A dichotomy for T-convex fields with a monomial group

The Dichotomy

For o-minimal fields $\mathcal{R} \models T$, expanded by a Tconvex valuation ring and a monomial group:

- If T is power bounded, then this expansion of \mathcal{R} is well-behaved.
- If \mathcal{R} defines an exponential function, then \mathbb{N} is externally definable.

o-minimal Preliminaries

Let T be a complete o-minimal theory extending the theory of $(\mathbb{R}; 0, 1, <, +, -, \cdot)$ in an appropriate language \mathcal{L} and \mathcal{R} be a model of T.

A **power function** is a function that looks like $f: x \mapsto x^{\lambda}$, where $\lambda := f'(1) \in \mathcal{R}$. These λ form the (sub)**field** Λ of exponents of \mathcal{R} . By Miller's dichotomy [Mil96], either \mathcal{R} is

- **power bounded**, i.e. definable functions are eventually bounded by a power function, or
- \mathcal{R} defines an **exponential function** i.e. exp: $\mathcal{R} \xrightarrow{\sim} \mathcal{R}^>$ with exp = exp'.

T-convex Fields

A *T*-convex subring \mathcal{O} of \mathcal{R} is a convex subset of \mathcal{R} which is closed under all $\mathcal{L}(\emptyset)$ -definable continuous functions $f: \mathcal{R} \to \mathcal{R}$. If \mathcal{O} is a proper subring of T, it also is a valuation ring, and $(\mathcal{R}, \mathcal{O})$ is an ordered valued field (see [DL95]).

Let $\Gamma = \mathcal{R}^{\times}/\mathcal{O}^{\times}$ be the value group and we let $v \colon \mathcal{R}^{\times} \to \Gamma$ denote the surjective valuation map.

A monomial group \mathfrak{M} is the image of a section s of the valuation v. We ask that

- \mathfrak{M} is closed under all power functions, or that
- $\mathfrak{M}^{\succ} := {\mathfrak{m} \in \mathfrak{M} : \mathfrak{m} > 1}$ is closed under exp, respectively.

Elliot Kaplan, Christoph Kesting*

McMaster University - Department of Mathematics and Statistics

We will be working in mutually interpretable expansions of \mathcal{L} :	The Exponential Case	Proposition
 <i>L</i>_{Γ,k,s}, the three sorted valued fields expansion with the section s <i>L</i>_M, the expansion by a predicate for M In each case denote the expansion of T by T_M. The Power Bounded Case	If T defines an exponential function, then is a definable set $A \subseteq \mathcal{R} \models T_{\mathfrak{M}}$ with $\mathbb{N} \subseteq A$ such that if $a \in A \setminus \mathbb{N}$, then $a > \mathbb{N}$. Consequently, \mathbb{N} is externally definable in any model of $T_{\mathfrak{M}}$, and if T has an archimedean model, then \mathbb{N} is definable in some model of $T_{\mathfrak{M}}$.	Let $\mathfrak{m} \in \mathfrak{M}$ with $\mathfrak{m} < 1$. Then $\mathfrak{m}^n \in \operatorname{supp}\left(\frac{1}{1-\mathfrak{m}}\right)$ for all $n \in \mathbb{N}$, and if $\mathfrak{n} \in \operatorname{supp}(1/(1-\mathfrak{m}))$, then either $\mathfrak{n} = \mathfrak{n}$ for some n or $\mathfrak{n} < \mathfrak{m}^n$ for all n . Idea: Using the geometric series, we can write
The Power Bounded Case If <i>T</i> is power bounded then the following holds: • Suppose <i>T</i> has quantifier elimination and a universal axiomatization. Then $T_{\mathfrak{M}}$ has quantifier elimination in $\mathcal{L}_{\Gamma, k, s}$. • The theory $T_{\mathfrak{M}}$ is complete. • If <i>T</i> is model complete, then $T_{\mathfrak{M}}$ is also model complete in the language $\mathcal{L}_{\mathfrak{M}}$. • If \mathcal{L} is finite and <i>T</i> decidable, $T_{\mathfrak{M}}$ is decidable. • Γ is purely stably embedded as an ordered A-vector space and orthogonal to the residue field, which is purely stably embedded as a model of <i>T</i> . • $T_{\mathfrak{M}}$ is distal, therefore NIP, but not strong. • For $A \subseteq \mathcal{R}$, every $\mathcal{L}_{\mathfrak{M}}(A)$ -definable subset of \mathcal{R} is the union of an $\mathcal{L}_{\mathfrak{M}}(A)$ -definable discrete sets. Example (Puiseux series) The field of Puiseux series $\mathbb{R}((t^{1/\infty})) := \left\{\sum_{i \ge i_0} c_i t^{i/n} : i_0 \in \mathbb{Z} \text{ and } n \in \mathbb{N}\right\}$ is a model of T_{an} by interpreting analytic $f: [0, 1]^n \to \mathcal{R}$ via their Taylor series expansions. • T_{an} is power bounded. • The convex hull of \mathbb{R} (all series with only	Now let T define an exponential function exp. Fact The additive group of \mathcal{R} admits the direct sum decomposition $\mathcal{R} = \mathcal{O} \oplus \log(\mathfrak{M})$. Inspired by Camacho's work on Hahn fields in [Cam18], let $a \in \mathcal{R}$ and $\mathfrak{m} \in \mathfrak{M}$. By the Fact above, there is a unique $b \in \mathfrak{m} \log(\mathfrak{M})$ with $a - b \in \mathfrak{m}\mathcal{O}$. We define $a _{\mathfrak{m}} := b$, so $(a, \mathfrak{m}) \mapsto a _{\mathfrak{m}}$ is an $\mathcal{L}_{\mathfrak{M}}(\emptyset)$ -definable function. We also define $\supp(a) := \{\mathfrak{m} \in \mathfrak{M} : v(a - a _{\mathfrak{m}}) = v(\mathfrak{m})\},$ so $\supp(a)$ is an $\mathcal{L}_{\mathfrak{M}}(a)$ -definable subset of \mathfrak{M} .	Idea: Using the geometric series, we can write $\frac{1}{(1-\mathfrak{m})} = 1 + \mathfrak{m} + \mathfrak{m}^2 + \dots + \varepsilon,$ where $\varepsilon < \mathfrak{m}^n$ for all $n \in \mathbb{N}$. Proof of the Exponential Case Fix $\mathfrak{m} \in \mathfrak{M}$ with $\mathfrak{m} < 1$ and let A be the definate set $A := \left\{ a \in \mathcal{R} : \exp(a \log \mathfrak{m}) \in \operatorname{supp}\left(\frac{1}{1-\mathfrak{m}}\right) \right\}.$ Then $a \in A$ if and only if $a \in \mathbb{N}$ or $a > \mathbb{N}$, by the Proposition. References [Cam18] S. Camacho; <i>Truncation in differential Hahn fields.</i> - PhD thesis, University of Illinois at Urbana-Champaign, 2018. [DL95] L. van den Dries and A. Lewenberg. <i>T</i> -convexity and tame extensions. <i>J. Symbolic Logic</i> , 60(1);74–102, 1995. [KK23] E. Kaplan and C. Kesting. A dichotomy for <i>T</i> -convex fields with a monomial group. <i>Mathematical Logic Quarterly</i> , to appear. [Mil96] C. Miller. A growth dichotomy for o-minimal expansions of ordered fields. In <i>Logic: from foundations to applications (Staffordshire, 1993)</i> , Oxford Sci. Publ., pages 385–399. Oxford Univ. Press, New York, 1996.
non-negative exponents of t) is a T_{an} -convex ring. • The subgroup $t^{\mathbb{Q}} = \{t^q : q \in \mathbb{Q}\} \subseteq \mathbb{R}((t^{1/\infty}))^>$ is a monomial group.	Thus, in \mathbb{T} with a monomial group \mathfrak{M} we can define $\mathbb{N} = \left\{ \frac{\log \mathfrak{n}}{\log \mathfrak{m}} : \mathfrak{n} \in \operatorname{supp}\left(\frac{1}{1-\mathfrak{m}}\right) \right\}.$	Contact InformationWeb: christophkesting.github.ioEmail: kestingc@mcmaster.ca

$$\mathbb{R}((t^{1/\infty})) := \left\{ \sum_{i \ge i_0} c_i t^{i/n} : i_0 \in \mathbb{Z} \text{ and } n \in \mathbb{N} \right\}$$

$$\frac{1}{(1-\mathbf{m})} = 1 + \mathbf{m} + \mathbf{m}^2 + \dots + \varepsilon,$$