IWOTA 2015, TBILISI, GEORGIA

Contribution by Salma Kuhlmann, Universität Konstanz, Germany Joint work with Mehdi Ghasemi and Murray Marshall; to appear in the Israel Journal of Mathematics

In Memoriam Murray A. Marshall: March 241940 - May 1st 2015 to my colleague and friend, with my deepest gratitude for 15 years of memorable collaboration.

Moment problem in infinitely many variables

THE UNIVARIATE MOMENT PROBLEM

Is an old problem with origins tracing back to work of Stieltjes. Given a sequence $\left(s_{k}\right)_{k \geq 0}$ of real numbers one wants to know when there exists a Radon measure μ on \mathbb{R} such that

$$
s_{k}=\int x^{k} d \mu \forall k \geq 0 .^{1}
$$

${ }^{1}$ All Radon measures considered are assumed to be positive.

THE UNIVARIATE MOMENT PROBLEM

Is an old problem with origins tracing back to work of Stieltjes. Given a sequence $\left(s_{k}\right)_{k \geq 0}$ of real numbers one wants to know when there exists a Radon measure μ on \mathbb{R} such that

$$
s_{k}=\int x^{k} d \mu \forall k \geq 0 .^{1}
$$

Since the monomials $x^{k}, k \geq 0$ form a basis for the polynomial algebra $\mathbb{R}[x]$, this problem is equivalent to the following one: Given a linear functional $L: \mathbb{R}[x] \rightarrow \mathbb{R}$, when does there exist a Radon measure μ on \mathbb{R} such that $L(f)=\int f d \mu \forall f \in \mathbb{R}[x]$.
${ }^{1}$ All Radon measures considered are assumed to be positive.

THE UNIVARIATE MOMENT PROBLEM

Is an old problem with origins tracing back to work of Stieltjes. Given a sequence $\left(s_{k}\right)_{k \geq 0}$ of real numbers one wants to know when there exists a Radon measure μ on \mathbb{R} such that

$$
s_{k}=\int x^{k} d \mu \forall k \geq 0 .^{1}
$$

Since the monomials $x^{k}, k \geq 0$ form a basis for the polynomial algebra $\mathbb{R}[x]$, this problem is equivalent to the following one: Given a linear functional $L: \mathbb{R}[x] \rightarrow \mathbb{R}$, when does there exist a Radon measure μ on \mathbb{R} such that $L(f)=\int f d \mu \forall f \in \mathbb{R}[x]$.One also wants to know to what extent the measure is unique, assuming it exists. Akhiezer 1965 and Shohat-Tamarkin 1943 are standard references.
${ }^{1}$ All Radon measures considered are assumed to be positive.

The multivariate moment problem

Has been considered more recently. For $n \geq 1$, $\mathbb{R}[\underline{x}]:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ denotes the polynomial ring in n variables x_{1}, \ldots, x_{n}. Given a linear functional $L: \mathbb{R}[\underline{x}] \rightarrow \mathbb{R}$ and a closed subset Y of \mathbb{R}^{n} one wants to know when there exists a Radon measure μ on \mathbb{R}^{n} supported on Y such that $L(f)=\int f d \mu \forall$ $f \in \mathbb{R}[\underline{x}]$.

Haviland, 1936

Such a measure exists if and only if $L(\operatorname{Pos}(Y)) \subseteq[0, \infty)$, where $\operatorname{Pos}(Y):=\{f \in \mathbb{R}[\underline{x}]: f(x) \geq 0 \quad \forall x \in Y\}$.

THE MULTIVARIATE MOMENT PROBLEM

Has been considered more recently. For $n \geq 1$,
$\mathbb{R}[\underline{x}]:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ denotes the polynomial ring in n variables x_{1}, \ldots, x_{n}. Given a linear functional $L: \mathbb{R}[\underline{x}] \rightarrow \mathbb{R}$ and a closed subset Y of \mathbb{R}^{n} one wants to know when there exists a Radon measure μ on \mathbb{R}^{n} supported on Y such that $L(f)=\int f d \mu \forall$ $f \in \mathbb{R}[\underline{x}]$.
Haviland, 1936
Such a measure exists if and only if $L(\operatorname{Pos}(Y)) \subseteq[0, \infty)$, where $\operatorname{Pos}(Y):=\{f \in \mathbb{R}[\underline{x}]: f(x) \geq 0 \quad \forall x \in Y\}$.
Again, one also wants to know to what extent the measure is unique, assuming it exists. Berg 1987, Fuglede 1983 are general references. A major motivation here is the close connection between the multivariate moment problem and real algebraic geometry; see e.g. Schmüdgen 1999, Marshall 2008, Lasserre 2013.

The infinite-VARIATE MOMENT PROBLEM

There is work dealing with the moment problem in infinitely many variables, mainly where the linear functional in question is continuous for a certain topology.

THE INFINITE-VARIATE MOMENT PROBLEM

There is work dealing with the moment problem in infinitely many variables, mainly where the linear functional in question is continuous for a certain topology. Albeverio-Herzberg 2008 applies Schmüdgen's 1999 solution of the moment problem to represent L^{1}-continuous linear functionals on the vector space of polynomials of Brownian motion as integration with respect to probability measures on the Wiener space of \mathbb{R}.

THE INFINITE-VARIATE MOMENT PROBLEM

There is work dealing with the moment problem in infinitely many variables, mainly where the linear functional in question is continuous for a certain topology. Albeverio-Herzberg 2008 applies Schmüdgen's 1999 solution of the moment problem to represent L^{1}-continuous linear functionals on the vector space of polynomials of Brownian motion as integration with respect to probability measures on the Wiener space of \mathbb{R}. Berezansky-Kondratiev 1995, Berezansky-Sifrin 1971, Borchers-Yngvason 1975, Hegerfeldt 1975, Infusino-Kuna-Rota 2014, Infusino 2015 consider continuous linear functionals on the symmetric algebra of a nuclear space.

THE INFINITE-VARIATE MOMENT PROBLEM

There is work dealing with the moment problem in infinitely many variables, mainly where the linear functional in question is continuous for a certain topology. Albeverio-Herzberg 2008 applies Schmüdgen's 1999 solution of the moment problem to represent L^{1}-continuous linear functionals on the vector space of polynomials of Brownian motion as integration with respect to probability measures on the Wiener space of \mathbb{R}. Berezansky-Kondratiev 1995, Berezansky-Sifrin 1971, Borchers-Yngvason 1975, Hegerfeldt 1975, Infusino-Kuna-Rota 2014, Infusino 2015 consider continuous linear functionals on the symmetric algebra of a nuclear space.
Ghasemi-Infusino-Kuhlmann-Marshall (in preparation) deals with linear functionals on the symmetric algebra of a locally convex space (V, τ) which are continuous with respect to the finest locally multiplicatively convex topology extending τ.

THE INFINITE-VARIATE MOMENT PROBLEM

There is work dealing with the moment problem in infinitely many variables, mainly where the linear functional in question is continuous for a certain topology. Albeverio-Herzberg 2008 applies Schmüdgen's 1999 solution of the moment problem to represent L^{1}-continuous linear functionals on the vector space of polynomials of Brownian motion as integration with respect to probability measures on the Wiener space of \mathbb{R}. Berezansky-Kondratiev 1995, Berezansky-Sifrin 1971, Borchers-Yngvason 1975, Hegerfeldt 1975, Infusino-Kuna-Rota 2014, Infusino 2015 consider continuous linear functionals on the symmetric algebra of a nuclear space.
Ghasemi-Infusino-Kuhlmann-Marshall (in preparation) deals with linear functionals on the symmetric algebra of a locally convex space (V, τ) which are continuous with respect to the finest locally multiplicatively convex topology extending τ. The present paper seems to be the first to deal with the general case systematically.Today, I want to focus on the following result

Extension of Haviland's Theorem

Let $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, the ring of polynomials in an arbitrary number of variables $x_{i}, i \in \Omega$ with coefficients in \mathbb{R}.
Extension of Haviland
Suppose $L: A_{\Omega} \rightarrow \mathbb{R}$ is linear and $L\left(\operatorname{Pos}_{A_{\Omega}}(Y)\right) \subseteq[0, \infty)$ where Y is a closed subset of \mathbb{R}^{Ω} satisfying condition (i) below. Then there exists a constructibly Radon measure ν on \mathbb{R}^{Ω} supported by Y such that $L(f)=\int \hat{f} d \nu \forall f \in A_{\Omega}$.

Extension of Haviland's theorem

Let $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, the ring of polynomials in an arbitrary number of variables $x_{i}, i \in \Omega$ with coefficients in \mathbb{R}.
Extension of Haviland
Suppose $L: A_{\Omega} \rightarrow \mathbb{R}$ is linear and $L\left(\operatorname{Pos}_{A_{\Omega}}(Y)\right) \subseteq[0, \infty)$ where Y is a closed subset of \mathbb{R}^{Ω} satisfying condition (i) below. Then there exists a constructibly Radon measure ν on \mathbb{R}^{Ω} supported by Y such that $L(f)=\int \hat{f} d \nu \forall f \in A_{\Omega}$.
Condition (i): Y is described by countably many inequalities i.e., there exists a countable $S \subset A_{\Omega}$ such that
$Y=\left\{\alpha \in \mathbb{R}^{\Omega} \mid \hat{g}(\alpha) \geq 0 \forall g \in S\right\}$.

Extension of Haviland's theorem

Let $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, the ring of polynomials in an arbitrary number of variables $x_{i}, i \in \Omega$ with coefficients in \mathbb{R}.
Extension of Haviland
Suppose $L: A_{\Omega} \rightarrow \mathbb{R}$ is linear and $L\left(\operatorname{Pos}_{A_{\Omega}}(Y)\right) \subseteq[0, \infty)$ where Y is a closed subset of \mathbb{R}^{Ω} satisfying condition (i) below. Then there exists a constructibly Radon measure ν on \mathbb{R}^{Ω} supported by Y such that $L(f)=\int \hat{f} d \nu \forall f \in A_{\Omega}$.
Condition (i): Y is described by countably many inequalities i.e., there exists a countable $S \subset A_{\Omega}$ such that $Y=\left\{\alpha \in \mathbb{R}^{\Omega} \mid \hat{g}(\alpha) \geq 0 \forall g \in S\right\}$. We note that Condition (i) is always satisfied for countable Ω.

Extension of Haviland's theorem

Let $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, the ring of polynomials in an arbitrary number of variables $x_{i}, i \in \Omega$ with coefficients in \mathbb{R}.
Extension of Haviland
Suppose $L: A_{\Omega} \rightarrow \mathbb{R}$ is linear and $L\left(\operatorname{Pos}_{A_{\Omega}}(Y)\right) \subseteq[0, \infty)$ where Y is a closed subset of \mathbb{R}^{Ω} satisfying condition (i) below. Then there exists a constructibly Radon measure ν on \mathbb{R}^{Ω} supported by Y such that $L(f)=\int \hat{f} d \nu \forall f \in A_{\Omega}$.
Condition (i): Y is described by countably many inequalities i.e., there exists a countable $S \subset A_{\Omega}$ such that $Y=\left\{\alpha \in \mathbb{R}^{\Omega} \mid \hat{g}(\alpha) \geq 0 \forall g \in S\right\}$. We note that Condition (i) is always satisfied for countable Ω.
Extension of Haviland in the countable case Suppose Ω is countable, $L: A_{\Omega} \rightarrow \mathbb{R}$ is linear and $L\left(\operatorname{Pos}_{A_{\Omega}}(Y)\right) \subseteq[0, \infty)$ where Y is a closed subset of \mathbb{R}^{Ω}. Then there exists a Radon measure ν on \mathbb{R}^{Ω} supported by Y such that $L(f)=\int \hat{f} d \nu \forall f \in A_{\Omega}$.

TERMINOLOGY, NOTATIONS, GENERAL SETTING

- All rings considered are commutative with 1.

TERMINOLOGY, NOTATIONS, GENERAL SETTING

- All rings considered are commutative with 1.
- All ring homomorphisms considered send 1 to 1 .

TERMINOLOGY, NOTATIONS, GENERAL SETTING

- All rings considered are commutative with 1.
- All ring homomorphisms considered send 1 to 1 .
- All rings we are interested in are \mathbb{R}-algebras.

TERMINOLOGY, NOTATIONS, GENERAL SETTING

- All rings considered are commutative with 1.
- All ring homomorphisms considered send 1 to 1 .
- All rings we are interested in are \mathbb{R}-algebras.
- For a commutative ring $A, X(A)$ the character space of A is the set of all ring homomorphisms $\alpha: A \rightarrow \mathbb{R}$.

TERMINOLOGY, NOTATIONS, GENERAL SETTING

- All rings considered are commutative with 1.
- All ring homomorphisms considered send 1 to 1 .
- All rings we are interested in are \mathbb{R}-algebras.
- For a commutative ring $A, X(A)$ the character space of A is the set of all ring homomorphisms $\alpha: A \rightarrow \mathbb{R}$.
- For $a \in A, \hat{a}=\hat{a}_{A}: X(A) \rightarrow \mathbb{R}$ is defined by $\hat{a}_{A}(\alpha)=\alpha(a)$.

TERMINOLOGY, NOTATIONS, GENERAL SETTING

- All rings considered are commutative with 1.
- All ring homomorphisms considered send 1 to 1 .
- All rings we are interested in are \mathbb{R}-algebras.
- For a commutative ring $A, X(A)$ the character space of A is the set of all ring homomorphisms $\alpha: A \rightarrow \mathbb{R}$.
- For $a \in A, \hat{a}=\hat{a}_{A}: X(A) \rightarrow \mathbb{R}$ is defined by $\hat{a}_{A}(\alpha)=\alpha(a)$.
- $X(A)$ is given the weakest topology such that the functions $\hat{a}_{A}, a \in A$ are continuous.

TERMINOLOGY, NOTATIONS, GENERAL SETTING

- All rings considered are commutative with 1.
- All ring homomorphisms considered send 1 to 1.
- All rings we are interested in are \mathbb{R}-algebras.
- For a commutative ring $A, X(A)$ the character space of A is the set of all ring homomorphisms $\alpha: A \rightarrow \mathbb{R}$,
- For $a \in A, \hat{a}=\hat{a}_{A}: X(A) \rightarrow \mathbb{R}$ is defined by $\hat{a}_{A}(\alpha)=\alpha(a)$.
- $X(A)$ is given the weakest topology such that the functions $\hat{a}_{A}, a \in A$ are continuous.
- The only ring homomorphism from \mathbb{R} to itself is Id.

TERMINOLOGY, NOTATIONS, GENERAL SETTING

- All rings considered are commutative with 1.
- All ring homomorphisms considered send 1 to 1 .
- All rings we are interested in are \mathbb{R}-algebras.
- For a commutative ring $A, X(A)$ the character space of A is the set of all ring homomorphisms $\alpha: A \rightarrow \mathbb{R}$.
- For $a \in A, \hat{a}=\hat{a}_{A}: X(A) \rightarrow \mathbb{R}$ is defined by $\hat{a}_{A}(\alpha)=\alpha(a)$.
- $X(A)$ is given the weakest topology such that the functions $\hat{a}_{A}, a \in A$ are continuous.
- The only ring homomorphism from \mathbb{R} to itself is Id.
- Ring homomorphisms from $\mathbb{R}[x]$ to \mathbb{R} correspond to point evaluations $f \mapsto f(\alpha), \alpha \in \mathbb{R}^{n} . X(\mathbb{R}[\underline{x}])$ is identified as a topological space with \mathbb{R}^{n}.
- A quadratic module of A is a subset M of A satisfying

$$
1 \in M, M+M \subseteq M \text { and } a^{2} M \subseteq M \text { for each } a \in A
$$

- A quadratic preordering of A is a quadratic module of A which is also closed under multiplication.
- A quadratic module of A is a subset M of A satisfying

$$
1 \in M, M+M \subseteq M \text { and } a^{2} M \subseteq M \text { for each } a \in A
$$

- A quadratic preordering of A is a quadratic module of A which is also closed under multiplication.
- For a subset X of $X(A)$,

$$
\operatorname{Pos}_{A}(X):=\left\{a \in A \mid \hat{a}_{A} \geq 0 \text { on } X\right\}
$$

is a preordering of A.

- A quadratic module of A is a subset M of A satisfying

$$
1 \in M, M+M \subseteq M \text { and } a^{2} M \subseteq M \text { for each } a \in A .
$$

- A quadratic preordering of A is a quadratic module of A which is also closed under multiplication.
- For a subset X of $X(A)$,

$$
\operatorname{Pos}_{A}(X):=\left\{a \in A \mid \hat{a}_{A} \geq 0 \text { on } X\right\}
$$

is a preordering of A.

- $\sum A^{2}$ the set of all finite sums $\sum a_{i}^{2}, a_{i} \in A$. It is the unique smallest quadratic module (preordering) of A.
- A quadratic module of A is a subset M of A satisfying

$$
1 \in M, M+M \subseteq M \text { and } a^{2} M \subseteq M \text { for each } a \in A
$$

- A quadratic preordering of A is a quadratic module of A which is also closed under multiplication.
- For a subset X of $X(A)$,

$$
\operatorname{Pos}_{A}(X):=\left\{a \in A \mid \hat{a}_{A} \geq 0 \text { on } X\right\}
$$

is a preordering of A.

- $\sum A^{2}$ the set of all finite sums $\sum a_{i}^{2}, a_{i} \in A$. It is the unique smallest quadratic module (preordering) of A.
- For a subset $S \subseteq A$,

$$
X_{S}:=\left\{\alpha \in X(A) \mid \hat{a}_{A}(\alpha) \geq 0 \forall a \in S\right\}
$$

- A quadratic module M in A is archimedean if for each $a \in A$ there exists an integer k such that $k \pm a \in M$.
- A quadratic module M in A is archimedean if for each $a \in A$ there exists an integer k such that $k \pm a \in M$.
- If M is a quadratic module of A which is archimedean then X_{M} is compact.
- A quadratic module M in A is archimedean if for each $a \in A$ there exists an integer k such that $k \pm a \in M$.
- If M is a quadratic module of A which is archimedean then X_{M} is compact.

Archimedean Positivstellensatz
Suppose M is an archimedean quadratic module of A. Then, for any $a \in A$, the following are equivalent:
(1) $\hat{a}_{A} \geq 0$ on X_{M}.
(2) $a+\epsilon \in M$ for all real $\epsilon>0$.

Constructibly Borel sets

- The open sets

$$
U_{A}(a):=\left\{\alpha \in X(A) \mid \hat{a}_{A}(\alpha)>0\right\}, a \in A
$$

form a basis for the topology on $X(A)$

Constructibly Borel sets

- The open sets

$$
U_{A}(a):=\left\{\alpha \in X(A) \mid \hat{a}_{A}(\alpha)>0\right\}, a \in A
$$

form a basis for the topology on $X(A)$

- If A is generated as an \mathbb{R}-algebra by $x_{i}, i \in \Omega$, the embedding $X(A) \hookrightarrow \mathbb{R}^{\Omega}$ defined by $\alpha \mapsto\left(\alpha\left(x_{i}\right)\right)_{i \in \Omega}$ identifies $X(A)$ with a subspace of \mathbb{R}^{Ω}.

Constructibly Borel sets

- The open sets

$$
U_{A}(a):=\left\{\alpha \in X(A) \mid \hat{a}_{A}(\alpha)>0\right\}, a \in A
$$

form a basis for the topology on $X(A)$

- If A is generated as an \mathbb{R}-algebra by $x_{i}, i \in \Omega$, the embedding $X(A) \hookrightarrow \mathbb{R}^{\Omega}$ defined by $\alpha \mapsto\left(\alpha\left(x_{i}\right)\right)_{i \in \Omega}$ identifies $X(A)$ with a subspace of \mathbb{R}^{Ω}.
- Sets of the form

$$
\left\{b \in \mathbb{R}^{\Omega} \mid \sum_{i \in I}\left(b_{i}-p_{i}\right)^{2}<r\right\}
$$

where $r, p_{i} \in \mathbb{Q}$ and I is a finite subset of Ω, form a basis for the product topology on \mathbb{R}^{Ω}.

- It follows that sets of the form

$$
\begin{equation*}
U_{A}\left(r-\sum_{i \in I}\left(x_{i}-p_{i}\right)^{2}\right), r, p_{i} \in \mathbb{Q}, I \text { a finite subset of } \Omega, \tag{1}
\end{equation*}
$$

form a basis for $X(A)$.

- It follows that sets of the form

$$
\begin{equation*}
U_{A}\left(r-\sum_{i \in I}\left(x_{i}-p_{i}\right)^{2}\right), r, p_{i} \in \mathbb{Q}, I \text { a finite subset of } \Omega \tag{1}
\end{equation*}
$$

form a basis for $X(A)$.

- A subset E of $X(A)$ is called Borel if E is an element of the σ-algebra of subsets of $X(A)$ generated by the open sets.
- It follows that sets of the form

$$
\begin{equation*}
U_{A}\left(r-\sum_{i \in I}\left(x_{i}-p_{i}\right)^{2}\right), r, p_{i} \in \mathbb{Q}, I \text { a finite subset of } \Omega \tag{1}
\end{equation*}
$$

form a basis for $X(A)$.

- A subset E of $X(A)$ is called Borel if E is an element of the σ-algebra of subsets of $X(A)$ generated by the open sets.
- A subset E of $X(A)$ is said to be constructible (resp., constructibly Borel) if E is an element of the algebra (resp., σ-algebra) of subsets of $X(A)$ generated by $U_{A}(a), a \in A$.
- Clearly Constructible \Rightarrow constructibly Borel \Rightarrow Borel.

Countably generated algebras
If A is generated as an \mathbb{R}-algebra by a countable set $\left\{x_{i} \mid i \in \Omega\right\}$ then every Borel set of $X(A)$ is constructibly Borel.
Proof.
Sets of the form (1) form a countable basis for the topology on $X(A)$.

SUPPORT

- The support of a measure is not defined in general. For a measure space (X, Σ, μ) and a subset Y of X, we say μ is supported by Y if $E \cap Y=\emptyset \Rightarrow \mu(E)=0 \forall E \in \Sigma$.

SUPPORT

- The support of a measure is not defined in general. For a measure space (X, Σ, μ) and a subset Y of X, we say μ is supported by Y if $E \cap Y=\emptyset \Rightarrow \mu(E)=0 \forall E \in \Sigma$.
- In this situation, if $\Sigma^{\prime}:=\{E \cap Y \mid E \in \Sigma\}$, and $\mu^{\prime}(E \cap Y):=\mu(E) \forall E \in \Sigma$, then Σ^{\prime} is a σ-algebra of subsets of Y, μ^{\prime} is a well-defined measure on $\left(Y, \Sigma^{\prime}\right)$, the inclusion map $i: Y \rightarrow X$ is a measurable function, and μ is the pushforward of μ^{\prime} to X.

SUPPORT

- The support of a measure is not defined in general. For a measure space (X, Σ, μ) and a subset Y of X, we say μ is supported by Y if $E \cap Y=\emptyset \Rightarrow \mu(E)=0 \forall E \in \Sigma$.
- In this situation, if $\Sigma^{\prime}:=\{E \cap Y \mid E \in \Sigma\}$, and $\mu^{\prime}(E \cap Y):=\mu(E) \forall E \in \Sigma$, then Σ^{\prime} is a σ-algebra of subsets of Y, μ^{\prime} is a well-defined measure on $\left(Y, \Sigma^{\prime}\right)$, the inclusion map $i: Y \rightarrow X$ is a measurable function, and μ is the pushforward of μ^{\prime} to X.
- If $\left(Y, \Sigma^{\prime}, \mu^{\prime}\right)$ is a measure space, (X, Σ) is a σ-algebra, $i: Y \rightarrow X$ is any measurable function, and μ is the pushforward of μ^{\prime} to (X, Σ), then for each measurable function $f: X \rightarrow \mathbb{R}, \int f d \mu=\int(f \circ i) d \mu^{\prime}$ (change in variables theorem).

Constructibly Radon measures

- A Radon measure on $X(A)$ is a positive measure μ on the σ-algebra of Borel sets of $X(A)$ which is locally finite (every point has a neighbourhood of finite measure) and inner regular (each Borel set can be approximated from within using a compact set).

CONSTRUCTIBLY RADON MEASURES

- A Radon measure on $X(A)$ is a positive measure μ on the σ-algebra of Borel sets of $X(A)$ which is locally finite (every point has a neighbourhood of finite measure) and inner regular (each Borel set can be approximated from within using a compact set).
- A constructibly Radon measure on $X(A)$ is a positive measure μ on the σ-algebra of constructibly Borel sets of $X(A)$ such that for, each countably generated subalgebra A^{\prime} of A, the pushforward of μ to $X\left(A^{\prime}\right)$ via the restriction map $\left.\alpha \mapsto \alpha\right|_{A^{\prime}}$ is a Radon measure on $X\left(A^{\prime}\right)$.

From now on we consider only Radon and constructibly Radon measures having the additional property that \hat{a}_{A} is μ-integrable (i.e., $\int \hat{a}_{A} d \mu$ is well-defined and finite) for all $a \in A$.

THE MOMENT PROBLEM IN THIS GENERAL SETTING

- For a linear functional $L: A \rightarrow \mathbb{R}$, one can consider the set of Radon or constructibly Radon measures μ on $X(A)$ such that $L(a)=\int \hat{a}_{A} d \mu \forall a \in A$. The moment problem is to understand this set of measures, for a given linear functional $L: A \rightarrow \mathbb{R}$. In particular, one wants to know: (i) When is this set non-empty? (ii) In case it is non-empty, when is it a singleton set?

The moment problem in this general setting

- For a linear functional $L: A \rightarrow \mathbb{R}$, one can consider the set of Radon or constructibly Radon measures μ on $X(A)$ such that $L(a)=\int \hat{a}_{A} d \mu \forall a \in A$. The moment problem is to understand this set of measures, for a given linear functional $L: A \rightarrow \mathbb{R}$. In particular, one wants to know: (i) When is this set non-empty? (ii) In case it is non-empty, when is it a singleton set?
- A linear functional $L: A \rightarrow \mathbb{R}$ is said to be positive if $L\left(\sum A^{2}\right) \subseteq[0, \infty)$ and M-positive for some quadratic module M of A, if $L(M) \subseteq[0, \infty)$.

TWO SPECIAL ALGEBRAS; TOWARDS THE PROOF OF THE MAIN RESULT

Let Ω is an arbitrary index set.

- As above, $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, we further define

TWO SPECIAL ALGEBRAS; TOWARDS THE PROOF OF THE MAIN RESULT

Let Ω is an arbitrary index set.

- As above, $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, we further define
- $B=B_{\Omega}:=\mathbb{R}\left[x_{i}, \left.\frac{1}{1+x_{i}^{2}} \right\rvert\, i \in \Omega\right]$, the localization of A at the multiplicative set generated by the $1+x_{i}^{2}, i \in \Omega$, and

TwO SPECIAL ALGEBRAS; TOWARDS THE PROOF OF THE MAIN RESULT

Let Ω is an arbitrary index set.

- As above, $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, we further define
- $B=B_{\Omega}:=\mathbb{R}\left[x_{i}, \left.\frac{1}{1+x_{i}^{2}} \right\rvert\, i \in \Omega\right]$, the localization of A at the multiplicative set generated by the $1+x_{i}^{2}, i \in \Omega$, and
- $C=C_{\Omega}:=\mathbb{R}\left[\frac{1}{1+x_{i}^{2}}, \left.\frac{x_{i}}{1+x_{i}^{2}} \right\rvert\, i \in \Omega\right]$, the \mathbb{R}-subalgebra of B generated by the elements $\frac{1}{1+x_{i}^{2}}, \frac{x_{i}}{1+x_{i}^{2}}, i \in \Omega$.

TwO SPECIAL ALGEBRAS; TOWARDS THE PROOF OF THE MAIN RESULT

Let Ω is an arbitrary index set.

- As above, $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, we further define
- $B=B_{\Omega}:=\mathbb{R}\left[x_{i}, \left.\frac{1}{1+x_{i}^{2}} \right\rvert\, i \in \Omega\right]$, the localization of A at the multiplicative set generated by the $1+x_{i}^{2}, i \in \Omega$, and
- $C=C_{\Omega}:=\mathbb{R}\left[\frac{1}{1+x_{i}^{2}}, \left.\frac{x_{i}}{1+x_{i}^{2}} \right\rvert\, i \in \Omega\right]$, the \mathbb{R}-subalgebra of B generated by the elements $\frac{1}{1+x_{i}^{2}}, \frac{x_{i}}{1+x_{i}^{2}}, i \in \Omega$.
- Elements of $X(A)$ and $X(B)$ are naturally identified with point evaluations $f \mapsto f(\alpha), \alpha \in \mathbb{R}^{\Omega}$.

TWO SPECIAL ALGEBRAS; TOWARDS THE PROOF OF THE MAIN RESULT

Let Ω is an arbitrary index set.

- As above, $A=A_{\Omega}:=\mathbb{R}\left[x_{i} \mid i \in \Omega\right]$, we further define
- $B=B_{\Omega}:=\mathbb{R}\left[x_{i}, \left.\frac{1}{1+x_{i}^{2}} \right\rvert\, i \in \Omega\right]$, the localization of A at the multiplicative set generated by the $1+x_{i}^{2}, i \in \Omega$, and
- $C=C_{\Omega}:=\mathbb{R}\left[\frac{1}{1+x_{i}^{2}}, \left.\frac{x_{i}}{1+x_{i}^{2}} \right\rvert\, i \in \Omega\right]$, the \mathbb{R}-subalgebra of B generated by the elements $\frac{1}{1+x_{i}^{2}}, \frac{x_{i}}{1+x_{i}^{2}}, i \in \Omega$.
- Elements of $X(A)$ and $X(B)$ are naturally identified with point evaluations $f \mapsto f(\alpha), \alpha \in \mathbb{R}^{\Omega}$.
- $X(A)=X(B)=\mathbb{R}^{\Omega}$, not just as sets, but also as topological spaces, giving \mathbb{R}^{Ω} the product topology.

We show how the moment problem for A_{Ω} reduces to understanding the extensions of a linear functional $L: A_{\Omega} \rightarrow \mathbb{R}$ to a positive linear functional on B_{Ω} and prove that positive linear functionals $L: B_{\Omega} \rightarrow \mathbb{R}$ correspond bijectively to constructibly Radon measures on \mathbb{R}^{Ω}.
Results in Marshall 2003
By definition, A (resp., B, resp., C) is the direct limit of the \mathbb{R}-algebras A_{I} (resp., B_{I}, resp., C_{I}), I running through all finite subsets of Ω. Because of this, many questions about A, B and C reduce immediately to the case where Ω is finite.

We show how the moment problem for A_{Ω} reduces to understanding the extensions of a linear functional $L: A_{\Omega} \rightarrow \mathbb{R}$ to a positive linear functional on B_{Ω} and prove that positive linear functionals $L: B_{\Omega} \rightarrow \mathbb{R}$ correspond bijectively to constructibly Radon measures on \mathbb{R}^{Ω}.
Results in Marshall 2003
By definition, A (resp., B, resp., C) is the direct limit of the \mathbb{R}-algebras A_{I} (resp., B_{I}, resp., C_{I}), I running through all finite subsets of Ω. Because of this, many questions about A, B and C reduce immediately to the case where Ω is finite.
These algebras were studied extensively in Marshall 2003 for finite Ω.

THE ARCHITECTURE OF THE PROOF

The following is a simple modification of the argument in Marshall 2003 for arbitrary Ω

THE ARCHITECTURE OF THE PROOF

The following is a simple modification of the argument in Marshall 2003 for arbitrary Ω
Extendibility from A to B
Suppose $L: A \rightarrow \mathbb{R}$ is an $\operatorname{Pos}_{A}(Y)$-positive linear functional for some closed set $Y \subseteq \mathbb{R}^{\Omega}$. Then L extends to an $\operatorname{Pos}_{B}(Y)$-positive linear functional $L: B \rightarrow \mathbb{R}$.

THE ARCHITECTURE OF THE PROOF

The following is a simple modification of the argument in Marshall 2003 for arbitrary Ω
Extendibility from A to B
Suppose $L: A \rightarrow \mathbb{R}$ is an $\operatorname{Pos}_{A}(Y)$-positive linear functional for some closed set $Y \subseteq \mathbb{R}^{\Omega}$. Then L extends to an $\operatorname{Pos}_{B}(Y)$-positive linear functional $L: B \rightarrow \mathbb{R}$.

Positive functionals on C; Marshall 2003
Positive linear functionals $L: B \rightarrow \mathbb{R}$ restrict to positive linear functionals on C. The cone of sums of squares of C is archimedean. Positive linear functionals $L: C \rightarrow \mathbb{R}$ are in natural one-to-one correspondence with Radon measures μ on the compact space $X(C)$ via $L \leftrightarrow \mu$ iff $L(f)=\int \hat{f}_{C} d \mu \forall f \in C$.

Main Lemma
For each positive linear functional $L: B \rightarrow \mathbb{R}$ there exists a unique Radon measure μ on $X(C)$ such that $L(f)=\int \hat{f}_{C} d \mu \forall$ $f \in C$. This satisfies $\mu\left(\Delta_{i}\right)=0 \forall i \in \Omega$ and $L(f)=\int \tilde{f} d \mu \forall f \in B$.

Main Lemma
For each positive linear functional $L: B \rightarrow \mathbb{R}$ there exists a unique Radon measure μ on $X(C)$ such that $L(f)=\int \hat{f}_{C} d \mu \forall$ $f \in C$. This satisfies $\mu\left(\Delta_{i}\right)=0 \forall i \in \Omega$ and $L(f)=\int \tilde{f} d \mu \forall f \in B$.

Positive functionals on B
There is a canonical one-to-one correspondence $L \leftrightarrow \nu$ given by $L(f)=\int \hat{f}_{B} d \nu \forall f \in B$ between positive linear functionals L on B and constructibly Radon measures ν on $X(B)$.

The proof of the main theorem then proceeds as follows: Given L, there exists an extension of L to a linear functional L on B_{Ω} such that $L\left(\operatorname{Pos}_{B_{\Omega}}(Y)\right) \subseteq[0, \infty)$. Denote by ν the constructibly Radon measure on \mathbb{R}^{Ω} corresponding to this extension. Fix a countable set S in A_{Ω} such that $Y=X_{S}$. For each $g \in S$, choose $g^{\prime} \in C_{\Omega}$ of the form $g^{\prime}=g / p_{g}$ for some suitably chosen element $p_{g}=\left(1+x_{j_{1}}^{2}\right)^{e_{1}} \ldots\left(1+x_{j_{k}}^{2}\right)^{e_{k}}$. Let $S^{\prime}=\left\{g^{\prime} \mid g \in S\right\}$. Let $Q^{\prime}=$ the quadratic module of C_{Ω} generated by $S^{\prime}, Q=$ the quadratic module of B_{Ω} generated by S. Note that Q is also the quadratic module in B_{Ω} generated by S^{\prime}, and $Q^{\prime} \subseteq Q \subseteq \operatorname{Pos}_{B_{\Omega}}(Y)$, so $L^{\prime}\left(Q^{\prime}\right) \subseteq[0, \infty)$ where $L^{\prime}:=\left.L\right|_{C_{\Omega}}$. By Marshall 2003 there exists a Radon measure μ on $X\left(C_{\Omega}\right)$ supported by $X_{Q^{\prime}}$ such that $L^{\prime}(f)=\int \hat{f} d \mu \forall f \in C_{\Omega}$. Uniqueness implies that μ is the Radon measure on $X\left(C_{\Omega}\right)$ defined in Main Lemma. One checks that ν is supported by $X_{Q^{\prime}} \cap X\left(B_{\Omega}\right)=X_{Q}=X_{S}=Y$

