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Abstract. The Floquet exponents of a periodic ordinary differential equation sys-

tem can be characterized as the zeros of a regularized determinant depending on a

parameter ν. In this paper we investigate this regularized determinant and show
that essentially it is a polynomial in exp(ν). The convergence of the infinite deter-

minant can be described and accelerated. So we obtain a new method to compute
the Floquet exponents, generalizing the well-known determinantal approach for Hill’s

equation.

1. Introduction

The aim of this paper is to describe the structure of infinite determinants which
correspond to periodic ordinary differential equation systems of the form

(1) y′(x) = A(x) · y(x)

where A(·) ∈ L∞(R, Cn×n) with A(x) = A(x + 1) almost everywhere. The long
history of infinite determinants starts at the end of the 19th century with famous
works of Hill [10], Poincaré [17], von Koch [11] and others. Determinants were first
defined for infinite matrices but later generalized for trace operators and (in the
regularized form) Hilbert–Schmidt operators in abstract Banach spaces (see [6], for
instance). For a survey on a general theory of (regularized) determinants in Banach
spaces and for infinite matrices, we also refer the reader to [8], [9] and the references
therein.

For the special case where (1) is Hill’s equation the determinantal concept which
was introduced by Hill was also investigated from a numerical point of view, see
[14], [15]. Classical results on Hill’s equation were generalized to matrix Hill’s
equations in [1], [2] and [3] where also the question of convergence improvement is
discussed. For general systems of the form (1), however, the corresponding infinite
determinants have not been investigated in more detail up to now. General results
which describe the stability of (1) using regularized determinants are known even for
partial differential equations [12] and can be applied here, see Lemma 1.1 below. To
obtain a method which can also be used in applications, however, one has to describe
the structure of this regularized determinant. This is done in this paper where also
some methods of convergence acceleration for the determinants are stated. A large
part of the results of this paper is taken from the preprint [5].

Let Y (x) be the fundamental solution of (1), i.e. the matrix valued solution with
Y (0) = In, where In denotes the unit matrix. In the following we will deal with
the function space Lp(T, Cn) where T := R/Z stands for the torus and with the
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Sobolev space W 1
p (T, Cn) (1 ≤ p ≤ ∞) of all absolutely continuous functions whose

derivative belongs to Lp(T, Cn). As usual, we set H1(T, Cn) := W 1
2 (T, Cn).

Making use of the isometric isomorphism L2(T, Cn) ∼= `2(Z, Cn) =: H, we can
write the operators in L2(T, Cn) as infinite block matrices. For Z ∈ L∞(T, Cn×n)
the operator of multiplication by Z is denoted by MZ . We have MZ = (Zk−l)∞k,l=−∞
∈ L (H) with

(2) Zk :=
∫

T
Z(t) e−2πikt dt ∈ Cn×n

(see [7], p. 566). We will denote by Sp(H) the Neumann–Schatten class of order p
in L (H). For a Hilbert–Schmidt operator B ∈ S2(H) the regularized determinant
∆2(1 − B) is defined as the infinite product

∏
j(1 − λj(B)) exp(λj(B)), cf. [6], p.

166. Due to classical Floquet theory, equation (1) is asymptotically stable if and
only if all Floquet exponents have negative real part. Here ν is called a Floquet
exponent if det(Y (1) − exp(ν)In) = 0. For the Floquet exponents we have the
following known description (see also [12], p. 110).

Lemma 1.1. For any ν ∈ C the following statements are equivalent:
(i) ν is a Floquet exponent of (1).
(ii) −ν is an eigenvalue of the unbounded operator L in L2(T, Cn) with domain
H1(T, Cn) and Lf := f ′ −Af .
(iii) The regularized determinant ∆2(1 − BL(ν)) is equal to zero, where BL(ν) ∈
S2(H) is defined by

BL(ν) := 1− (L + ν)F

with
F := diag((2πil + δ0l)−1In)∞l=−∞ ∈ S2(H) ,

where δkl denotes the Kronecker symbol.

In (iii) the operator F acts as a normalization. (Note that the diagonal elements
of the infinite matrix L grow to infinity while the diagonal elements of BL(ν) tend
to In.) We will now study the properties of the determinant which appears in (iii).

2. The structure of the regularized determinant

First we describe the behaviour of ∆2(1−BL(ν)) under similarity transforms.

Lemma 2.1. Let Z ∈ W 1
∞(T, Cn×n) with detZ(x) 6= 0 for all x ∈ T. Then

∆2(1−BL(ν)) and ∆2(1−BM−1
Z LMZ

(ν)) are equal up to a constant non-vanishing
factor which does not depend on ν.

The proof of this fact is based on the identity

1−BM−1
Z LMZ

(ν) = M−1
Z (1−BL(ν))F−1MZF

and on the product formula for regularized determinants ([6], p. 169). We obtain

(3)

∆2(1−BM−1
Z LMZ

(ν)) = ∆2(1−BL(ν)) ·∆2(F−1MZFM−1
Z )

· exp(−tr [(1− LF )(1− F−1MZFM−1
Z )])

· exp(−tr [ν(F −MZFM−1
Z )]) .



INFINITE DETERMINANTS CORRESPONDING TO PERIODIC ODE SYSTEMS 3

Here tr stands for the trace defined for all trace class operators in L (H). The
only ν-dependent term on the right-hand side of (3) except ∆2(1 − BL(ν)) is
exp(−tr [ν(F − MZFM−1

Z )]). So for the proof of the lemma we have to show
that the trace vanishes. Surprisingly this is not easy (note that F is no trace class
operator) and uses estimates of the trace norm of infinite matrices which can be
found in [16], p. 239. To apply these estimates, we use the fact that Z ′ ∈ L∞.
Moreover, it is easy to see that there are examples F ∈ S2(H) and B ∈ L (H)
where tr (F −BFB−1) does not exist. See [5] for details.

To investigate the determinant appearing in Lemma 1.1 (iii) it is convenient
to use the connection of regularized determinants and the determinants of infinite
matrices. For an infinite block matrix M = (Mkl)∞k,l=−∞ with Mkl ∈ Cn×n and for
N ∈ N0 we set

(4) DetN (M) := det(Mkl)N
k,l=−N

and Det M := limN→∞DetN (M), provided the limit exists. In the case considered
here, it is easily seen from the results in [6], p. 169, that the infinite determinant
Det(1−BL(ν)) exists, and that we have

(5) Det(1−BL(ν)) = exp(−n(1− ν)− trA0) ·∆2(1−BL(ν)) .

The following lemma is a first example of a modification of the infinite matrix
1 − BL(ν) which will enable us in Section 3 to improve the convergence of the
infinite determinant. Note that the modified matrix appearing in this lemma is
normalized to unity on the diagonal. As usual, the trigonometric functions of
matrices appearing in this lemma and later are defined using the infinite series of
these functions. The hyperbolic trigonometric functions will be denoted by sinh
and cosh. For abbreviation, we will write z instead of zIn.

Lemma 2.2. For ν ∈ Λ := {z ∈ C : det sinh z−A0
2 6= 0} we set

BL(ν) :=
(
(1− δkl)Ak−l(2πil + ν −A0)−1

)∞
k,l=−∞

.

Then Det(1−BL(ν)) exists for ν ∈ Λ, and we obtain
a) Det(1−BL(ν)) = Det(1−BL(ν)) · det(2 sinh ν−A0

2 ) for ν ∈ Λ,

b) Det(1−BL(ν)) → 1 for |Re ν| → ∞.

Proof. Comparing the definitions of BL(ν) and BL(ν) we see for k, l ∈ Z and ν ∈ Λ

(6) (1−BL(ν))kl = (1−BL(ν))kl ·
2πil + ν −A0

2πil + δ0,l
.

Therefore the finite section determinants fulfill

DetN (1−BL(ν)) = DetN (1−BL(ν)) ·
N∏

l=−N

det
(

2πil + ν −A0

2πil + δ0,l

)

= DetN (1−BL(ν)) · det

[
(ν −A0)

N∏
l=1

(
1 +

(
ν −A0

2πl

)2
)]

.
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For N → ∞ the last determinant converges to det(2 sinh ν−A0
2 ) 6= 0 as we can

see from the Weierstraß product formula for the sinh-function applied to matrices.
Thus Det(1− BL(ν)) exists for ν ∈ Λ and equality a) holds. To obtain b), we use
the estimation

‖BL(ν)‖2
S2

=
∑
k,l

|(BL(ν))kl|2

≤
∑
k 6=l

|Ak−l|2 · |(2πil + ν −A0)−1|2

≤ ‖A‖2
L2
·
∑

l

|(2πil + ν −A0)−1|2

which shows BL(ν) ∈ S2(H) and ‖BL(ν)‖S2 → 0 for |Re ν| → ∞. From the
continuity of the regularized determinant we see

Det(1−BL(ν)) = ∆2(1−BL(ν)) → 1 for |Re ν| → ∞ .
�

Now we can state the main result of this paper which gives a very simple connec-
tion between the infinite determinant Det(1 − BL(ν)) and the n × n-determinant
det(Y (1)− exp(ν)In) which appears in the definition of the Floquet exponents.

Theorem 2.3. The determinant Det(1− BL(ν)) is (up to normalization) a poly-
nomial in exp(ν). More precisely, the following equality holds for every ν ∈ C:

(7) Det(1−BL(ν)) = (−1)n exp
(
− 1

2
(nν + trA0)

)
· det(Y (1)− exp(ν)In) .

Proof. Due to the theorem of Floquet–Lyapunov there exists a Z ∈ W 1
∞(T, Cn×n)

with detZ(x) 6= 0 (x ∈ T) which transforms (1) to a constant system, i.e. we have

(M−1
Z LMZ)f = f ′ −Kf (f ∈ H1(T, Cn))

where K ∈ Cn×n is a constant matrix with expK = Y (1). From Lemma 2.1 we
obtain the existence of some constant c 6= 0, not depending on ν, with

Det(1−BL(ν)) = exp(−n(1− ν)− trA0) ·∆2(1−BL(ν))

= c · exp(−n(1− ν)− trA0) ·∆2(1−BM−1
Z LMZ

(ν))

= c · exp(tr K − trA0) ·Det(1−BM−1
Z LMZ

(ν)) .

We calculate the last determinant explicitly (BM−1
Z LMZ

(ν) is block diagonal). Sim-
ilarly to the proof of Lemma 2.2 (or using this lemma) we get

Det(1−BM−1
Z LMZ

(ν)) = det
(
2 sinh

ν −K

2

)
= det

[
exp

(
− ν + K

2

)
· (exp(ν)In − expK)

]
= (−1)n exp

(
− 1

2
(nν + trK)

)
· det(Y (1)− exp(ν)In) ,
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and therefore

(8)

exp
(1

2
(nν + trA0)

)
·Det(1−BL(ν))

= (−1)n c exp
(1

2
(trK − trA0)

)
· det(Y (1)− exp(ν)In)

= (−1)n c̃ · det(Y (1)− exp(ν)In) .

Here c̃ := c exp( 1
2 (trK − trA0)) is independent of ν.

It remains to compute c̃. The left-hand side of (8) can be written as (cf.
Lemma 2.2 a))

exp
(1

2
(nν + trA0)

)
·det

(
2 sinh

ν −A0

2

)
·Det(1−BL(ν))

= (−1)n det(expA0 − exp(ν)In) ·Det(1−BL(ν)) .

Due to Lemma 2.2 b) this expression tends to (−1)n det(expA0) for Re ν → −∞.
Using the formula of Liouville we get

det(expA0) = exp
(

tr
∫ 1

0

A(t) dt

)
= detY (1) .

Comparing the limits of both sides of (8) for Re ν → −∞ the constant c̃ is seen to
be equal to 1 which finishes the proof of the theorem. �

Remark 2.4. a) We want to point out that from this theorem the equivalence of
(i) and (iii) of Lemma 1.1 immediately follows. (This equivalence was not used in
the proofs.)

b) Equation (7) is the basis for numerical methods using infinite determinants.
We only have to compute the values of Det(1−BL(ν)) for n− 1 different values of
ν to determine the coefficients of the polynomial appearing on the right-hand side
of (7). Then the zeros of this polynomial can be found by standard methods.

c) Instead of the proof which was used here, one could also think of different
approaches to prove Theorem 2.3. First, one could think of using the theory of
entire functions of finite order to show that both sides of (7) are equal at least up
to an entire function without zeros. (Due to Lemma 1.1, both sides have the same
zeros.) But for this approach one would also have to investigate the multiplicity of
the zeros which seems to be not easy in the case of the infinite determinant.

Another approach to prove this theorem would be to use more results about
the determinants of infinite matrices to obtain that the left-hand side of (7) is a
polynomial in exp(ν). For this one has to show first that the left-hand side with
ν replaced by iν is a periodic function of ν. Then one can use growth estimates
to see that the Fourier series of this function is only a finite sum. If we know that
both sides of (7) are polynomials in exp(ν) we can prove the theorem using again
Lemma 1.1, at least if the zeros of both polynomials are simple. This proof which
was already used by Hill works in the case of (matrix) Hill’s equation, see, e.g.
[2], [10], [13]. However, in the case of (matrix) Hill’s equation the convergence of
the corresponding infinite determinant is much better than in the case considered
here. This makes it possible to use classical results on infinite determinants due
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to Poincaré [17] and von Koch [11] and their generalizations described in [15]. In
general, the determinants corresponding to (1) are not absolutely convergent in the
sense of [11]. This makes it difficult to apply classical theories on infinite matrices,
and thus the use of regularized determinants seems to be more appropriate here.

Remark 2.5. Even if the function A(x) is constant (i.e. in the case of an ODE
system with constant coefficients) the result of Theorem 2.3 is not trivial. In this
case we receive the infinite product formula for trigonometric functions, applied to
matrices. In the special case where A(x) = A0 + cos 2πxA1 with

A0 =
(

0 1
γ 0

)
, A1 =

(
0 0
h 0

)
(Mathieu’s equation), there are well-known recurrence formulas for the finite section
determinants DetN (1−BL(ν)). Even in this simple case where the infinite matrix
1−BL(ν) is tridiagonal is seems to be impossible to prove equation (7) directly.

3. Evaluation of the infinite determinant

Due to Theorem 2.3, the calculation of the Floquet exponents is reduced to the
evaluation of n − 1 infinite determinants Det(1 − BL(ν)). In this section we want
to investigate and improve the convergence of this determinant. We fix ν and set
δN := DetN (1−BL(ν)).

Remark 3.1. We have δN − δN−1 = O(N−2) (N →∞) and in general the expo-
nent cannot be replaced by a smaller number (see [5]). A similar result is valid for
the infinite matrix 1−BL(ν) defined in Lemma 2.2. Therefore the convergence has
to be improved in order to obtain a method which is useful from a numerical point
of view. There are several possibilities to improve the order of convergence. As the
proofs of such convergence accelerations are of quite technical nature, we restrict
ourselves to state two examples.

Theorem 3.2 (see [5]). Assume Ak = 0 for |k| > b. Let f0(tr (ν − A0)2) 6= 0 and
fp(2 tr (ApA−p)) 6= 0 for p = 1, . . . , b where the auxiliary functions fp are defined
by

fp(z) :=


(

2√
z

)
· sinh

(√
z

2

)
if p even,

cosh
(√

z
2

)
if p odd.

Let the modified sequence (δ̃N )N be given by

δ̃N := δN ·
N∏

m=1

[(
1 +

tr (ν −A0)2

(2πm)2

) b∏
p=1

p<2m

(
1 +

2 tr (ApA−p)
π2(2m− p)2

)]−1

.

Then δ̃N − δ̃N−1 = O(N−4) and

Det(1−BL(ν)) =
(

lim
N→∞

δ̃N

)
· f0(tr (ν −A0)2)

b∏
p=1

fp(2 tr (ApA−p)) .
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Theorem 3.3 (see [3]). Consider a matrix Hill equation of the form

(9) y′′(x) + A(x) y(x) = 0 ,

where A(x) =
∑b

k=−b exp(2πikx)Ak, Ak = A−k ∈ Rn×n.

a) Define the modified sequence (δ̃N )N by

δ̃N := δN ·
( ∞∏

m=1

γm

)−1

with

(10) γm :=

(
b∏

p=0

γm,p(ν) · γm,p(−ν)

)
·

(
b∏

p,q=1

γm,p,q

)

where we define for m ∈ N and p, q = 1, . . . , b:

γm,0(ν) := det
(2πm + ν)2 −A0

(2πm)2
,

γm,p(ν) :=

{
det
(
In − [((2πm+ν)(2π(m−p)+ν)−A0)−1Ap]2

)
if m > p

2 ,

1 else,

γm,p,q :=

{
1− 2tr (ApAq−pAq)

(2π(m− (p + q)/3))6
if p 6= q and m > p+q

3 ,

1 else.

Then we have δ̃N − δ̃N−1 = O(N−8)
b) The infinite determinant Det(1−BL(ν)) is given by

(11) Det(1−BL(ν)) =
(

lim
N→∞

δ̃N

)
·
∞∏

m=1

γm ,

and the infinite product on the right-hand side of (11) can be expressed explicitly as
a combination of trigonometric functions of the matrices A0, . . . , Ab.

For the explicit value of the infinite product in part b) we refer the reader to [3].

4. Numerical examples and final remarks

Starting from the abstract theory of regularized determinants of Hilbert–Schmidt
operators, we described in detail the structure of this determinants in the case
considered here and reduced the problem of stability of (1) to the evaluation of
n− 1 infinite matrix determinants. The convergence of these matrix determinants
can be improved using the methods described in Section 3. So we obtain a new
algorithm to compute the Floquet exponents. The aim of this section is to show
that this new method is useful also from a numerical point of view and to discuss
some further developments.
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The standard method to compute the Floquet exponents is to solve the initial
value problem (1) with initial value Y (0) = In directly and to use the definition
of the Floquet exponents as the zeros of det(Y (1) − exp(ν)In). We compare the
CPU times needed by the two methods to achieve a given accuracy for the Floquet
exponents. In the case of the numerical integration of (1) we use the minimum of
the times needed by the Runge–Kutta–Fehlberg method and by a variable-order
variable-step Adams method. All computations were done on a SUN–Sparc work-
station in Fortran 77, using the NAG library. The following examples are model
problems which show a typical behaviour. See also [3] and [18] for more details on
the implementation.

First we investigate the effect of convergence acceleration as proposed in The-
orem 3.2. The following table shows the relative error of the estimates for the
Floquet exponents using the finite section determinants δN (left) and their modi-
fied values δ̃N (right). We can see the improvement due to convergence acceleration.
Moreover, the computing time for the modification is neglectible compared with the
time needed to the evaluation of the finite section determinants. In Table 1 the
computing times are given in CPU seconds.

Using (δN ) Using (δ̃N )
N Error Time Error Time

5 1.6 · 10−1 0.03 2.2 · 10−3 0.03
10 8.7 · 10−2 0.05 2.9 · 10−4 0.05
20 4.5 · 10−2 0.10 3.7 · 10−5 0.11
40 2.3 · 10−2 0.27 4.6 · 10−6 0.27

Table 1. Convergence acceleration using Theorem 3.2

Now we want to compare the computing times of the determinantal method and
of the standard approach. We consider a model problem of the form (9) with n = 2
and different values of b. In Table 2 the CPU time needed for numerical integration
is set to 1.

Error b = 1 b = 2 b = 3 b = 4 b = 5 b = 6

10−6 0.09 0.20 0.27 0.44 0.58 0.77
10−7 0.09 0.18 0.25 0.32 0.47 0.61
10−8 0.08 0.18 0.27 0.33 0.44 0.52
10−9 0.08 0.16 0.23 0.34 0.42 0.58
10−10 0.08 0.16 0.25 0.33 0.41 0.51

Table 2. CPU-time of the determinantal method using Theorem 3.3 compared to the

time of numerical integration which is set to 1

We can see from this example that the determinantal approach is significantly
faster (at the same level of accuracy) than the numerical solution of the initial value
problem, in particular for small values of b. For further examples and discussions
we refer to [3], [18], [19].
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Finally, we want to remark that it is also possible to use the eigenvalues of the
finite sections of the infinite matrix L (cf. Lemma 1.1 (ii)) as estimates for the
Floquet exponents. In [4] a combination of determinantal and eigenvalue approach
is investigated which is up to 10–50 times faster than the standard method. In all
these examples one can see that the beautiful abstract concept of infinite determi-
nants (finally) leads to a very fast and precise numerical method. It seems that
some questions could be of interest from a numerical point of view, for instance,
the behaviour of this method in the case of stiff equations.
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