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1. Preliminaries on Hilbert's 17th Problem

I For n ∈ N, a polynomial p(x) ∈ R[x ] = R[x1, . . . , xn] is called

I nonnegative or positive semide�nite (psd) if p(x) ≥ 0 ∀x ∈ Rn

I a sum of squares (sos) if p =
∑
i

q2i for some qi ∈ R[x ].

I Clearly every sos is psd from their representation.
I What about the converse?

I Hilbert's 17th Problem: Can we write every nonnegative
polynomial p as a sum of squares of rational functions, i.e.

p =
∑
i

(qi
ri

)2
for some qi , ri (nonzero) ∈ R[x ] ?

I Theorem of Artin and Schreier [1926]: YES (over any real
closed �eld).

I Example: The ternary sextic Motzkin form

M(x , y , z) = z6 + x4y2 + x2y4 − 3x2y2z2

is a sos of rational functions [e.g. (x2 + y2 + z2)2M(x , y , z) is sos].



1. Preliminaries Hilbert's 17th Problem

I But what if rational functions are not allowed in the sos
representation and we want only sos of polynomials?

I When can a psd polynomial be written as a sos of polynomials?

I A polynomial p ∈ R[x ] of degree m is psd (resp. sos) i� its
homogenization ph(x0, x1, . . . , xn) := xm0 p(x1/x0, . . . , xn/x0) is psd
(resp. sos), so it is su�cient to consider this question for
homogeneous polynomials, i.e. polynomials in which all terms have
the same degree, also called forms. Let

I Fn,m be the vector space of all real forms in n variables and degree
m, called n-ary m-ics, where n,m ∈ N.

I Pn,m := {f ∈ Fn,m | f is psd }, the cone of psd forms.

I Σn,m := {f ∈ Fn,m | f is sos}, the cone of sos forms.

I Since a psd form always has even degree, it is su�cient to study this
question for even degree forms, so only consider Fn,2d , Pn,2d , Σn,2d .

I (Q) : For what pairs (n, 2d) do we have Pn,2d = Σn,2d?



2. Hilbert's 1888 Theorem
I Theorem (Hilbert, 1888): Pn,2d = Σn,2d if and only if n = 2 or

2d = 2 or (n, 2d) = (3, 4).

I The arguments for the equality Pn,2d =
∑

n,2d for n = 2 and d = 1
were already known in the late 19th century (factorization theory of
binary forms and diagonalization theorem of quadratic forms).

I For the equality P3,4 =
∑

3,4, Hilbert showed that indeed every psd
ternary quartic is a sum of at most three squares of quadratic
forms.The idea of Hilbert's proof is to associate to any ternary
quartic a curve and then use the classically well-developed theory of
algebraic curves.

I Choi and Lam in 1977, gave an elementary proof of the equality
P3,4 =

∑
3,4, by exploiting extremal forms. They, however, did not

show that only three quadratic forms su�ce in such a sos
representation.

I A modern simpli�ed version of Hilbert's proof due to Cassels, was
given by Rajwade in 1993, his proof shows that three squares su�ce.



2. Hilbert's 1888 Theorem
For the only if direction, Hilbert established (abstractly) that

Σ4,4 ( P4,4 and Σ3,6 ( P3,6

and observed:

I Proposition 2.1[Reduction to Basic Cases]:
If Σ4,4 ( P4,4 and Σ3,6 ( P3,6 , then Σn,2d ( Pn,2d for all
n ≥ 3, 2d ≥ 4 and (n, 2d) 6= (3, 4)

Proof.

Firstly, f ∈ Pn,2d \
∑

n,2d ⇒ f ∈ Pn+j ,2d \
∑

n+j ,2d ∀ j ≥ 0. Secondly,

we claim: f ∈ Pn,2d \
∑

n,2d ⇒ x2i1 f ∈ Pn, 2d+2i \
∑

n, 2d+2i ∀ i ≥ 0.
Indeed, assume for a contradiction that
x21 f (x1, . . . , xn) =

∑k
j=1 h

2
j (x1, . . . , xn). The L.H.S vanishes at x1 = 0,

so does the R.H.S. It follows that hj(x1, . . . , xn) vanishes at x1 = 0 and
so x1 | hj ∀ j , so x21 | h2j ∀ j . So, R.H.S is divisible by x21 . Dividing both

sides by x21 we get a sos representation of f , a contradiction. Induction
on i gives x2i1 f ∈ Pn, 2d+2i \ Σn, 2d+2i ∀ i ≥ 1.



2. Hilbert's 1888 Theorem

Examples of psd not sos ternary sextics and quaternary quartics:

I Motzkin, 1967
M(x , y , z) := z6 + x4y2 + x2y4 − 3x2y2z2 ∈ P3,6 \ Σ3,6

I Robinson, 1969
R(x , y , z) := x6 + y6 + z6 − (x4y2 + y4z2 + z4x2 + x2y4 + y2z4+

z2x4) + 3x2y2z2 ∈ P3,6 \ Σ3,6,

W (x , y , z ,w) := x2(x − w)2 +
(
y(y − w)− z(z − w)

)2
+ 2yz(x+

y − w)(x + z − w) ∈ P4,4 \ Σ4,4

I Choi and Lam, 1976
S(x , y , z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 ∈ P3,6 \ Σ3,6

Q(x , y , z ,w) := w4 + x2y2 + y2z2 + z2x2 − 4xyzw ∈ P4,4 \ Σ4,4



3. Hilbert's 1888 Theorem for Symmetric forms

I A form f ∈ Fn,2d is called symmetric if ∀ σ ∈ Sn:
f σ(x1, . . . , xn) := f (xσ(1), . . . , xσ(n)) is equal to f (x1, . . . , xn).

I SPn,2d := {f ∈ Fn,2d | f is symmetric and psd}

I SΣn,2d := {f ∈ Fn,2d | f is symmetric and sos}

I Q(S) : For what pairs (n, 2d) we have SPn,2d ⊆ SΣn,2d?

I Theorem (Choi and Lam, 1976): SPn,2d = SΣn,2d if and only if
n = 2 or 2d = 2 or (n, 2d) = (3, 4).

I Proposition 3.1 [Reduction to Basic Cases]
If SΣn,4 ( SPn,4 for all n ≥ 4 and SΣ3,6 ( SP3,6 ,then
SΣn,2d ( SPn,2d for all n ≥ 3, 2d ≥ 4 and (n, 2d) 6= (3, 4).

I Proposition [BCR]: Let R be a real closed �eld and p an
irreducible polynomial in R[x1, . . . , xn]. TFAE:
1. (p) = I(Z (p)), where I(A) =

{
g ∈ R[x ] | g(a) = 0 ∀ a ∈ A

}
is

the ideal of vanishing polynomials on A ⊆ Rn and
Z (p) =

{
x ∈ Rn | p(x) = 0

}
is the zero set of p.

2. The sign of the polynomial p changes on Rn.



3. Hilbert's 1888 Theorem for Symmetric forms

I Corollary 3.2: Let f ∈ Pn,2d \Σn,2d and p an irreducible inde�nite
form of degree r in R[x1, . . . , xn]. Then p2f ∈ Pn,2d+2r \Σn,2d+2r .

I Proof of Proposition 3.1 �Reduction to Basic Cases�: If
f ∈ SPn,2d \ SΣn,2d , then
(x1 + . . .+ xn)2i f ∈ SPn,2d+2i \ SΣn,2d+2i ∀ i ≥ 0.

I Symmetric psd not sos ternary sextics and n−ary quartics for n ≥ 4:
I Robinson, 1969:

R(x , y , z) := x6 + y6 + z6 − (x4y2 + y4z2 + z4x2 + x2y4 + y2z4+
z2x4) + 3x2y2z2 ∈ SP3,6 \ SΣ3,6

I Choi-Lam, 1976:
f4,4 :=

∑6 x2y2 +
∑12 x2yz − 2xyzw ∈ SP4,4 \ SΣ4,4. [�the

construction of fn,4 ∈ SPn,4 \ SΣn,4 (for n ≥ 4) requires
considerable e�ort, so we shall not go into the full details here.
Su�ce it to record the special form f4,4.�]

I We will construct explicit forms f ∈ SPn,4 \ SΣn,4 for n ≥ 5



3. Hilbert's 1888 Theorem for Symmetric forms

I Timofte's Half Degree Principle for Symmetric Polynomials :
A symmetric real polynomial of degree 2d in n variables is
nonnegative (> 0 respectively) on Rn ⇔ it is nonnegative (> 0
respectively) on the subset Λn,k := {x ∈ Rn | number of distinct
components in x is ≤ k }, where k := max{2, d}.

I A form f ∈ Fn,2d is called even symmetric if it is symmetric and
in each term of f every variable has even degree.

I Timofte's Half Degree Principle for Even Symmetric
Polynomials : An even symmetric real polynomial of degree 2d ≥ 4
in n variables is nonnegative (> 0 respectively) on Rn ⇔ it is
nonnegative (> 0 respectively) on the subset Ωn,d/2 := {x ∈ Rn

+ |
number of distinct nonzero components in x is ≤ d/2 }.

I Corollary : (i) For a symmetric real polynomial f of degree 2d in n
variables ∃ x ∈ Rn s.t. f (x) = 0 ⇔ ∃ x ∈ Λn,k s.t. f (x) = 0 .
(ii) For an even symmetric real polynomial f of degree 2d in n
variables ∃ x ∈ Rn s.t. f (x) = 0 ⇔ ∃ x ∈ Ωn,d/2 s.t. f (x) = 0.



3.1. Symmetric psd not sos n−ary quartics for n ≥ 5

I Consider the following symmetric quartic in n ≥ 4 variables,

Ln(x1, . . . , xn) := m(n −m)
∑
i<j

(xi − xj)
4 −

(∑
i<j

(xi − xj)
2
)2
,

where m = [n/2].

I Proposition 3.3: Ln is psd for all n.

I Theorem 3.4: If n ≥ 5 is odd, then Ln is not a sos.

I Proposition 3.5: Ln for even n is a sos.[
L2m(x) =

∑
i<j

(xi − xj)
2
(
− (x1 + . . .+ x2m) + m(xi + xj)

)2]
I For m ≥ 2, consider the following symmetric quartic in 2m variables,

C2m(x1, . . . , x2m) := L2m+1(x1, . . . , x2m, 0).

I For m ≥ 2, C2m(x1, . . . , x2m) is psd.

I Theorem 3.6: For m ≥ 2, C2m(x1, . . . , x2m) is not a sos.



3.1. Symmetric psd not sos n−ary quartics for n ≥ 5
I To prove: Ln is psd for all n.

I Ω ⊆ Rn is a test set for f if f is psd i� f (x) ≥ 0 for all x ∈ Ω.
I Theorem: Let n ≥ 4. A symmetric n−ary quartic f is psd i�

f (x) ≥ 0 for every x ∈ Rn with at most two distinct coordinates, i.e.
Λn,2 := {x ∈ Rn | xi ∈ {r , s}; r 6= s, r , s ∈ R} is a test set for
symmetric n−ary quartics.

I Proof: Enough to prove: Ln ≥ 0 on Λn,2.

Now for x ∈ Λn,2 = {(r , . . . , r︸ ︷︷ ︸
k

, s, . . . , s︸ ︷︷ ︸
n−k

) | r 6= s ∈ R; 0 ≤ k ≤ n}:

xi − xj =

{
±(r − s) 6= 0, for k(n − k) terms,

0 , otherwise

so, Ln(x) = m(n −m)k(n − k)(r − s)4 − [k(n − k)(r − s)2]2

= k(n − k)(r − s)4[m(n −m)− k(n − k)]

= k(n − k)(r − s)4[(m − k)(n −m − k)] ≥ 0. �



4. Version of Hilbert's 1888 Theorem for

Even Symmetric forms

I SPe
n,2d := {f ∈ Fn,2d | f is even symmetric and psd}

I SΣe
n,2d := {f ∈ Fn,2d | f is even symmetric and sos}

I Q(Se) : For what pairs (n, 2d) will SPe
n,2d ⊆ SΣe

n,2d?

I Known:
I SPe

n,2d = SΣe
n,2d if n = 2, d = 1, (n, 2d) = (3, 4)︸ ︷︷ ︸

(by Hilbert's Theorem)

, (n, 4)n≥4︸ ︷︷ ︸
(C-L-R)

, (3, 8)︸ ︷︷ ︸
(Harris)

I SPe
n,2d ) SΣe

n,2d for (n, 2d) = (n, 6)n≥3︸ ︷︷ ︸
(C-L-R)

, (3, 10), (4, 8)︸ ︷︷ ︸
(Harris)

.



4. Hilbert's 1888 Theorem for

Even Symmetric forms

I To get a complete answer to Q(Se) it is interesting to look at the
following remaining cases:
I (3, 2d) for d ≥ 6,
I (n, 8) for n ≥ 5, and
I (n, 2d) for n ≥ 4, d ≥ 5.

I We will
I give a �Reduction to Basic Cases� by �nding an appropriate

inde�nite irreducible even symmetric form
I construct explicit forms f ∈ SPe

n,2d \ SΣe
n,2d for the pairs

(n, 2d) = (3, 12), (n, 8)n≥5

I deduce that for (n, 2d) = (n, 6)n≥3, (n, 8)n≥4, (3, 2d)d≥5,
(n, 2d)n≥4,d≥7, the answer to Q(Se) is negative.



4.1. Degree jumping principle

I Lemma 4.1: If 2t = 4, 6, and n ≥ 3, then

ht(x1, . . . , xn) :=
n∑

i=1

x2ti − 10
∑
i 6=j

x2t−2i x2j

is an inde�nite irreducible even symmetric n−ary form of degree 2t.

I Theorem 4.2 [Degree jumping principle]:
Let n ≥ 3. If f ∈ SPe

n,2d \ SΣe
n,2d , then

1. for any integer r ≥ 2, the form f h2a2 h2b3 ∈ SPe
n,2d+4r \ SΣe

n,2d+4r

where r = 2a + 3b; a, b ∈ Z+.
2. (x1 . . . xn)2f ∈ SPe

n,2d+2n \ SΣe
n,2d+2n.



4.2. Answer to Q(S e) : for what (n, 2d) SPe
n,2d ⊆ SΣe

n,2d?
I Proposition (Reduction to Basic Cases:) If we can �nd psd not

sos even symmetric n−ary 2d−ic forms for the following pairs:

1. (n, 2d) = (n, 8) for n ≥ 5, and
2. (n, 2d) for n ≥ 4, d = 5, 6.

then the complete answer to Q(Se) will be:

SPe
n,2d ⊆ SΣe

n,2d if and only if n = 2, d = 1, (n, 2d) = (n, 4)n≥3, (3, 8).

I Psd not sos even symmetric n−ary octics for n ≥ 5
I Theorem: The form

B(x1, . . . , x5) := L5(x21 , . . . , x
2
5 ) ∈ SPe

5,8 \ SΣe
5,8,

(recall that L2m+1 = m(m + 1)
∑
i<j

(xi − xj)
4 −

(∑
i<j

(xi − xj)
2
)2

is a

symmetric psd not sos (2m + 1)−ary quartic form).



4.2.1. Psd not sos even symmetric n−ary octics for n ≥ 6

I Theorem: For m ≥ 3,

1. M2m+1 := L2m+1(x21 , . . . , x
2
2m+1) ∈ SPe

2m+1,8 \ SΣe
2m+1,8, and

2. D2m := C2m(x21 , . . . , x
2
2m) ∈ SPe

2m,8 \ SΣe
2m,8,

Set Mr (x1, · · · , xn) := x r1 + · · · x rn. Use it to construct psd not sos even
symmetric n-ary dedics and dodedics.



4.3. Hilbert's 1888 Theorem for Even Symmetric forms
Theorem:

1. SPe
n,2d = SΣe

n,2d i� n = 2, d = 1, (n, 2d) = (n, 4)n≥3, (3, 8).

i.e.

deg \ var 2 3 4 5 6 . . .

2 X X X X X . . .

4 X X X X X . . .

6 X × × × × . . .

8 X X × × × . . .

10 X × × × × ×
12 X × × × × ×
14 X × × × × . . .
...

...
...

...
...

...
. . .
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