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Abstract There is a conjecture by Shelah suggesting that infinite fields without
the independence property posses distinct algebraic properties. This conjecture has
been adapted numerous times, for example [1, main open problems, p.820] or [3,
Conjecture 1.9]. Notably every purely transcendental extension of a formally real
field fails to have any of these properties. Therefore, if the conjecture holds, all
such fields must have the independence property. We show that for any formally
real field K the rational function field K(X) has the independence property in
the language of rings. The main ingredient will be the explicit definition of an IP-
formula ϕ and the sets witnessing the independence property in the field Q(X).
After that we will transfer this result to the general case of K(X), making use of
the interplay of poles of rational functions and bounded elements with respect to
a preordering.

Purely transcendental extensions of formally real fields
Let K be formally real, i.e. −1 is not a sum of squares or equivalently K can be endowed with an
ordering. A field extension L/K is a purely transcendental extension of K if there is an over K
algebraically independent subset B ( L such that L = K(B). Note that L is formally real. Also, for
an X ∈ B, there exists a formally real field K ′ such that L = K ′(X). Hence we only have to consider
fields of the shape K(X).

The independence property
Let L be a first order language and T an L-theory with infinite models. We say that T has the
independence property (IP) if there exists an L-formula ϕ(x ; y) (where x and y can be tuples)
such that: In every model M |= T and for any n ∈ N there is an An ⊂ M`(x), where ` denotes
the length of the tuple x , with |An| = n such that for every I ⊆ An there exists a tuple bI with
`(bI) = `(y) so that for every a ∈ An:

M |= ϕ(a; bI)⇔ a ∈ I.

Example. Let Lr = {0, 1,+,−, ·} be the of rings and let T be the theory of some fixed ring R. The
Lr -formula

ϕ(x ; y) := ∃z : xz = y
expresses divisibility in a ring. Let An = {a1, . . . , an} where the ai are non-related prime elements of
R. For I ⊆ An define bI :=

∏
a∈I a. For a ∈ I we have a | bI, but for a′ ∈ An \ I we have a′ - bI.

Hence if there is an infinite set of non-related primes, we can choose any subset of cardinality n as
An for any n ∈ N. As a result T has the independence property.

In particular this works for the polynomial ring K[X] over any infinite field K, as the set
{X − a | a ∈ K} ( K[X] consists of non-related primes.

On poles of rational functions
We modify the approach above in order to obtain that the theory of K(X) has IP. For this we change
the formula ϕ to express “divisibility” in a definable subset of K(X). The problematic factors for the
example set from the block above are the functions of the form 1

X−a for a ∈ K. We observe that
each such function has a pole at a. For a P ( K(X) consisting only of f ∈ P without poles and
g1, g2 ∈ P we obtain that g1g2 ∈ P implies that every root of g2 is already a root of g1.
To define such a set P, we make use of the following:

Lemma. Let K be a formally real field and let f ∈ K(X) with a pole at a ∈ K.
Then for any ordering < on K and u ∈ K, there is a b ∈ K such that |f (b)| > |u|.
This lemma is proved via observation of 1f in a real closure of K and using continuity of rational

functions with respect to the order topology.
As a result of this lemma, every function with at least one pole is unbounded on a neighbourhood of

every pole with respect to any ordering on the field K. It follows that functions with bounded values
are pole-free. We will use this to define the set P.
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Bounded rational functions over Q
Given an ordered field (K,<). A function f : K → K is called bounded if there exists b ∈ K such
that for every a ∈ K it is −b < f (a) < b. Note that a function f is bounded if and only if there
exists a c ∈ K such that c − f 2 is positive semidefinite. Describing positive semidefinite rational
functions is one of the main problems of real algebra, in the case where K = Q we can make use of
the following results:

Fact. (cf. [2] Main Theorem) Every univariate positive semidefinite rational function over Q is the
sum of 5 squares.

Q(X) has the independence property
Theorem. The formula

ϕ(x ; y) :=

(
∃z, u1, u2, u3, u4, u5 :

5∑
i=1

u2i = 1− z2 ∧ x · z = y

)
witnesses the independence property of the theory of Q(X).
ϕ(x ; y) basically states (in Q(X)) that yx is bounded by 1, hence yx is pole-free. In particular if x

has a root at some a ∈ Q, then y must also have a root at a. Working with bounded by 1 instead of
bounded by some arbitrary constant is done to save the effort of having to define constants in the
function field. The specific bound 1 is chosen, as it transfers to products of functions bounded by 1.
The sets An now consist of the following elements: For some i ∈ N consider

pi :=
X − i

(i + 1)(X2 + 1)
.

Each such pi is bounded by 1 and has a singular root at i ∈ Q. Now set

An := {pi | 1 ≤ i ≤ n}

for every n ∈ N and for I ⊆ An define bI :=
∏
p∈I p. All bI are also bounded by 1 and for p ∈ I it

is bIp = bI\{p}, hence Q(X) |= ϕ(p, bI). On the other hand if pi /∈ I, then bI does not have a root
at i , hence bIpi has a pole at i and thus Q(X) 6|= ϕ(pi , bI). This suffices to show that the theory of
Q(X) has the independence property.

Transfer to any formally real rational function field
We now want to show that the same formula ϕ(x ; y) witnesses IP of the theory of any formally

real rational function field K(X), and by extension that K(X) has the independence property. First
note that Q(X) can be embedded into K(X). As a result we can also consider the pi and bI as
elements of K(X) and it only remains to show that

K(X) |= ϕ(pi , bI)⇔ Q(X) |= ϕ(pi , bI).

Since ϕ(x ; y) is an existential formula and Q(X) ⊆ K(X), it follows already that
Q(X) |= ϕ(pi , bI)⇒ K(X) |= ϕ(pi , bI).
On the other hand if Q(X) 6|= ϕ(pi , bI), then bIpi has a pole at i . Thus it is unbounded on a

neighbourhood of i and in particular there is a ∈ K such that |pi(a)| > 1. Hence 1 − (bIpi )
2(a) < 0

and 1− (bIpi )
2 is not positive semidefinite. But every sum of squares over a formally real field has to

be positive semidefinite with respect to any ordering. As a result we obtain K(X) 6|= ϕ(pi ; bI).

With this the desired result has been established, every purely transcendental extension
of a formally real field has the independence property.

Open questions: Algebraic extensions
We have seen that for formally real fields a purely transcendental extension always causes the in-
dependence property. Next is to examine how the independence property interacts with algebraic
extensions. We can already say:

(a) Algebraic extensions of formally real fields with IP may not have IP, for example any real closure.
(b) Finite algebraic extensions of formally real fields without IP again can not have IP (shown by

interpretability of the extension in the original field).
The questions I am now interested in are
(i) Let K be a formally real field with IP and L/K a finite real algebraic extension. Does L always

have IP?
(ii) Let K be a formally real field without IP and L/K a real algebraic extension. Does L necessarily

not have IP?
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