probability measures on Ω, a mapping c from Q
to L(Ft) and a strictly increasing, continuous function u from R to R. Then Ut has the
properties (LP), (SM) and (C). If limx→−∞ u(x) = −∞, then Ut is loss sensitive (LS). If
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u is concave, then Ut satisfies (CC). Preference functionals of the form (2.1) are studied
in Maccheroni et al. [17, 18]. In the special case c ≡ 0, (2.1) reduces to a multi-prior
conditional expectation

min
Q∈Q

EQ[u(X) | Ft] ; (2.2)

see Gilboa and Schmeidler [13] for an axiomatization in the unconditional case and Epstein
and Schneider [9] for the conditional and dynamic case. If Q consists of only one element
Q, (2.2) is simply a conditional expected utility

EQ[u(X) | Ft] .

For u(x) = x, the mapping Ut in (2.1) has the translation property (T), and −Ut is
a convex monetary risk measure; see Föllmer and Schied [10, 11] for the unconditional
case and Cheridito et al. [4, 5] for the conditional and dynamic case. If u(x) = x and
c ≡ 0, then −Ut is a coherent risk measure; see Artzner et al. [1], Delbaen [6, 7] for the
unconditional case and Artzner et al. [2], Delbaen [8], Riedel [22], Roorda et al. [23] for
conditional and dynamic coherent risk measures.

2.2 Incremental utilities

If at time t, our agent is already holding a portfolio with time T payoff V ∈ L(FT ) when
considering another payoff X ∈ L(FT ), the question is how Ut(X +V ) compares to Ut(V ).
We call V the agent’s endowment and define

Definition 2.3 The incremental utility with respect to a utility function Ut at time t and
endowment V ∈ L(FT ) is given by

UV
t (X) := Ut(V + X)− Ut(V ) , X ∈ L(FT ) . (2.3)

Clearly, if Ut has any of the properties (LP), (SM), (C), (T), (LS), (CQC), (CC), then so
does UV

t . Moreover, UV
t (0) = 0, and U0

t induces the same conditional preference order on
L(FT ) as Ut.

2.3 Certainty equivalents

Definition 2.4 Let Ut be a utility function at time t. The certainty equivalent CV
t (X)

of X ∈ L(FT ) with respect to Ut and endowment V ∈ L(FT ) is defined as the unique
m ∈ L(Ft) that satisfies

UV
t (m) = UV

t (X) .

Note that CV
t (X) always exists and is unique because UV

t has the properties (SM) and
(C).

Proposition 2.5 For every utility function Ut at time t and V ∈ L(FT ), the correspond-
ing certainty equivalent CV

t has the following properties:
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(1) For all X,Y ∈ L(FT ): UV
t (X) ≥ UV

t (Y ) ⇔ CV
t (X) ≥ CV

t (Y ).

(2) CV
t satisfies (LP), (SM), (C) and CV

t (m) = m for all m ∈ L(Ft).

(3) If Ut satisfies (LS), then so does CV
t .

(4) If Ut satisfies (CQC), then so does CV
t .

(5) If Ut satisfies (T), then UV
t = CV

t .

(6) For all X,Y, W ∈ L(FT ):
CV

t (X) ≥ CV
t (Y ) ⇔ CW

t (V −W + X) ≥ CW
t (V −W + Y ).

(7) If CV
t satisfies (T) for some V ∈ L(FT ), then CW

t satisfies (T) for all W ∈ L(FT ).

(8) If CV
t satisfies (CC), then it also satisfies (T).

Proof. (1)–(5) are obvious. (6) can be derived from (1) and the definition of UV
t as follows:

CV
t (X) ≥ CV

t (Y ) ⇔ UV
t (X) ≥ UV

t (Y ) ⇔ Ut(V + X) ≥ Ut(V + Y )
⇔ UW

t (V −W + X) ≥ UW
t (V −W + X) ⇔ CW

t (V −W + X) ≥ CW
t (V −W + X) .

To show (7), let W,X ∈ L(FT ) and m ∈ L(Ft). It follows from CW
t (X) = CW

t (CW
t (X))

and (6) that CV
t (W − V + X) = CV

t (W − V + CW
t (X)). If CV

t satisfies (T), then

CV
t (W − V + X + m) = CV

t (W − V + X) + m

= CV
t (W − V + CW

t (X)) + m = CV
t (W − V + CW

t (X) + m) ,

which by (6) and (2) implies CW
t (X + m) = CW

t (CW
t (X) + m) = CW

t (X) + m.
As for (8), assume that CV

t satisfies (CC). Then, for all X ∈ L(FT ), m ∈ L(Ft) and
λ ∈ (0, 1),

CV
t (X + m) ≥ λCV

t

(
X

λ

)
+ (1− λ)CV

t

(
m

1− λ

)
= λCV

t

(
X

λ

)
+ m .

Since CV
t has the continuity property (C), we can let λ tend towards 1 to conclude CV

t (X+
m) ≥ CV

t (X)+m. This also shows CV
t (X̃+m̃) ≥ CV

t (X̃)+m̃ for X̃ = X+m and m̃ = −m,
and (8) is proved. ¤
Properties (1) and (2) show that CV

t is a utility function at time t that induces the same
conditional preference order on L(FT ) as UV

t . Since CV
t (0) = 0, it follows from (LP) that

CV
t (1AX) = 1ACV

t (X) for all X ∈ L(Ft) and A ∈ Ft .

Properties (6) and (7) will be needed in the proof of the main result, Theorem 3.4, below.
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2.4 Indifference prices

Definition 2.6 The indifference bid price bV
t (X) of X ∈ L(FT ) with respect to a utility

function Ut at time t and endowment V ∈ L(FT ) is the unique m ∈ L(Ft) such that

UV
t (X −m) = 0 . (2.4)

bV
t (X) exists and is unique because UV

t satisfies (SM), (C) and UV
t (0) = 0. The defining

equality (2.4) means
Ut(V + X − bV

t (X)) = Ut(V ) ;

in other words, bV
t (X) is the maximal price that an agent with utility function Ut and

endowment V can pay for X at time t without loosing utility. The indifference ask price
at time t corresponding to Ut and endowment V ∈ L(FT ) is given by aV

t (X) = −bV
t (−X).

It satisfies
Ut(V −X + aV

t (X)) = Ut(V )

and is the minimal price for which the agent can sell X at time t without loosing utility.

Proposition 2.7 Let bV
t be the indifference price and CV

t the certainty equivalent with
respect to a utility function Ut at time t and endowment V ∈ L(FT ). Then bV

t has the
following properties:

(1) bV
t satisfies (LP), (SM), (C), (T) and bV

t (m) = m for all m ∈ L(Ft).

(2) If Ut satisfies (LS), then so does bV
t .

(3) If Ut satisfies (CQC), then bV
t satisfies (CC) and aV

t ≥ bV
t .

(4) If Ut satisfies (T), then UV
t = CV

t = bV
t .

(5) If CV
t satisfies (T), then CV

t = bV
t .

(6) For all X ∈ L(FT ): bV
t (X) = −CV +X

t (−X) and aV
t (X) = CV−X

t (X).

Proof. The proof of (1), (2), (4) and (5) is straightforward. The first part of (3) follows
from the fact that

UV
t (λX + (1− λ)Y − λbV

t (X)− (1− λ)bV
t (Y ))

≥ min
{
UV

t (X − bV
t (X)), UV

t (Y − bV
t (Y ))

}
= 0

for all X,Y ∈ L(FT ) and λ ∈ L(Ft) such that 0 ≤ λ ≤ 1. To see that aV
t ≥ bV

t , note
that 0 = bV

t (0) ≥ 1
2bV

t (X) + 1
2bV

t (−X), and therefore, aV
t (X) ≥ bV

t (X). To show (6), we
fix X ∈ L(FT ). bV

t (X) satisfies CV
t (X − bV

t (X)) = CV
t (0). By (6) of Proposition 2.5,

this is equivalent to −bV
t (X) = CV +X

t (−bV
t (X)) = CV +X

t (−X), which proves bV
t (X) =

−CV +X
t (−X). Since CV

t (−X + aV
t (X)) = CV

t (0), it follows from (6) of Proposition 2.5
that aV

t (X) = CV−X
t (aV

t (X)) = CV−X
t (X). ¤

As for certainty equivalents, the local property (LP) for bV
t takes the particular form

bV
t (1AX) = 1AbV

t (X) for all X ∈ L(FT ) and A ∈ Ft .
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3 Time-consistency and recursiveness

Definition 3.1 A dynamic utility function is a family (Ut)T
t=0 of utility functions at times

t = 0, . . . , T . We call a dynamic utility function (Ut)T
t=0 time-consistent if for all X, Y ∈

L(FT ) and t ≤ T − 1,

Ut+1(X) ≥ Ut+1(Y ) implies Ut(X) ≥ Ut(Y ) . (3.1)

If (Ut)T
t=0 is not time-consistent, then there exist X, Y ∈ L(FT ) and t ≤ T − 1 such that

Ut+1(X) ≥ Ut+1(Y ) everywhere on Ω, but Ut(X) < Ut(Y ) on at least one Ft-atom Ak
t .

This means that at time t, in the event Ak
t , the agent prefers Y to X while s/he knows

that at time t + 1, s/he will weakly prefer X to Y in every state of the world.
Dynamic consistency conditions equal or similar to (3.1) have been studied in various

contexts; see for instance, Cheridito et al. [4] and the references therein.
In the following lemma we give equivalent conditions for time-consistency of a dynamic

utility function.

Lemma 3.2 Let (Ut)T
t=0 be a dynamic utility function with certainty equivalents (CV

t )T
t=0,

V ∈ L(FT ). Then for fixed 0 ≤ s < t ≤ T , the following are equivalent:

(1) For all X,Y ∈ L(FT ), Ut(X) ≥ Ut(Y ) implies Us(X) ≥ Us(Y )

(2) For all X,Y, V ∈ L(FT ), UV
t (X) ≥ UV

t (Y ) implies UV
s (X) ≥ UV

s (Y )

(3) C0
s (X) = C0

s (C0
t (X)) for all X ∈ L(FT )

(4) CV
s (X) = CV

s (CV
t (X)) for all X,V ∈ L(FT )

Proof.
(1) ⇔ (2):
First, assume (1) and let X, Y, V ∈ L(FT ) such that UV

t (X) ≥ UV
t (Y ). This is equivalent

to Ut(V + X) ≥ Ut(V + Y ). Hence, it follows from (1) that Us(V + X) ≥ Us(V + Y ),
which is equivalent to UV

s (X) ≥ UV
s (Y ). This proves (1) ⇒ (2). (1) follows from (2) since

Ut and Us induce the same preference orders as U0
t and U0

s , respectively.
(2) ⇔ (4):
Assume (2) and let X, V ∈ L(FT ). By definition of CV

t , one has UV
t (X) = UV

t (CV
t (X)).

Hence, it follows from (2) that UV
s (X) = UV

s (CV
t (X)), and therefore, CV

s (X) = CV
s (CV

t (X)).
This shows (2) ⇒ (4). If (4) holds and UV

t (X) ≥ UV
t (Y ) for some X,Y, V ∈ L(FT ), then

CV
t (X) ≥ CV

t (Y ) and therefore, CV
s (X) = CV

s (CV
t (X)) ≥ CV

s (CV
t (Y )) = CV

s (Y ). This
shows UV

s (X) ≥ UV
s (Y ) and hence, (4) ⇒ (2).

(1) ⇔ (3) follows like (2) ⇔ (4), and the proof is complete. ¤
Lemma 3.2 allows us to prove the following uniqueness result for time-consistent utility

functions.
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Proposition 3.3 Let (Ut)T
t=0 and (Ũt)T

t=0 be two dynamic utility functions and V ∈
L(FT ). Denote by (CV

t )T
t=0 and (C̃V

t )T
t=0 the certainty equivalents corresponding to (Ut)T

t=0,
(Ũt)T

t=0 and V . Assume that CV
0 = C̃V

0 . Then CV
t = C̃V

t for all 1 ≤ t ≤ T .

Proof. Fix 1 ≤ t ≤ T and X ∈ L(FT ). Denote A =
{

CV
t (X) > C̃V

t (X)
}
∈ Ft and observe

that
CV

0

(
1ACV

t (X)
)

= CV
0 (1AX) = C̃V

0 (1AX) = C̃V
0

(
1AC̃V

t (X)
)

.

This implies that A is empty. Otherwise, it would follow from (SM) that CV
0

(
1ACV

t (X)
)

>

C̃V
0

(
1AC̃V

t (X)
)
. Analogously, it follows that the set

{
CV

t (X) < C̃V
t (X)

}
∈ Ft is empty,

and the proposition is proved. ¤
We call a sequence of functions ft : L(FT ) → L(Ft), t = 0, . . . , T , recursive if fs◦ft = fs

for all s < t. The next theorem shows that a dynamic utility function leads to recursive
indifference prices if an only if the corresponding certainty equivalents have the translation
property (T). The precise statement is as follows. The proof is given in the Appendix.

Theorem 3.4 Let (Ut)T
t=0 be a time-consistent dynamic utility function.

(1) If C0
t has the translation property (T) for every t = 1, . . . , T , then (bV

t )T
t=0 is recursive

for all V ∈ L(FT ).

(2) If U1 is loss sensitive and (bV
t )T

t=0 is recursive for all V ∈ L(FT ), then CV
t satisfies

(T) for each t = 1, . . . , T and all V ∈ L(FT ).

Remarks 3.5
1. In part (2) of Theorem 3.4 we do not obtain that CV

0 has the translation property. For
instance, if T = 1, then for every dynamic utility function (Ut)1t=0 and V ∈ L(F1), the
corresponding indifference bid prices trivially satisfy bV

0 (bV
1 (X)) = bV

0 (X) for X ∈ L(F1).
Hence, (bV

t )1t=0 is recursive even if the certainty equivalent CV
0 does not have the translation

property (T).
2. Part (2) of Theorem 3.4 does not hold if the filtration is not strongly refining. If,
for example, T = 2, F0 = F1 and U0 = U1, then for every V ∈ L(F2), bV

0 = bV
1 and

consequently, bV
0 (bV

1 (X)) = bV
0 (X) for all X ∈ L(F2). Since one also has bV

1 (bV
2 (X)) =

bV
1 (X), (bV

t )2t=0 is recursive. But again, the corresponding certainty equivalents CV
0 = CV

1

do not necessarily satisfy (T).

Examples 3.6

1. Dynamic utility functions with the translation property

Let (Ut)T
t=0 be a time-consistent sequence of utility functions with the translation property

(T). Then the normalized utility functions (U0
t )T

t=0 also satisfy (T), and it follows from
(5) of Proposition 2.5 that U0

t = C0
t . Hence, by part (1) of Theorem 3.4, (Ut)T

t=0 induces
recursive indifference prices.
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It is shown in Föllmer and Schied [10] that every concave function U : L(FT ) → R
with the properties (M) and (T) has a representation of the form

U(X) = min
Q∈Q

{EQ[X] + c(Q)} (3.2)

for a non-empty set of probability measures Q on Ω and a function c : Q → R.
If (Ut)T

t=0 is a dynamic utility function such that all Ut satisfy (T) and (CC), then it
follows from Theorem 3.23 of Cheridito et al. [4] that it can be represented as

Ut(X) = min
Q∈Qt

{EQ[X | Ft] + ct(Q)} , X ∈ L(FT ) , t = 0, . . . , T ,

for non-empty subsets Qt of strictly positive probability measures on Ω and a sequence of
functions ct from Qt to L(Ft). Necessary and sufficient conditions for time-consistency in
terms of the sequence (Qt, ct)T

t=0 can be found in Cheridito et al. [4, 5].
A specific example of a time-consistent dynamic utility function with the property (T)

is the dynamic entropic utility function

Ut(X) := −1
γ

logEP[e−γX | Ft] , X ∈ L(FT ) , t = 0, . . . , T , (3.3)

for a constant γ > 0. It gives the same preferences as conditional expected exponential
utility EP[e−γX | Ft]. A generalized version of (3.3) is discussed in Example 5.6 of Cherid-
ito et al. [4].

2. Dynamic expected utility

Let Q be a fixed strictly positive probability measure on Ω and u a strictly increasing,
continuous function from R to R. Define

Ut(X) := EQ[u(X) | Ft] , X ∈ L(FT ) , t = 0, . . . , T .

It follows from the tower property of the conditional expectation that (Ut)T
t=0 is time-

consistent. If limx→−∞ u(x) = −∞, then all Ut are loss sensitive. Hence, it follows from
Theorem 3.4 that the indifference bid prices (bV

t )T
t=0 induced by (Ut)T

t=0 are recursive for
all V ∈ L(FT ) if and only if the certainty equivalents

C0
t (X) = u−1 (EQ[u(X) | Ft]) , X ∈ L(FT ) , t = 1, . . . , T ,

have the translation property (T). It is well-known that this is exactly the case when u
has constant absolute risk aversion, that is, either

u(x) = a + bx for a ∈ R and b > 0 ,

u(x) = a− be−γx for a ∈ R and b, γ > 0 , or
u(x) = a + beγx for a ∈ R and b, γ > 0 ,

where the last case is ruled out by the condition limx→−∞ u(x) = −∞. A related result
was obtained by Gerber [12] in Example 5.e of Section 5.4, where the iterativity of the
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premium principle of zero utility is discussed.

3. Dynamic multi-prior expected utility

Let (Ut)T
t=0 be a dynamic utility function given by

Ut(X) = min
Q∈Q

EQ[u(X) | Ft] , X ∈ L(FT ) , t = 0, . . . , T ,

for a non-empty closed convex set Q of strictly positive probability measures and a strictly
increasing, concave function u from R to R. Necessary and sufficient conditions on the set
Q for (Ut)T

t=0 to be time-consistent have been studied in Epstein and Schneider [9], Artzner
et al. [2], Delbaen [8], Riedel [22], Roorda et al. [23]. Let us assume that these conditions
are satisfied and limx→−∞ u(x) = −∞. Then (Ut)T

t=0 is a time-consistent sequence of
loss sensitive utility functions. By Theorem 3.4, the corresponding indifference prices are
recursive if and only if the certainty equivalents

C0
t (X) = u−1

(
min
Q∈Q

EQ[u(X) | Ft]
)

, X ∈ L(FT ) , t = 1, . . . , T ,

have the translation property (T). This is equivalent to the fact that for all t ∈ {1, . . . , T}
and m ∈ L(Ft),

min
Q∈Q

EQ[u(X) | Ft] and min
Q∈Q

EQ[u(X + m) | Ft]

induce the same conditional preference on L(FT ). This is the case if and only if for all
m ∈ R, the shifted function um(.) := u(m + .) is an affine transformation of u, which is
true if and only if u has constant absolute risk aversion.

4 The case of a financial market

Until now the only investment opportunity available to our agent has been to invest in the
money market account. In the following we introduce a more general financial market and
adapt the definition of indifference prices accordingly. We show that if the agent has a
time-consistent utility function whose certainty equivalents have the translation property
(T), then indifference prices remain recursive.

To allow for frictions and constraints, we model trading gains attainable over the time
interval [t− 1, t] by a general set Mt of Ft-measurable random variables containing 0 and
satisfying the following property:

1AX + 1AcY ∈Mt for all X, Y ∈Mt and A ∈ Ft−1. (4.1)

We set ÛT := UT ,

Ût(X) := sup
Z∈Mt+1+···+MT

Ut (X + Z) for X ∈ L(FT ) and t ≤ T − 1

11



and say condition (A) holds if for every t ≤ T − 1 and all X ∈ L(FT ), there exist unique
Zt+1 ∈ Mt+1, . . . , ZT ∈ MT depending ||.||∞-continuously on X such that Ût(X) =
Ut (X + Zt+1 + · · ·+ ZT ). The following lemma shows that for a dynamic utility function
(Ut)T

t=0 and a financial market (Mt)T
t=1 satisfying condition (A), (Ût)T

t=0 is again a dynamic
utility function.

Lemma 4.1 Let (Ut)T
t=0 be a dynamic utility function and (Mt)T

t=1 a financial market
such that condition (A) holds. Then Ût has the properties (LP), (SM), (C) for all t =
0, . . . , T .

Proof. Since ÛT = UT , it is enough to show the claim for t ≤ T − 1. Ût inherits the
local property (LP) from Ut. To show that Ût satisfies (SM), consider X ∈ L(FT ), ε > 0,
ω ∈ Ω and let Ak

t be the Ft-atom containing ω. By condition (A), there exists Z ∈
Mt+1 + · · ·+MT such that Ût(X) = Ut (X + Z), and one obtains

Ût(X + ε1{ω}) ≥ Ut(X + ε1{ω} + Z) > Ut(X + Z) = Ût(X) on Ak
t .

To prove (C), choose a sequence (Xn)n∈N in L(FT ) converging to some X ∈ L(FT ) with
respect to ||.||∞. Then, by condition (A), there exist Zn ∈ Mt+1 + · · ·+MT converging
to Z ∈ Mt+1 + · · · + MT with respect to ||.||∞ such that Ût(Xn) = Ut(Xn + Zn) and
Ût(X) = Ut(X + Z). Hence, if follows from the continuity of Ut that Ût(Xn) → Ût(X).¤

We now adapt the definition of indifference prices to the case where there exists a
financial market.

Definition 4.2 Let (Ut)T
t=0 be a time-consistent dynamic utility function, V ∈ L(FT ) and

(Mt)T
t=1 a financial market satisfying condition (A). Let Zt ∈ Mt, 1 ≤ t ≤ T , such that

Û0(V ) = U0(V + Z1 + · · · + ZT ). The utility indifference bid price b̂V
t (X) of X ∈ L(Ft)

with respect to (Ut)T
t=0, V and (Mt)T

t=1 is the unique m ∈ L(Ft) such that

Ût (V + Z1 + · · ·+ Zt + X −m) = Ût (V + Z1 + · · ·+ Zt) . (4.2)

In (4.2) we assume that the agent has endowment V at time 0 and starts trading
according to Z1, . . . , ZT to maximize utility at time T . But then at time t s/he is offered
the payoff X and has to decide whether to buy it at price m and adapt the trading strategy
after time t or reject and continue trading as planned.

The following corollary extends part (1) of Theorem 3.4 to the case of a financial
market.

Corollary 4.3 Let (Ut)T
t=0 be a time-consistent dynamic utility function and (Mt)T

t=1 a
financial market such that condition (A) holds. Assume C0

t has the translation property
(T) for every t = 1, . . . , T . Then for all V ∈ L(FT ) and t = 0, . . . , T ,

Ût(V + X − b̂V
t (X)) = Ût(V ), (4.3)

and (b̂V
t )T

t=0 is recursive.

12



Proof. By Lemma 4.1, (Ût)T
t=0 is a dynamic utility function, and Ĉ0

t inherits the translation
property (T) from C0

t for all t = 1, . . . , T . As a consequence one has (4.3) for every
t = 1, . . . , T , and for t = 0, (4.3) is equal to the defining equation (4.2). To complete the
proof, it is enough to show that (Ût)T

t=0 is time-consistent. It then follows from Theorem
3.4 and (4.3) that (b̂V

t )T
t=0 is recursive. To show the time-consistency of (Ût)T

t=0, let s < t
and X, Y ∈ L(FT ) such that Ût(X) ≥ Ût(Y ). Then there exists a ZX ∈Mt+1 + · · ·+MT

such that Ut(X +ZX) ≥ Ut(Y +Z2) for every Z2 ∈Mt+1+ · · ·+MT . Since the preference
order induced by Ut is translation-invariant, one has Ut(X +Z1 +ZX) ≥ Ut(Y +Z1 +Z2)
for all Z1 ∈ Ms+1 + · · · +Mt, and therefore, by time-consistency, Us(X + Z1 + ZX) ≥
Us(Y + Z1 + Z2). This shows that Ûs(X) ≥ Ûs(Y ), and the corollary is proved. ¤

A Appendix: Proof of Theorem 3.4

In the whole appendix, (Ut)T
t=0 is a dynamic utility function. CV

t and bV
t denote the

certainty equivalent and indifference bid price corresponding to Ut and endowment V ∈
L(FT ).

Proof of Theorem 3.4.1.
Let V ∈ L(FT ). It follows from the time-consistency of (Ut)T

t=0 and Lemma 3.2 that
(CV

t )T
t=0 is recursive. By (7) of Proposition 2.5, CV

t satisfies (T) for all t = 1, . . . , T .
Hence, it follows from (5) of Proposition 2.7 that CV

t = bV
t for all t = 1, . . . , T . This shows

that (bV
t )T

t=1 is recursive. It remains to prove that

bV
0 (bV

1 (X)) = bV
0 (X) for all X ∈ L(FT ) . (A.1)

From CV
1 = bV

1 and CV
0 = CV

0 ◦ CV
1 one obtains

CV
0 (X − bV

0 (bV
1 (X))) = CV

0 (CV
1 (X − bV

0 (CV
1 (X)))) = CV

0 (CV
1 (X)− bV

0 (CV
1 (X))) = 0 ,

which shows (A.1) and concludes the proof. ¤
Our proof of Theorem 3.4.2 is based on a characterization of time-consistency of dy-

namic utility functions in terms of indifference sets. This extends results on the decompo-
sition property of acceptance sets of monetary risk measures in Delbaen [8] and Cheridito
et al. [4].

For 0 ≤ s ≤ t ≤ T and V ∈ L(FT ), we introduce the indifference set

IV
s,t :=

{
X ∈ L(Ft) : UV

s (X) = 0
}

.

It follows from the definitions of UV
s and C0

s that

IV
s,t = {X ∈ L(Ft) : Us(V + X) = Us(V )} =

{
X ∈ L(Ft) : C0

s (V + X) = C0
s (V )

}
.

Thus, IV
s,t consists of all payoffs X ∈ L(Ft) that leave an agent with endowment V indif-

ferent at time s. Also, it is clear that

IV
s,t =

{
X ∈ L(Ft) : CV

s (X) = 0
}

=
{
X ∈ L(Ft) : bV

s (X) = 0
}

.
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The local property (LP) of UV
s translates into the following property for IV

s,t:

(LP’) Local property: 1AX + 1AcY ∈ IV
s,t for all X,Y ∈ IV

s,t and A ∈ Fs.

Proposition A.1 For all 0 ≤ s < t ≤ T , the following are equivalent:

(1) C0
s (X) = C0

s (C0
t (X)) for all X ∈ L(FT )

(2) CV
s (X) = CV

s (CV
t (X)) for all V, X ∈ L(FT )

(3) IV
s,T =

⋃
Y ∈IV

s,t

(
Y + IV +Y

t,T

)
for all V ∈ L(Fs)

(4) IV
s,T =

⋃
Y ∈IV

s,t

(
Y + IV +Y

t,T

)
for all V ∈ L(FT )

Proof. We show (1) ⇒ (2) ⇒ (4) ⇒ (3) ⇒ (1). (1) ⇒ (2) is part of Lemma 3.2.
(2) ⇒ (4): Fix V ∈ L(FT ). We first prove IV

s,T ⊃
⋃

Y ∈IV
s,t

(
Y + IV +Y

t,T

)
. Let Y ∈ IV

s,t and

Z ∈ IV +Y
t,T . Since

CV +Y
t (Z) = 0 = CV +Y

t (0) ,

it follows from (6) of Proposition 2.5 that

CV
t (Y + Z) = CV

t (Y ) .

So (2) implies

CV
s (Y + Z) = CV

s (CV
t (Y + Z)) = CV

s (CV
t (Y )) = CV

s (Y ) = 0 ,

which shows that Y + Z ∈ IV
s,T .

To show IV
s,T ⊂ ⋃

Y ∈IV
s,t

(
Y + IV +Y

t,T

)
, we choose X ∈ IV

s,T and decompose it into

X = Y + Z for Y = CV
t (X) and Z = X − CV

t (X). Since

CV
s (CV

t (X)) = CV
s (X) = 0 ,

Y = CV
t (X) is in IV

s,t. Moreover, by (6) of Proposition 2.5, it follows from

CV
t (X) = CV

t (CV
t (X))

that
C

V +CV
t (X)

t (X − CV
t (X)) = C

V +CV
t (X)

t (CV
t (X)− CV

t (X)) = 0 ,

which shows that Z = X − CV
t (X) is in IV +CV

t (X)
t,T = IV +Y

t,T .
(4) ⇒ (3) is trivial.
(3) ⇒ (1):
Let X ∈ L(FT ) and write

X − C0
s (C0

t (X)) = Y + Z
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for
Y = C0

t (X)− C0
s (C0

t (X)) and Z = X − C0
t (X) .

By (6) of Proposition 2.5, it follows from

C0
s (C0

t (X)) = C0
s (C0

s (C0
t (X))) and C0

t (X) = C0
t (C0

t (X))

that

C
C0

s (C0
t (X))

s (Y ) = C
C0

s (C0
t (X))

s (0) = 0 and C
C0

t (X)
t (Z) = C

C0
t (X)

t (0) = 0 ,

and therefore,
Y ∈ IC0

s (C0
t (X))

s,t and Z ∈ IC0
t (X)

t,T .

(3) implies Y + Z = X − C0
s (C0

t (X)) ∈ IC0
s (C0

t (X))
s,T , which shows that

C
C0

s (C0
t (X))

s (X − C0
s (C0

t (X))) = 0 = C
C0

s (C0
t (X))

s (0) ,

and therefore, by (6) of Proposition 2.5, C0
s (X) = C0

s (C0
s (C0

t (X))) = C0
s (C0

t (X)). ¤

Corollary A.2 Fix V ∈ L(FT ) and 0 ≤ s < t ≤ T . Then the following are equivalent:

(1) For all X,Y ∈ L(FT ): bV
t (X) ≥ bV

t (Y ) implies bV
s (X) ≥ bV

s (Y )

(2) bV
s (X) = bV

s (bV
t (X)) for all X ∈ L(FT )

(3) IV
s,T = IV

s,t + IV
t,T

Proof. For fixed V ∈ L(FT ) and r ∈ {s, t}, Ũr := bV
r is a utility function at time r which

is equal to its own certainty equivalent. Therefore, the equivalence of (1) and (2) follows
directly from the equivalence of (1) and (3) in Lemma 3.2. Furthermore, one has

Ĩ0
r,T :=

{
X ∈ L(FT ) : Ũr(X) = 0

}
= IV

r,T , (A.2)

and since bV
r satisfies (T),

ĨW
r,T :=

{
X ∈ L(FT ) : Ũr(X + W ) = Ũr(W )

}
= Ĩ0

r,T for all W ∈ L(Fr) . (A.3)

It follows from the equivalence of (1) and (3) in Proposition A.1 that (2) is equivalent to

ĨW
s,T =

⋃

Y ∈ĨW
s,t

(Y + ĨW+Y
t,T ) for all W ∈ L(Fs) .

By (A.3), this reduces to
Ĩ0

s,T = Ĩ0
s,t + Ĩ0

t,T ,

which by (A.2), is equivalent to (3). ¤
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Corollary A.3 Assume that (Ut)T
t=0 is time-consistent and (bV

t )T
t=0 recursive for all V ∈

L(FT ). Then
IV

t,T = IV +Y
t,T

for all V ∈ L(FT ), t = 1, . . . , T, and Y ∈ IV
t−1,t.

Proof. Fix V ∈ L(FT ) and Y ∈ IV
t−1,t.

i) We first show IV +Y
t,T ⊂ IV

t,T :
Assume to the contrary that there exists a Z in IV +Y

t,T \ IV
t,T . Then, at least one of the

sets A :=
{
bV
t (Z) > 0

}
or B :=

{
bV
t (Z) < 0

}
is non-empty. Let us assume A is. The case

where B is non-empty works completely analogously. Since IV +Y
t,T has the local property

(LP’), 1AZ is still in IV +Y
t,T . On the other hand, one has

bV
t (1AZ) = 1AbV

t (Z) > 0 on A . (A.4)

By Proposition A.1, Y + 1AZ ∈ IV
t−1,T , and by Corollary A.2, IV

t−1,T = IV
t−1,t + IV

t,T . But

Y + 1AZ = (Y + bV
t (1AZ)) + (1AZ − bV

t (1AZ))

is the unique decomposition of Y + 1AZ into the sum of two random variables such that
the first one is in L(Ft) and the second one in IV

t,T . Therefore, Y + bV
t (1AZ) must belong

to IV
t−1,T . But together with (A.4), this contradicts the strict monotonicity (SM) of UV

t−1.
This shows IV +Y

t,T ⊂ IV
t,T .

ii) IV
t,T ⊂ IV +Y

t,T :
Since Y is in IV

t−1,t, we have

CV
t−1(0) = 0 = CV

t−1(Y ) ,

which by (6) of Proposition 2.5 is equivalent to

CV +Y
t−1 (−Y ) = CV +Y

t−1 (0) = 0 .

This shows that −Y is in IV +Y
t−1,t . So it follows from i) that

IV
t,T = IV +Y−Y

t,T ⊂ IV +Y
t,T .

¤
Proof of Theorem 3.4.2.

We fix V,X ∈ L(FT ), t ∈ {1, . . . , T} and show that

CV
t (X + m) = CV

t (X) + m (A.5)

for all m ∈ L(Ft).
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i) In a first step we show (A.5) for m ∈ IV +X
t−1,t :

By (6) of Proposition 2.5, it follows from

CV
t (CV

t (X)) = CV
t (X)

that
CV +X

t (CV
t (X)−X) = CV +X

t (0) = 0 .

Hence, CV
t (X)−X ∈ IV +X

t,T . By Corollary A.3, CV
t (X)−X ∈ IV +X+m

t,T , or equivalently,

CV +X+m
t (CV

t (X)−X) = 0 = CV +X+m
t (0) ,

which by (6) of Proposition 2.5 shows that

CV
t (X) + m = CV

t (CV
t (X) + m) = CV

t (X + m) .

ii) We now show (A.5) for all m ∈ L+(Ft) := {Z ∈ L(Ft) : Z ≥ 0}:
Every m ∈ L+(Ft) can be written as m =

∑Nt
k=1 mk1Ak

t
, for the atoms A1

t , . . . , A
Nt
t of Ft

and non-negative real numbers m1, . . . , mNt . For every k, we set Āk
t := Ft−1(Ak

t ) \ Ak
t ,

where Ft−1(Ak
t ) denotes the Ft−1-atom that contains Ak

t . By assumption, the filtration is
strongly refining. Therefore, Āk

t is non-empty. UV +X
t satisfies (M), (C) and (LS) (that it

satisfies (LS) follows from the fact that U1 does). Therefore, there exist nk ∈ R such that
UV +X

t−1 (mk1Ak
t

+ nk1Āk
t
) = 0. Hence,

Yk := mk1Ak
t

+ nk1Āk
t
∈ IV +X

t−1,t .

Now, since CV
t satisfies (LP), one obtains from i) that

CV
t (X + m) = CV

t

(
X +

Nt∑

k=1

mk1Ak
t

)
=

Nt∑

k=1

1Ak
t
CV

t (X + Yk)

=
Nt∑

k=1

1Ak
t
(CV

t (X) + Yk) = CV
t (X) +

Nt∑

k=1

mk1Ak
t

= CV
t (X) + m.

iii) Finally, we show (A.5) for general m ∈ L(Ft):
For m ≤ 0, it follows from ii) that

CV
t (X) = CV

t (X + m−m) = CV
t (X + m)−m,

and therefore,
CV

t (X + m) = CV
t (X) + m. (A.6)

For general m ∈ L(Ft), denote m+ := max(m, 0) and m− := −min(m, 0). Then, by ii)
and (A.6),

CV
t (X + m) = CV

t (X + m+ −m−) = CV
t (X −m−) + m+

= CV
t (X) + m+ −m− = CV

t (X) + m.

¤
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