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Positive Polynomials and Invariant
Theory.

As all roads lead to Rome so I find in my own case at

least that all algebraic inquiries, sooner or later, end

at the Capitol of modern algebra over whose shining

portal is inscribed the Theory of Invariants.

– J. J. Sylvester 1854

The slides of this talk are available at:

http://math.usask.ca/ s̃kuhlman/slidesjp.pdf

*******
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Positive Polynomials, Sums of
Squares and the multi-dimensional

Moment Problem.

In algebraic geometry, we consider ideals of the poly-

nomial ring and algebraic varieties in affine space. In

semi-algebraic geometry, we consider preorderings of

the polynomial ring and semialgebraic sets in affine

space.

• Let R[X ] := R[X1, · · · , Xn] be the ring of polynomials

in n variables and real coefficients.

• A subset T ⊆ R[X ] is a quadratic preordering if

f 2 ∈ T , ∀f ∈ R[X ] and T is closed under addition and

multiplication. The smallest preordering of R[X ] is the set

of sums of squares of R[X ], denoted by
∑R[X ]2.

• Given a subset S of R[X ], there is a smallest preordering

TS containing S; the preordering generated by S:

TS = { ∑

e∈{0,1}r
σef

e : r ≥ 0, σe ∈ ∑R[X ]2, f1, · · · , fr ∈ S}

where f e := f e1
1 · · · f er

r , if e = (e1, · · · , er).

• Let S = {f1, · · · , fs} ⊂ R[X ], S defines a basic closed

semialgebraic subset of Rn:

K = KS = {x ∈ Rn : f1(x) ≥ 0, . . . , fs(x) ≥ 0}.
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Hilbert’s 17th Problem and Stengle’s Positivstellensatz

are concerned with the issue of representation of posi-

tive semi-definite polynomials.

•We consider polynomials that are positive semi-definite

on KS:

Psd(KS) := {f ∈ R[X ] : f (x) ≥ 0 for all x ∈ KS}

• Psd(KS) is a preordering in R[X ] containing TS.

• Question: Is it true that

Psd(KS) = TS ?

• Say that TS is saturated if Psd(KS) = TS.
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Examples:

• n = 1, S = ∅, KS = R, TS =
∑R[X ]2. It is straightfor-

ward to show that a positive semi-definite polynomial on

R is a sum of squares of two polynomials; so in this case,

the answer to the above question is yes.

• n = 1, S = {(1 − X2)3}, KS = [−1, 1]. Consider

f (X) = (1−X2), f ≥ 0 on KS. An elementary argument

shows that f /∈ TS; so TS is not saturated.

• n = 1 , S = {X3} , KS = [0,∞) . Consider f (X) = X ,

f ≥ 0 on KS. An elementary argument shows that

f /∈ TS; so TS is not saturated.

•We shall return to these examples, and give a general

criterion for saturated preorderings associated to semi-

algebraic subsets of the real line.
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• n = 2 , S = ∅ , KS = R2 , TS =
∑R[X ]2 . Hilbert knew

that there exists a polynomial of degree 6 which is positive

semi-definite on the real plane, but not a sum of squares.

The first explicit example was given by Motzkin:

m(X1, X2) := X4
1X

2
2 + X4

2X
2
1 − 3X2

1X
2
2 + 1

• n ≥ 3: Scheiderer [9] shows that if dim(KS) ≥ 3, then

there exists a polynomial p(X) ∈ R[X ] such that p(x) ≥ 0

for all x ∈ Rn but p /∈ TS (so TS cannot be saturated).

It follows from Scheiderer’s result that the preordering

Psd(KS) is seldom finitely generated. Another attempt

to approximate Psd(KS) by the finitely generated pre-

ordering TS is related to the multi-dimensional moment

problem.
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• The general Moment Problem is the following: Given a

linear functional L 6= 0 on R[X ] and a closed subset K of

Rn, when can one find a positive Borel measure µ on K

such that for all f ∈ R[X ]

L(f ) =
∫

K
fdµ ?

• Say L is represented by a measure µ on K if ∀f ∈
R[X ]

L(f ) =
∫

K
fdµ .

• The following result is due to Haviland.

Theorem 0.1 Given a linear functional L 6= 0 on

R[X ] and a closed subset K of Rn, L is represented

by a measure µ on K if and only if L(Psd(K)) ≥ 0.

• Since Psd(K) is in general not finitely generated , we

are interested in approximating it by TS.
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• We work with the following corresponding preordering:

TS := {f ; L(f ) ≥ 0 for all L 6= 0 such that L(TS) ≥ 0} .

• TS is the closure of TS in R[X ] (for the finest locally

convex topology on R[X ]).

• We have the inclusions

TS ⊆ TS ⊆ Psd(KS) .

• We say that S solves the moment problem if

TS = Psd(KS)

that is, if TS is dense in Psd(KS).

• Given a basic closed semialgebraic set K, we say that

the moment problem is finitely solvable for K if

a finite description S of K can be found such that TS is

dense in Psd(KS) (Say (SMP) holds).
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Remarks:

• By Theorem 0.1, we see that (SMP) holds if and only

if every L 6= 0 which satisfies L(TS) ≥ 0 is represented by

a positive Borel measure on K = KS.

• If TS is closed (i.e. TS = TS) then S solves the moment

problem if and only if TS is saturated.

• In [11] Schmüdgen shows that if KS is compact, then TS

is dense in Psd(KS) (i.e. S solves the moment problem).

• In [4], [5] and [6] Schmüdgen’s result is extended to cover

many non-compact examples.

As an illustration, we discuss (as promised) in the next

slide saturated preorderings and solvability of the mo-

ment problem for subsets of the real line.
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The one-dimensional Moment
Problem.

We state [5, Theorem 2.2]. We need to define some notions.

If K ⊆ R is a non-empty closed semi-algebraic set. Then

K is a finite union of intervals. It is easily verified that

K = KN , for N the set of polynomials defined as follows:

•If a ∈ K and (−∞, a) ∩K = ∅, then X − a ∈ N .

•If a ∈ K and (a,∞) ∩K = ∅, then a−X ∈ N .

•If a, b ∈ K, (a, b) ∩K = ∅, then (X − a)(X − b) ∈ N .

• N has no other elements except these.

We call N the natural set of generators for K.

Examples:

• n = 1, K = R, N = ∅
• n = 1, K = [−1, 1], N = {1 + X, 1−X}.
• n = 1, K = [0,∞), N = {X}.
The theorem on the next slide ([5, Theorem 2.2]) shows

that the one-dimensional moment problem for non-compact

subsets of the real line is always solvable. This gener-

alizes several well-known results (Hamburger, Stieljes,

Svecov, Hausdorff, etc...). Combined with Schmüdgen’s

result, we see that the one-dimensional moment prob-

lem for subsets of the real line is always solvable.
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Theorem 0.2 Assume that K = KS ⊆ R is not com-

pact. Then TS is closed. (Therefore S solves the mo-

ment problem if and only if TS is saturated). Moreover,

TS is saturated if and only S contains the natural set

of generators of K (up to scalings by positive reals).

For the compact case, we also have a criterion. Assume

that KS has no isolated points :

Theorem 0.3 Let KS be compact, S = {g1, · · · , gs}.
Then TS is saturated if and only if, for each endpoint

a ∈ KS, there exists i ∈ {1, · · · , s} such that x − a

divides gi but (x− a)2 does not.

• We now want to extend Schmüdgen’s result in another

direction. The idea is to fix a distinguished subset B ⊂
R[X ] and to attempt the various approximations only for

polynomials in B. That is, we want to study the inclu-

sions

TS ∩B ⊆ TS ∩B ⊆ Psd(KS) ∩B .
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Representation of positive
semi-definite invariant polynomials.

• Here, we shall embark in a particularly privileged sit-

uation when B is the subring of invariant poly-

nomials with respect to some action of a group on the

polynomial ring R[X ].

• We fix a group G together with

φ : G → GLn(R)

a linear representation. We let G act on Rn.

• We define the corresponding action of G on the poly-

nomial ring R[X ]: given p(X) ∈ R[X ], define pg(X) :=

p(φ(g)X).

• Recall that p(X) ∈ R[X ] is G-invariant if for all g ∈ G:

pg(X) = p(X) .
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Remarks:

• If p(X) ∈ ∑R[ X ]2 then for all g ∈ G, pg(X) ∈
∑R[ X ]2; so

∑R[ X ]2 is (setwise) G-invariant.

• If K ⊂ Rn is (setwise) G-invariant and p(X) ∈ Psd(K),

then for all g ∈ G, pg(X) ∈ Psd(K); so Psd(K) is (set-

wise) G-invariant.

• If S is a set of invariant polynomials, then KS and TS

are (setwise) G-invariant.

• Conversely, if K ⊂ Rn is G-invariant, it can be described

by a set of invariant polynomials; see [[1]; Cor. 5.4].

*******
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Preorderings of the ring of invariant
polynomials.

•WriteR[ X ]G for the ring of all G-invariant polynomials.

• We shall always assume that G is a reductive group.

So G admits a Reynolds operator. The Reynolds op-

erator is an R-linear map, which is the identity on R[ X ]G,

and is a R[ X ]G-module homomorphism.

• For such groups, Hilbert’s Finiteness Theorem is valid;

namely R[ X ]G is a finitely generated R-algebra.

• In this talk, for simplicity, we consider the case when G

is a finite group. Here, the Reynolds operator is just the

average map:

∗ : R[X ] → R[ X ]G, f 7→ f ∗ :=
1

|G|
∑

g∈G
f g.

• We use the Reynolds operator as a tool to describe

preorderings of R[ X ]G:
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• If A ⊆ R[ X ] we shall denote by A∗ its image in R[ X ]G

under the Reynolds operator.

• If A ⊆ R[ X ], let us denote AG := A ∩ R[ X ]G.

• Observe that if T is any preordering in R[ X ], then TG

is a preordering of R[ X ]G. What about T ∗?

• We note the following important property:

Lemma 0.4 let A ⊆ R[ X ]. Assume that A is closed

under addition and is (setwise) invariant.

Then A∗ = AG.

• Example: the image under the Reynolds operator of
∑R[ X ]2 ⊂ R[ X ] is a preordering (

∑R[ X ]2)G of

R[ X ]G of invariant sums of squares.

•Remark: In general

Σ(R[ X ]G)2 ⊆ (ΣR[ X ]2)G

but this inclusion may be proper. Even worse, the pre-

ordering (ΣR[ X ]2)G need not be finitely generated as a

preordering of R[ X ]G ([3]).

• We denote by S0 a set of generators of (ΣR[ X ]2)G

(as a preordering of R[ X ]G).

15



Proposition 0.5 Let n = 1 and G = {−1, 1}. We

claim that S0 = {X2} generates the preordering (
∑R[ X ]2)G

over Σ(R[ X ]G)2.

Proof: Indeed if σ ∈ (
∑R[ X ]2)G, then

σ = σ∗ =
∑

i
(η2

i )
∗ with ηi(X) ∈ R[X ] .

Now (η2
i )
∗(X) = η2

i (X) + η2
i (−X), so it suffices to prove

the claim for η2
i (X) + η2

i (−X).

By separating terms of even and odd degree, we can write

η(X) = µ(X2) + Xθ(X2) ,

with appropriately chosen µ(X), θ(X) ∈ R[X ]. Therefore

η2
i (X)+η2

i (−X) = (µ(X2)+Xθ(X2))2+(µ(X2)−Xθ(X2))2 =

2µ(X2)2 + 2X2θ(X2)2

which is an element of the preordering ofR[ X ]G generated

by X2 as required. 2

In the next slide, we continue our analysis of the pre-

orderings of R[ X ]G.
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• Let S = {f1, . . . , fk} ⊂ R[X ]G, and KS ⊂ Rn the

invariant basic closed semialgebraic set defined by S.

• We are particularly interested in the following three pre-

orderings of R[X ]G, associated to S:

•The preordering of G-invariant psd polynomials PsdG(KS).

• The preordering TG
S .

• The preordering T
R[x]G

S of R[X ]G which is finitely gen-

erated by S.

• We have: T
R[x]G

S ⊆ TG
S ⊆ PsdG(KS).

• The preordering TG
S is easy to describe:

Lemma 0.6 TG
S is the preordering of R[ X ]G gener-

ated by (ΣR[ X ]2)G and S.

Proof: Let h ∈ TG
S . Write

h =
∑

e∈{0,1}s
σef

e, with σe ∈ ∑R[X ]2

for some {f1, . . . , fk} ⊆ S. Applying the Reynolds oper-

ator we get

h = h∗ = (
∑

e∈{0,1}s
σef

e)∗ =
∑

e∈{0,1}s
σ∗ef

e

(since f1, · · · , fs ∈ R[ X ]G). This is of the required form

since σ∗e ∈ (
∑R[ X ]2)G for each e. 2
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Semi-Algebraic Geometry in the
Orbit Space.

Fix p1, · · · , pk ∈ R[X ] generators of R[X ]G.

• Consider the polynomial map

π : Rn → Rk, a = (a1, · · · , an) 7→ (p1(a) · · · , pk(a)) .

• By [[1]; Proposition 5.1], the image of an invariant basic

closed semi-algebraic set is a basic closed semi-algebraic

set. In particular is π(Rn) is basic closed semi-algebraic.

• Let R[U ]:= the polynomial ring R[U1, · · · , Uk] in k-

variables. Fix a finite description v1, · · · , vr ∈ R[U ] of

π(Rn).

• For the remaining of the talk, we assume that the finite

group G is a generalized reflection group. In this case,

R[X ]G is generated by k = n algebraically independent

elements (see [9]).

• We let

π̃ : R[X ]G → R[U ] = R[U1, · · · , Un]

be the induced R-algebra isomorphism mapping pi to Ui.

We have

π̃−1(f )(a) = f (p1(a) · · · , pk(a)) for all a ∈ Rn .
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G–Saturation.

We conclude this talk by a discussion of the notion of

G-saturation, which illustrates our “going down” idea.

•We say that TG
S is saturated, or that TS is G-saturated

if every polynomial which is positive semi-definite and in-

variant is represented in the preordering, that is, if

TG
S = Psd(KS)G .

Proposition 0.7 If Tπ̃(S)∪π̃(So)∪{v1,··· vr} is saturated as

a preordering of R[U ], then TS is G–saturated.
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Let n = 1 and G as in example 0.5. Then R[X ]G is gen-

erated by the polynomial p1(X) = X2 and π(R) is the

positive half line and is defined by v1 = U . Combining

Proposition 0.7 with [5, Theorem 2.2] we obtain the fol-

lowing variant of [5, Theorem 2.2]:

Theorem 0.8 Let S ⊂ R[ X ]G. Assume that KS is

non-compact. Assume that: if (a, b), 0 < a < b is a

connected component of R \ KS then S contains (up

to a scalar multiple) (x2 − a2)(x2 − b2), if (−a, a) is a

connected component of R \ KS, then S contains (up

to a scalar multiple) x2 − a2. Then TS is G-saturated,

• This provides many examples of non-saturated preorder-

ings that are G–saturated.

The End

20



References
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