Separating Cones for the SOS and PSD Cones

 that Fail to be Spectrahedral Shadows
A Talk by Sarah Hess, University of Konstanz, in Real Geometry and Algebra Seminar and „KWIM" Lecture Series

Friday, $15^{\text {th }}$ December 2023, 13:30 PM in F426

Abstract

For $n, d \in \mathbb{N}$, let $\mathcal{P}_{n+1,2 d}$ denote the cone of positive semi-definite (PSD) homogeneous polynomials (forms) in $n+1$ variables of degree $2 d$ with real coefficients. $\mathcal{P}_{n+1,2 d}$ contains the subcone $\Sigma_{n+1,2 d}$ of forms that are representable as finite sums of squares (SOS) of forms. By Hilbert's 1888 Theorem, $\Sigma_{n+1,2 d}=\mathcal{P}_{n+1,2 d}$ exactly in the Hilbert cases $(n+1,2 d)$ with $n+1=2$ or $2 d=2$ or $(3,4)$.

In this talk, we introduce, for the non-Hilbert cases, a specific cone filtration

$$
\begin{equation*}
\Sigma_{n+1,2 d}=C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{k(n, d)-n-1} \subseteq C_{k(n, d)-n}=\mathcal{P}_{n+1,2 d}, \tag{0.1}
\end{equation*}
$$

defined via the Gram matrix method. We determine the number $\mu(n, d)$ of strictly separating intermediate cones (i.e., C_{i} such that $\sum_{n+1,2 d} \subsetneq C_{i} \subsetneq \mathcal{P}_{n+1,2 d}$) in (0.1) and, thus, reduce (0.1) to a specific cone subfiltration

$$
\begin{equation*}
\Sigma_{n+1,2 d}=C_{0}^{\prime} \subsetneq C_{1}^{\prime} \subsetneq \ldots \subsetneq C_{\mu(n, d)}^{\prime} \subsetneq C_{\mu(n, d)+1}^{\prime}=\mathcal{P}_{n+1,2 d} . \tag{0.2}
\end{equation*}
$$

For $i=1, \ldots, \mu(n, d)$, we show that each C_{i}^{\prime} in (0.2) fails to be a spectrahedral shadow by constructing explicit examples of separating forms $f \in C_{i}^{\prime} \backslash C_{i-1}^{\prime}$ and inductively applying the methods of Scheiderer from 2018.

This is a joint work with Charu Goel and Salma Kuhlmann.

Real Geometry and Algebra Group

