Stochastic Evolution Equations with Rough Boundary Noise

Tim Seitz (joint work with Alexandra Neamtu)

tim.seitz@uni-konstanz.de

University of Konstanz, Department of Mathematics and Statistics, Germany

Universität Konstanz

(1)

Statement of the Problem

We investigate a semilinear parabolic evolution equation on a bounded domain \mathcal{O} with smooth boundary and **multiplicative Neumann boundary noise** modelled by a γ -Hölder rough path X = (X, X) with $\gamma \in (1/3, 1/2]$ given by

$$\frac{\partial}{\partial t}y = \mathcal{A}y + f(y)$$
 in \mathcal{O} , $\mathcal{C}y = F(y) \frac{d}{dt} \mathbf{X}$ on $\partial \mathcal{O}$, $y(0) = y_0$.

A is a second order operator with Neumann boundary operator \mathcal{C} . A is its L^p -realization for $p \in [2, 3]$, for example $A = \Delta$.

- We consider the mild formulation $y_t = S_t y_0 + \int_0^t S_{t-r} f(y_r) dr + A \int_0^t S_{t-r} N(F(y_r)) d\mathbf{X}_r$ using a **controlled rough path approach**.

In this context $N: B_{p,p}^{\alpha-1/p}(\partial \mathcal{O}) \to H^{\alpha,p}(\mathcal{O})$ is the Neumann operator, such that u := Ng is the solution of the problem $\mathcal{A}u = 0, \mathcal{C}u = g$. Similar problems were considered in [MP07] for additive fractional noise and [SV11] for multiplicative Brownian noise.

Controlled Rough Paths

A γ -Hölder rough path is a pair X = (X, X) of some path $X \in$ $C^{\gamma}([0, T]; \mathbb{R})$ enhanced with $\mathbb{X} \in C^{2\gamma}([0, T]^2; \mathbb{R})$ such that Chen's relation

 $\mathbb{X}_{t,s} - \mathbb{X}_{u,s} - \mathbb{X}_{t,u} = (X_u - X_s) \otimes (X_t - X_u)$

is satisfied.

For a fixed path X, we say $y \in C([0, T]; \mathcal{B}_{\alpha})$ is a **controlled rough path** with Gubinelli derivative $y' \in C([0, T]; \mathcal{B}_{\alpha-\gamma}) \cap C^{\gamma}([0, T]; \mathcal{B}_{\alpha-2\gamma})$ if the remainder $R_{t,s}^{y} := y_{t,s} - y'_s X_{t,s}$ is in $C^{\gamma}([0, T]^2; \mathcal{B}_{\alpha-\gamma}) \cap$ $C^{2\gamma}([0, T]^2; \mathcal{B}_{\alpha-2\gamma})$, where $(\mathcal{B}_{\alpha})_{\alpha \in \mathbb{R}}$ is a monotone family of interpolation spaces. Notation: $(y, y') \in \mathcal{D}_{X, \alpha}^{2\gamma}$. Aim. Define the rough convolution as

$$\int_{s}^{t} S_{t-r} Ny_r \, \mathrm{d}\mathbf{X}_r := \lim_{|\mathcal{P}| \to 0} \sum_{[u,v] \in \mathcal{P}} S_{t-u} Ny_u X_{v,u}$$
$$+ S_{t-v} Ny_v' \mathbb{X} \in \mathcal{D}(\Delta)$$

Main Results

Idea. Rewrite (1) as a semilinear equation without boundary noise

 $dy = (Ay + f(y)) dt + A_{-\sigma}NF(y) dX.$ (2)

- For (2) we prove the existence of a **local-in-time** solution using a fixed point argument in $\mathcal{D}_{X,-\eta}^{2\gamma}$.
- Deriving estimates without quadratic terms, we also obtain a global solution.
- Since the construction of the solution is **pathwise**, the solution operator of (2) generates a **random dynamical system**.

Assumptions & Example

• A generates an **analytic semigroup** $(S_t)_{t \in [0,\infty)}$.

Example. Second order differential operators with smooth, symmetric

$y_t - u v y_u x v, u \subseteq v (v)$

• We consider the **Besov scale** $\widetilde{\mathcal{B}}_{\alpha} := B_{p,p}^{\alpha-1-1/p}(\partial \mathcal{O})$ and the **Bessel potential scale** with boundary conditions $\mathcal{B}_{\beta} = H^{2\beta,p}_{\mathcal{C}}(\mathcal{O})$, given by

 $H^{\beta,p}_{\mathcal{C}}(\mathcal{O}) := egin{cases} \{u \in H^{\beta,p}(\mathcal{O}) : \mathcal{C}u = 0\}, & eta > 1 + 1/p \ H^{\beta,p}(\mathcal{O}), & -1 + 1/p < eta < 1 + 1/p \end{cases}.$

- The Neumann operator N maps into $D(A^{\varepsilon}) = H^{2\varepsilon,p}_{\mathcal{C}}(\mathcal{O}) = \mathcal{B}_{\varepsilon}$ for $\varepsilon < 1/2 + 1/2p$.
- For $(\widetilde{y}, \widetilde{y}') \in \widetilde{\mathcal{D}}_{X, \alpha}^{2\gamma}$ with $\alpha > 1 + 1/\rho$ we have that $(A_{-\sigma}N\widetilde{y}, A_{-\sigma}N\widetilde{y}') \in \mathbb{C}$ $\mathcal{D}^{2\gamma}_{X,-\eta}$, where $\eta := 1 - \varepsilon$ and σ as below.
- Here $A_{-\sigma}$ is an extrapolation operator as defined below.

Why do we need extrapolation operators?

- **Problem.** The expression ANy is not well-defined, since $Ny \notin D(A)$. This is the key point, where the theory of extrapolation operators is needed.
- extrapolation-interpolation Banach scale is a family The $(A_{lpha}, \mathcal{B}_{lpha})_{lpha \in [-2,\infty)}$ generated by (A, D(A)) such that $A_{lpha} \in \mathcal{B}_{lpha}$

and uniformly elliptic coefficients

$$\mathcal{A} := \sum_{i,j} \partial_i a_{ij} \partial_j \text{ and } \mathcal{C} := \sum_{i,j} \gamma_{\partial} \nu_i a_{ij} \partial_j.$$

• The drift term $f : \mathcal{B}_{-\eta} \to \mathcal{B}_{-\eta-\delta_1}$ is Lipschitz and satisfies a linear growth condition. Note that f is allowed to **lose spatial regularity**. The diffusion coefficient $F : \mathcal{B}_{-\eta-\vartheta} \to \mathcal{B}_{-\eta-\vartheta+\delta_2}$ is three times continuously differentiable with bounded derivatives for $\vartheta \in \{0, \gamma, 2\gamma\}$ and

 $DF(\cdot) \circ (A_{-\sigma}NF(\cdot))$

has a bounded derivative. Note that F has to gain spatial regularity. **Example.** For *F* one can choose a lift operator

 $\Lambda^t: H^s(\mathbb{R}) \to H^{s-t}(\mathbb{R}), u \mapsto \mathcal{F}^{-1}(1+|\cdot|^2)^{t/2} \mathcal{F}u,$

for $t, s \in \mathbb{R}$, restricted to the bounded domain \mathcal{O} .

References

[GHN21] A. Gerasimovičs, A. Hocquet, and T. Nilssen. Non-autonomous rough

 $\mathcal{L}(\mathcal{B}_{1+\alpha}, \mathcal{B}_{\alpha}), \mathcal{B}_{\alpha} \hookrightarrow \mathcal{B}_{\beta}$ for $\alpha > \beta \geq -2$ and

is a commutative diagram.

- For negative indices, the operators are **extensions of** A and are called extrapolated operators.
- The index $-\sigma := -\eta \gamma$ we choose in (2), is determined by the Neumann operator N, which maps into $D(A^{\varepsilon})$, and the Hölder regularity γ of the rough path **X**. We have

$1 - \gamma < \varepsilon < 1/2 + 1/2p$.

semilinear PDEs and the multiplicative sewing lemma. J. Funct. Anal., 281(10), 2021.

[HN22] R. Hesse and A. Neamțu. Global solutions for semilinear rough partial differential equations. Stoch. Dyn., 22(2), 2022.

[MP07] B. Maslowski and J. Pospíšil. Parameter estimates for linear partial differential equations with fractional boundary noise. Commun. Inf. *Syst.*, 7(1), 2007.

[SV11] R. Schnaubelt and M. Veraar. Stochastic equations with boundary noise. In *Parabolic problems*, volume 80 of *Progr. Nonlinear Differ*ential Equations Appl. Birkhäuser/Springer Basel AG, Basel, 2011.