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Abstract. We establish a Fenchel-Moreau theorem for proper convex functions
f : X → L̄0, where (X,Y, 〈·, ·〉) is a dual pair of Banach spaces and L̄0 is the space
of all extended real-valued functions on a σ-finite measure space. We introduce the
concept of stable lower semi-continuity which is shown to be equivalent to the exis-
tence of a dual representation f(x) = supy∈L0(Y ) {〈x, y〉 − f∗(y)}, where L0(Y ) is the

space of all strongly measurable functions with values in Y , and 〈·, ·〉 is understood
pointwise almost everywhere. The proof is based on a conditional extension result
and conditional functional analysis.
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1. Introduction

This article contributes to vector duality by providing a notion of lower semi-continuity
and proving its equivalence to a Fenchel-Moreau type dual representation. Let (Ω,F , µ)
be a σ-finite measure space, (X,Y, 〈·, ·〉) a dual pair of Banach spaces and L̄0 the col-
lection of all measurable functions x : Ω→ R∪{±∞}, where two of them are identified
if they agree almost everywhere. Consider on L̄0 the order of almost everywhere dom-
inance. Let f : X → L̄0 be a proper convex function. We prove that stable lower
semi-continuity (see below) is equivalent to the Fenchel-Moreau type dual representa-
tion

f(x) = sup
y∈L0(Y )

{〈x, y〉 − f∗(y)}, x ∈ X, (1.1)

where L0(Y ) is the space of all strongly measurable functions y : Ω → Y modulo al-
most everywhere equality, f∗(·) = supx∈X{〈x, ·〉 − f(x)} is the convex conjugate and
〈x, y〉(ω) := 〈x, y(ω)〉 almost everywhere.

The idea is to extend the algebraic and topological structure of f : X → L̄0 to
a larger L0-module context in such a way that a conditional version of the Fenchel-
Moreau theorem can be applied. More precisely, we first extend the duality pairing 〈·, ·〉
to a conditional duality pairing on L0(X) × L0(Y ). We consider on L0(X) the stable
weak topology σs(L

0(X), L0(Y )) which can be viewed as the conditional analogue of
the weak topology σ(X,Y ). For a discussion of topologies in conditional settings or
L0-modules, we refer to [3, 4, 5, 11]. We call a function f : X → L̄0 σs-lower semi-
continuous if its extension fs to step functions given by fs(

∑
k xk1Ak

) :=
∑

k f(xk)1Ak

is lower semi-continuous w.r.t. the relative σs(L
0(X), L0(Y ))-topology (notice that the

space L0
s(X) of step functions with values in X is a subset of L0(X)). We prove that

σs-lower semi-continuity is sufficient to extend f : X → L̄0 to a stable proper L0-convex
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and σs(L
0(X), L0(Y ))-lower semi-continuous function F : L0(X) → L̄0. Building on

a conditional version of the Fenchel-Moreau theorem, we find the conditional dual
representation

F (x) = sup
y∈L0(Y )

{〈x, y〉 − F ∗(y)}, x ∈ L0(X), (1.2)

for a conditional convex conjugate F ∗ : L0(Y )→ L̄0. Finally, by restricting (1.2) to X,
we derive at the representation (1.1).

In optimization Fenchel-Moreau duality is an important result for strong duality
and related regularity conditions, see [9] for vector optimization results based on the
Fenchel-Moreau duality in this work. Our Fenchel-Moreau theorem cannot be obtained
from scalarization techniques [2, 1], set-valued methods [6, 7, 17] or vector-space tech-
niques [20, 13]. The module approach in [16, 4] cannot be applied since a Banach space
is a priori not an L0-module. A similar approach to ours is taken in [15] with the tools
of Boolean-valued analysis [14], albeit in the context of norm topologies. For further
results in vector and conditional duality, we refer to [2, 10, 8, 18, 19].

The remainder of this article is organized as follows. In Section 2 we introduce the
setting and prove the main extension result. In Section 3 we derive a vector-valued
Fenchel-Moreau theorem.

2. Extension of stable lower semi-continuous functions

2.1. Preliminaries. Let L0, L0
++ and L̄0 denote the spaces of all measurable functions

on a σ-finite measure space (Ω,F , µ) with values in R, R++ and [−∞,+∞], where two
of them are identified if they agree almost everywhere (a.e.). In particular, all equalities
and inequalities in L̄0 are understood in the a.e. sense. Every nonempty subset C of L̄0

has a least upper bound supC := ess supC and a greatest lower bound inf C := ess inf C
in L̄0 with respect to the a.e. order.

Throughout all functions on Ω are assumed to be (strongly) measurable and we
identify functions which agree a.e.. Given a set Z, we denote by L0

s(Z) the space of all
step functions

∑
k zk1Ak

: Ω → Z, where (zk) is a sequence in Z, (Ak) is a partition
of Ω, and

∑
k zk1Ak

denotes the function which is equal to zk for almost all ω ∈ Ak.
If Z is partially ordered we consider on L0

s(Z) the partial order
∑

k xk1Ak
≥
∑

l yl1Bl

whenever xk ≥ yl for all k, l with µ(Ak ∩ Bl) > 0. Given a function f from Z to a set

Z̃, its extension to step functions fs : L0
s(Z)→ L0

s(Z̃) is defined by

f
(∑

k

zk1Ak

)
:=
∑
k

f(zk)1Ak
.

A set H of functions on Ω is called stable (under countable concatenations) if it is
non-empty and

∑
k hk1Ak

∈ H for every sequence (hk) in H and every partition (Ak)
of Ω. A stable family (hi)i∈I in H is a family (hi) in H indexed by a stable set I of
functions on Ω such that ∑

k

hik1Ak
= h∑

k ik1Ak

for every sequence (ik) in I and every partition (Ak) of Ω. A stable net (hα) in H is a
stable family indexed by a stable set of functions with values in a directed set. If the
directed set is N the stable net (hn) is a stable sequence in which case the index set
equals L0

s(N). A stable family (hm) is a stable finite family if it is indexed by a stable
set of the form {m ∈ L0

s(N) : 1 ≤ m ≤ n} for some n ∈ L0
s(N). Let I and (Hi), i ∈ I,
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be stable sets of functions on Ω. Then (Hi)i∈I is called a stable family of stable sets if∑
k

Hik1Ak
:=
{∑

k

hik1Ak
: hik ∈ Hik

}
= H∑

k ik1Ak

for every sequence (ik) in I and every partition (Ak) of Ω.

Remark 2.2. Given a stable family of stable sets (Hi)i∈I there exists a stable family
(hi)i∈I such that hi ∈ Hi for all i ∈ I. This follows by the same arguments as in [3,
Theorem 2.26], where the statement is shown within conditional set theory.

2.3. Stable lower semi-continuity. Let (X,Y, 〈·, ·〉) be a dual pair of Banach spaces
such that

(i) |〈x, y〉| ≤ ‖x‖‖y‖ for all x ∈ X and y ∈ Y , and
(ii) both norm-closed unit balls are weakly closed.

Examples.

a) Let X be a Banach space, Y its topological dual space endowed with the operator
norm and 〈x, y〉 := y(x).

b) Let X = Lp and Y = Lq on a finite measure space (S,S, ν) with 1 ≤ p, q ≤ ∞ and
1/p+ 1/q ≤ 1 and 〈f, g〉 :=

∫
S fgdν.

c) Let X = Bb(S) be the Banach space of bounded measurable functions on a measur-
able space (S,S) endowed with the supremum norm, Y =M(S) the Banach space of
finite signed measures endowed with the total variation norm and 〈f, µ〉 :=

∫
S fdν.

d) Let X = Cb(S) be the Banach space of bounded continuous functions on a com-
pletely regular Hausdorff space endowed with the supremum norm, Y =Mr(S) the
Banach space of finite signed inner regular measures on the Borel σ-algebra of S
endowed with the total variation norm and 〈f, µ〉 :=

∫
S fdν.

We denote by L0(X) and L0(Y ) the spaces of all strongly measurable functions on
Ω with values in X and Y . We understand X as a subset of L0

s(X) ⊂ L0(X) via
the embedding x 7→ x1Ω. Recall that the norm of X extends to L0(X) by ‖x‖ :=
limn→∞ ‖xn‖ ∈ L0, where (xn) is a sequence in L0

s(X) such that xn → x a.e.. In
particular, for every x ∈ L0(X) and each r ∈ L0

++ there exists x̃ ∈ L0
s(X) such that

‖x − x̃‖ ≤ r. Similarly, the duality pairing 〈·, ·〉 can be extended from X × Y to
L0(X) × L0(Y ) by setting 〈x, y〉 := limn→∞〈xn, yn〉 ∈ L0, where (xn) is a sequence in
L0
s(X) such that xn → x a.e. and (yn) is a sequence in L0

s(Y ) such that yn → y a.e..
Observe that

|〈x, y〉| ≤ ‖x‖‖y‖ (2.1)

for all x ∈ L0(X) and y ∈ L0(Y ).
Next, we endow L0(X) with a topological structure given by the following neighbor-

hood base. For every x ∈ L0(X), define

V(x) :=
{
V r

(ym)1≤m≤n
(x) : r ∈ L0

++, (ym)1≤m≤n stable finite family in L0(Y )
}
,

where

V r
(ym)1≤m≤n

(x) := {x̃ ∈ L0(X) : |〈x̃− x, ym〉| ≤ r for all 1 ≤ m ≤ n}.

We notice that V(x) is a stable family of stable sets. Indeed, for each r ∈ L0
++ and

every stable finite family (ym)1≤m≤n in L0(Y ) the set V r
(ym)1≤m≤n

(x) in L0(X) is stable.

For every n =
∑

j nj1Aj ∈ L0
s(N), r ∈ L0

++ and y1, y2, · · · ∈ L0(Y ) the stable set

V r
(ym)1≤m≤n

(x) is determined through the element
∑

j(r, nj , y1, y2, . . . , ynj , 0, 0, . . . )1Aj

in the space of all strongly measurable functions on Ω with values in the Banach space of
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sequences (r, n, y1, y2, . . . ) ∈ R×R× l∞(Y ) with finite norm ‖(r, n, y1, y2, . . . )‖ := |r|+
|n|+ supj ‖yj‖. Denoting by I the stable set of all

∑
j(r, nj , y1, y2, . . . , ynj , 0, 0, . . . )1Aj

for n =
∑

j nj1Aj ∈ L0
s(N), r ∈ L0

++ and y1, y2, · · · ∈ L0(Y ), one has V(x) = (Vi(x))i∈I
where Vi(x) = V r

(ym)1≤m≤n
(x) for i =

∑
j(r, nj , y1, y2, . . . , ynj , 0, 0, . . . )1Aj . This shows

that V(x) = (Vi(x))i∈I is a stable family of stable sets. In the following we frequently
view V(x) as a set of functions on Ω by identifying it with the stable set I.

The topology induced by the neighborhood base V(x) is referred to as a stable topol-
ogy and is denoted by σs(L

0(X), L0(Y )) or simply by σs. Stable topologies are in-
troduced in [3] within conditional set theory, we refer to [11] for their connection to
(ε, λ)-topologies and L0-topologies. In this topology a stable net (xα) in L0(X) con-
verges to x if and only if |〈xα − x, y〉| → 0 a.e. for all y ∈ L0(Y ). Moreover, a stable
subset C of L0(X) is closed if and only if x ∈ C for every stable net (xα) in C which
converges to x.

Definition 2.4. A function f : X → L̄0 is called σs-lower semi-continuous, if f(x) ≤
lim infα fs(xα) for every stable net (xα) in L0

s(X) which converges to x ∈ X.
The function f is said to be proper convex, if f(x) > −∞ for all x ∈ X and f(x′) ∈

L0 for some x′ ∈ X, as well as f(λx+ (1−λ)x̃) ≤ λf(x) + (1−λ)f(x̃) for every λ ∈ R
with 0 ≤ λ ≤ 1 and all x, x̃ ∈ X.

Proposition 2.5. For a function f : X → L̄0 the following properties are equivalent.

(i) f is σs-lower semi-continuous.
(ii) f(x) = supV ∈V(x) inf{fs(x̃) : x̃ ∈ V ∩ L0

s(X)} for all x ∈ X.

(iii) The sublevel set {x ∈ L0
s(X) : fs(x) ≤ a} is closed for each a ∈ L̄0.

Proof. By stability the properties (i) and (ii) can equivalently be formulated for all
x ∈ L0

s(X).
(i)⇒ (ii): Fix x ∈ X. Obviously, one has

d := sup
V ∈V(x)

inf{fs(x̃) : x̃ ∈ V ∩ L0
s(X)} ≤ f(x).

On the other hand, fix ε ∈ L0
++ and consider the stable family of stable sets{

x ∈ V ∩ L0
s(X) : inf

x̃∈V ∩L0
s(X)

arctan(fs(x̃)) + ε ≥ arctan(fs(x))
}
V ∈V(x)

.

By Remark 2.2 there exists a stable family (xV )V ∈V(x) such that xV ∈ V ∩ L0
s(X) and

inf
x̃∈V ∩L0

s(X)
arctan(fs(x̃)) + ε ≥ arctan(fs(xV ))

for all V ∈ V(x). Since the stable index set V(x) is ordered by reverse inclusion, the
family (xV )V ∈V(x) is a stable net which by construction converges to x. By σs-lower
semi-continuity of f it follows that

arctan(d) ≥ lim inf
V ∈V(x)

arctan(fs(xV ))− ε ≥ arctan(f(x))− ε.

(ii) ⇒ (iii): Let a ∈ L̄0 and (xα) be a stable net with fs(xα) ≤ a which converges
to x ∈ L0

s(x). Then one has

fs(x) = sup
V ∈V(x)

inf{fs(x̃) : x̃ ∈ V ∩ L0
s(X)} ≤ lim inf

α
fs(xα) ≤ a.
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(iii)⇒ (i): Let (xα) be a stable net in L0
s(X) which converges to x ∈ X. By Remark

2.2, there exists for every ε ∈ L0
++ a stable subnet (xβ) of (xα) such that

arctan(fs(xβ)) ≤ lim inf
α

arctan(fs(xα)) + ε

for all β. Since xβ → x it follows that arctan(f(x)) ≤ lim infα arctan(fs(xα)) + ε,
showing that f is σs-lower semi-continuous. �

Remark 2.6. Let X = Y = L2 on (0, 1] endowed with the Lebesgue measure on its
Borel σ-algebra, and consider the identity map id : L2 → L2. Although the sublevel set
{x ∈ L2 : id(x) ≤ a} is σ(L2, L2)-closed for each a ∈ L̄0, the identity map id is not
σs-lower semi-continuous.

Indeed, fix V r
(ym)1≤m≤n

(0) ∈ V(0), and notice that

sup
1≤m≤n

|〈x, ym〉| ≤ ‖x‖ sup
1≤m≤n

‖ym‖ for all x ∈ L0
s(L

2)

by (2.1). We can assume that r/ sup1≤m≤n ‖ym‖ ≥ r̃ for a constant r̃ > 0, otherwise
we partition (0, 1] =

⋃
k Ak and carry out the following argument on each Ak. Then,

there exists a sequence (cl) in R which converges to +∞ such that

xl =

l∑
k=1

xkl 1( k−1
l
, k
l
] ∈ V

r
(ym)1≤m≤n

(0) ∩ L0
s(L

2) for all l ∈ N,

where xkl = −cl1( k−1
l
, k
l
] ∈ L

2 for all 1 ≤ k ≤ l. On the other hand, since ids(xl) = −cl
for all l ∈ N, it follows that

id(0) = 0 > −∞ = sup
V ∈V(0)

inf
{

ids(x̃) : x̃ ∈ V ∩ L0
s(L

2)
}
.

In particular, the identity id does not have an extension in the sense of Theorem 2.9
below.

2.7. Extension result. Our goal is to extend a σs-lower semi-continuous function
f : X → L̄0 to a stable function F : L0(X)→ L̄0. We need the following definitions.

Definition 2.8. A function F : L0(X)→ L̄0 is called

(i) stable, if F (
∑

k xk1Ak
) =

∑
k F (xk)1Ak

for every sequence (xk) in L0(X) and
each partition (Ak) of Ω,

(ii) σs-lower semi-continuous, if F (x) ≤ lim infα F (xα) for every stable net (xα) in
L0(X) converging to x ∈ L0(X),

(iii) L0-linear, if F is L0-valued and F (λx+x̃) = λF (x)+F (x̃) for all x, x̃ ∈ L0(X)
and λ ∈ L0,

(iv) L0-proper convex, if F (x) > −∞ for all x ∈ L0(X) and F (x′) ∈ L0 for some
x′ ∈ L0(X), as well as F (λx + (1 − λ)x̃) ≤ λF (x) + (1 − λ)F (x̃) for every
λ ∈ L0 with 0 ≤ λ ≤ 1 and all x, x̃ ∈ L0(X).

Next, we state the main extension result.

Theorem 2.9. For every σs-lower semi-continuous function f : X → L̄0 there exists a
stable, σs-lower semi-continuous function F : L0(X)→ L̄0 which satisfies F |X = f .

Moreover, if f is proper convex, then this extension can be chosen L0-proper convex.

Proof. Define

F (x) := sup
V ∈V(x)

inf{fs(x̃) : x̃ ∈ V ∩ L0
s(X)}, x ∈ L0(X).
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Notice that for every x ∈ L0(X) and V r
(ym)1≤m≤n

(x) ∈ V(x) it follows from (2.1) that

sup
1≤m≤n

|〈xk − x, ym〉| ≤ ‖xk − x‖ sup
1≤m≤n

‖ym‖ → 0

for every sequence (xk) in L0
s(X) such that xk → x a.e., which shows that

V r
(ym)1≤m≤n

(x) ∩ L0
s(X) 6= ∅.

Hence, F is a well-defined stable function since fs is a stable function on the stable set
V ∩L0

s(X). Moreover, it follows from Proposition 2.5 that F is an extension of f . That
F satisfies the desired properties is shown in the following two steps.

Step 1. We show that F is σs-lower semi-continuous. Fix x ∈ L0(X) and ε ∈ L0
++.

There exists V = V r
(ym)1≤m≤n

(x) in V(x) such that

arctan(F (x))− ε ≤ inf{arctan(fs(x̃)) : x̃ ∈ V ∩ L0
s(X)}.

Fix z ∈ V
r/2

(ym)1≤m≤n
(x). For Ṽ = V

r/2
(ym)1≤m≤n

(z) ∈ V(z) it follows from the triangle

inequality that Ṽ ⊆ V . Since Ṽ ∩ L0
s(X) ⊆ V ∩ L0

s(X), we obtain

arctan(F (x))− ε ≤ inf{arctan(fs(z̃)) : z̃ ∈ Ṽ ∩ L0
s(X)}

so that

arctan(F (x))− ε ≤ arctan(F (z)).

This shows that for every ε ∈ L0
++ there exists V ε ∈ V(x) such that arctan(F (x))−ε ≤

arctan(F (z)) for all z ∈ V ε. Hence

arctan(F (x))− ε ≤ sup
V ∈V(x)

inf{arctan(F (z)) : z ∈ V }.

By letting ε ↓ 0, and since supV ∈V(x) inf{arctan(F (z)) : z ∈ V } ≤ arctan(F (x)) is
trivially satisfied, it follows from the strict monotonicity of arctan that

F (x) = sup
V ∈V(x)

inf{F (z) : z ∈ V }.

In particular, F (x) ≤ lim infα F (xα) for every stable net (xα) in L0(X) which converges
to x ∈ L0(X).

Step 2. We show that F is L0-proper convex when f is proper convex. Since F is
an extension of f there exists x′ ∈ X ⊂ L0(X) such that F (x′) = f(x′) ∈ L0.

Note that for every λ ∈ L0
s(R) with 0 ≤ λ ≤ 1 it follows from convexity

fs(λx+ (1− λ)z) ≤ λfs(x) + (1− λ)fs(z), for all x, z ∈ L0
s(X).

Fix x, z ∈ L0(X) and λ ∈ L0
s(R) with 0 ≤ λ ≤ 1. Let

V = V r
(ym)1≤m≤n

(λx+ (1− λ)z) ∈ V(λx+ (1− λ)z),

W = V r
(ym)1≤m≤n

(x) ∈ V(x), and W ′ = V r
(ym)1≤m≤n

(z) ∈ V(z).

For x̃ ∈W ∩L0
s(X) and z̃ ∈W ′ ∩L0

s(X) it follows that λx̃+ (1− λ)z̃ is in V ∩L0
s(X),

which shows that

inf{fs(x̃) : x̃ ∈ V ∩L0
s(X)} ≤ inf{fs(λx̃+(1−λ)z̃) : x̃ ∈W ∩L0

s(X), z̃ ∈W ′∩L0
s(X)}

≤ inf{λfs(x̃) + (1− λ)fs(z̃) : x̃ ∈W ∩ L0
s(X), z̃ ∈W ′ ∩ L0

s(X)}
= λ inf{fs(x̃) : x̃ ∈W ∩ L0

s(X)}+ (1− λ) inf{fs(z̃) : z̃ ∈W ′ ∩ L0
s(X)},
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where we employ the convention −∞+∞ = +∞. Hence, for every V ∈ V(λx+(1−λ)z)
there exist W ∈ V(x) and W ′ ∈ V(z) such that

inf{fs(x̃) : x̃ ∈ V ∩ L0
s(X)}

≤ λ inf{fs(x̃) : x̃ ∈W ∩ L0
s(X)}+ (1− λ) inf{fs(z̃) : z̃ ∈W ′ ∩ L0

s(X)}.

By taking the supremum on both sides of the previous inequality, one obtains

F (λx+ (1− λ)z) ≤ λF (x) + (1− λ)F (z).

The last inequality also holds for λ ∈ L0 with 0 ≤ λ ≤ 1 by approximating λ with step
functions in L0

s(R) and using the σs-lower semi-continuity of F .
By way of contradiction, suppose there exist x ∈ L0(X) and A ∈ F with µ(A) > 0

such that F (x) = −∞ on A. Let x0 ∈ L0(X) with F (x0) ∈ L0. From L0-convexity we
have F (λx0 + (1− λ)x) = −∞ on A for all 0 ≤ λ < 1. Since λx0 + (1− λ)x converges
to x0 as λ tends to 1, it follows from σs-lower semi-continuity that F (x0) = −∞ on A
which is a contradiction. �

3. Fenchel-Moreau type duality for vector-valued functions

We consider the setting of the previous section. Let (X,Y, 〈·, ·〉) be a dual pair of
Banach spaces such that |〈x, y〉| ≤ ‖x‖‖y‖ for all x ∈ X and y ∈ Y , and both norm-
closed unit balls are weakly closed. Recall that 〈·, ·〉 extends to L0(X) × L0(Y ) with
values in L0, and satisfies |〈x, y〉| ≤ ‖x‖‖y‖ for all x ∈ L0(X) and y ∈ L0(Y ). The next
result shows that (L0(X), L0(Y ), 〈·, ·〉) is an L0-dual pair.

Lemma 3.1. The functions

y 7→ 〈x, ·〉 : L0(Y )→ L0 and x 7→ 〈·, y〉 : L0(X)→ L0

are stable and L0-linear for all x ∈ L0(X) and y ∈ L0(Y ).
Moreover, for every x ∈ L0(X) with µ(x = 0) = 0 there exists y ∈ L0(Y ) such that

µ(〈x, y〉 = 0) = 0, and symmetrically, for every y ∈ L0(Y ) with µ(y = 0) = 0 there
exists x ∈ L0(X) such that µ(〈x, y〉 = 0) = 0.

Proof. We only show the separation argument. To that end, fix x ∈ L0(X) with
µ(x = 0) = 0. Then there exists r ∈ L0

++ with r =
∑

k rk1Ak
for a sequence (rk) in

(0,∞) and a partition (Ak) of Ω such that 01A /∈ C3r(x)1A for all A ∈ F with µ(A) > 0,
where C3r(x) := {x̃ ∈ L0(X) : ‖x̃−x‖ ≤ 3r}. Further, there exists xs ∈ L0

s(X) such that
‖x−xs‖ ≤ r. By the triangle inequality, 01A 6∈ C2r(x

s)1A for all A ∈ F with µ(A) > 0.
We can assume that xs and r are defined on the same partition, i.e. xs =

∑
k x

s
k1Ak

,
by changing if necessary to a common refinement. Then it holds

C2r(x
s) =

{
x̃ ∈ L0(X) : x̃1Ak

∈ C2rk(xsk)1Ak
for all k

}
.

Since CX2rk(xsk) := {x̃ ∈ X : ‖x̃−xsk‖ ≤ 2rk} is σ(X,Y )-closed in X, by strong separation
there exist yk ∈ Y \ {0} and a constant δk > 0 such that

inf
x̃∈CX

2rk
(xsk)
〈x̃, yk〉 ≥ δk > 0

for all k. It follows that

inf
x̃∈Cr(xs)

〈x̃, y〉 ≥ δ > 0, (3.1)

where y :=
∑

k yk1Ak
and δ :=

∑
k δk1Ak

. Indeed, let x̃ ∈ Cr(xs) and (x̃n) be a stable
sequence in Cr(x̃)∩L0

s(X) with ‖x̃n− x̃‖ → 0 a.e.. We have ‖x̃nl −xsk‖ ≤ 2rk whenever
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µ(Ak ∩ Bn
l ) > 0, where x̃n =

∑
l x̃

n
l 1Bn

l
. From the stability of the extended duality

pairing 〈·, ·〉 we obtain

〈x̃n, y〉 =
∑
k,l

〈x̃nl , yk〉1Ak∩Bn
l
≥ δ > 0,

so that

〈x̃, y〉 = 〈x̃− x̃n, y〉+ 〈x̃n, y〉 ≥ 〈x̃− x̃n, y〉+ δ → δ > 0,

which shows (3.1). Since x ∈ Cr(xs) we conclude µ(〈x, y〉 = 0) = 0. �

In view of the previous result conditional functional analysis becomes applicable. By
an adaptation of the classical results for dual pairs, it follows from the conditional fun-
damental theorem of duality (see e.g. [12, Corollarly 4.48] in the setting of conditional
set theory; for an adaptation to the present L0-setting, see [11, Proposition 6.6]) that
every σs(L

0(X), L0(Y ))-continuous, L0-linear function h : L0(X) → L0 is of the form
〈·, y〉 for some y ∈ L0(Y ). In particular, the L0-dual space of (L0(X), σs(L

0(X), L0(Y )))
can be identified with L0(Y ). As a consequence, an application of a conditional version
of the Fenchel-Moreau theorem, see e.g. [11, Theorem 6.3.], yields that every L0-proper
convex, stable, σs-lower semi-continuous function F : L0(X)→ L̄0 has the dual repre-
sentation

F (x) = sup
y∈L0(Y )

{〈x, y〉 − F ∗(y)}, x ∈ L0(X), (3.2)

for the L0-convex conjugate F ∗(y) := supx∈L0(X){〈x, y〉 − F (x)} for all y ∈ L0(Y ).
Now we are ready to state our main result.

Theorem 3.2. Let f : X → L̄0 be a proper convex function. Then f is σs-lower semi-
continuous if and only if it has the representation

f(x) = sup
y∈L0(Y )

{〈x, y〉 − f∗(y)} for all x ∈ X, (3.3)

where f∗ : L0(Y )→ L̄0 is given by

f∗(y) := sup
x∈X
{〈x, y〉 − f(x)} .

Proof. Suppose that f is σs-lower semi-continuous. It follows from Theorem 2.9 that
there exists an L0-proper convex σs-lower semi-continuous extension F : L0(X)→ L̄0 .
By (3.2), one obtains

F (x) = sup
y∈L0(Y )

{〈x, y〉 − F ∗(y)}, x ∈ L0(X),

for the L0-convex conjugate

F ∗(y) = sup
x∈L0(X)

{〈x, y〉 − F (x)}, y ∈ L0(Y ).

Since

f∗(y) = sup
x∈X
{〈x, y〉 − f(x)} ≤ sup

x∈L0(X)

{〈x, y〉 − F (x)} = F ∗(y) (3.4)

and 〈x, y〉 − f∗(y) ≤ f(x) for all y ∈ L0(Y ), one has

f(x) = F (x) = sup
y∈L0(Y )

{〈x, y〉 − F ∗(y)} ≤ sup
y∈L0(Y )

{〈x, y〉 − f∗(y)} ≤ f(x)

for all x ∈ X.
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Conversely, suppose that f satisfies the representation (3.3). Let (xα) be a stable
net in L0

s(X) which converges to x. Since x̃ 7→ 〈x̃, y〉 is σs-lower semi-continuous on
L0
s(X) for all y ∈ L0(Y ), it follows that

f(x) = sup
y∈L0(Y )

{〈x, y〉 − f∗(y)}

≤ lim inf
α

sup
y∈L0(Y )

{〈xα, y〉 − f∗(y)}

= lim inf
α

fs(xα),

where in the last equality we used that (3.3) also holds for fs on L0
s(X) by stability.

This shows that f is σs-lower semi-continuous. �

Remark 3.3. Let f : X → L̄0 be a proper convex, σs-lower semi-continuous function.
Then the extension F in Theorem 2.9 is maximal in the sense that G ≤ F for every L0-
proper convex, σs-lower semi-continuous extension G of f . In fact, we have F ∗ ≤ G∗

by the same argumentation as in (3.4), and therefore

F (x) = sup
y∈L0(Y )

{〈x, y〉 − F ∗(y)} ≥ sup
y∈L0(Y )

{〈x, y〉 −G∗(y)} = G(x), (3.5)

where the last equality follows from (3.2).
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