Talk at MTNS 2014, Groningen, The Netherlands

by Salma Kuhlmann, Universität Konstanz, Germany

Application of the Archimedean Positivstellensatz to locally multiplicatively convex real algebras

July 10, 2014

THE *K*-MOMENT PROBLEM

Let $A := \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ be the algebra of polynomials in n variables with real coefficients and $L : A \longrightarrow \mathbb{R}$ a real valued linear functional.

The K-moment problem

Given $\emptyset \neq K \subseteq \mathbb{R}^n$, when is *L* representable as an integral with respect to a positive Borel measure, i.e.

$$L(f) = \int_{K} f \, d\mu, \quad \forall f \in \mathbb{R}[\underline{X}],$$

where μ is supported on *K*?

THE K-MOMENT PROBLEM

Haviland, 1936

Such a measure exists if and only if $L(Psd(K)) \subseteq [0, \infty)$, where $Psd(K) := \{f \in A : f(x) \ge 0 \quad \forall x \in K\}.$

THE K-MOMENT PROBLEM

Haviland, 1936

Such a measure exists if and only if $L(Psd(K)) \subseteq [0, \infty)$, where $Psd(K) := \{f \in A : f(x) \ge 0 \quad \forall x \in K\}.$

Scheiderer, 1999

Except for a few cases, checking $L(Psd(K)) \subseteq [0, \infty)$ is not a finite procedure, i.e. Psd(K) usually is not *finitely generated*.

Introduction	Seminormed Algebr	as	LMC Algebras	Some Applications
DEFINITIONS				
$ M \subseteq A \text{ is} $ $ M \text{ is} $	a quadratic m a cone:	nodule:		
	$0,1\in M,$	$M + M \subseteq N$	f and $[0,\infty)\cdot M\subseteq M$	И.
$\blacktriangleright \forall f \in$	$A f^2 M \subseteq M$	Ι.		

Coming and Alexinger LMC Alexinger Come Applications

Introduction	Seminormed Algebras	LMC Algebras	Some Applications
DEFINITIO	NS		
$\blacktriangleright M \subseteq A$ $\blacktriangleright N$	is a quadratic module: I is a cone:		
	$0,1\in M, M+N$	$M \subseteq M$ and $[0,\infty) \cdot M$	$\subseteq M.$
$\blacktriangleright \forall M \text{ is } A$	$f \in A f^2 M \subseteq M.$ rchimedean:		
	$\forall f \in A \; \exists N$	$\geq 1 N+f \in M.$	

Introduction

Introduction	Seminormed Algebras	LMC Algebras	Some Applications
DEFINITION	IS		
$ M \subseteq A \\ M$	is a quadratic module is a cone:	2:	
	$0,1\in M, M+$	$M \subseteq M$ and $[0,\infty) \cdot M$	$\subseteq M.$
► ∀f ► M is Ai	$f \in A$ $f^2 M \subseteq M$.		
	$\forall f \in A \exists N$	$N \ge 1$ $N + f \in M$.	

• A quadratic module *T* with $T \cdot T \subseteq T$ is called a preordering.

					* *
DEFINITIONS					
$ M \subseteq A \text{ is a } q $ $ M \text{ is a } q $	uadratic m cone:	nodule:			
	$0,1\in M,$	$M + M \subseteq M$	and $[0,\infty)\cdot N$	$M \subseteq M.$	
 ∀f ∈ A M is Archim 	$f^2M \subseteq M$ redean:	r.			

Seminormed Algebras

Introduction

$$\forall f \in A \ \exists N \geq 1 \quad N+f \in M.$$

- A quadratic module *T* with $T \cdot T \subseteq T$ is called a preordering.
- ▶ Let $S \subset A$; M_S (resp. T_S):= The smallest quadratic module (resp. preordering) containing *S*.

Some Applications

DEFINITIONS	
 M ⊆ A is a quadratic module: M is a cone: 	
$0,1\in M, M+M\subseteq M ext{ and } [0,\infty)\cdot M\subseteq M.$	
► $\forall f \in A f^2 M \subseteq M.$ ► M is Archimedean:	

Seminormed Algebras

Introduction

$$\forall f \in A \ \exists N \geq 1 \quad N + f \in M.$$

- A quadratic module *T* with $T \cdot T \subseteq T$ is called a preordering.
- Let S ⊂ A; M_S (resp. T_S):= The smallest quadratic module (resp. preordering) containing S.
- ► *M* (or *T*) is finitely generated, if *M* = *M*_S (or *T* = *T*_S) for some finite *S*.

Some Applications

Definitions	
 <i>M</i> ⊆ <i>A</i> is a quadratic module: <i>M</i> is a cone: 	
$0, 1 \in M, M + M \subseteq M \text{ and } [0, \infty) \cdot M \subseteq M.$	
$\blacktriangleright \forall f \in A f^2 M \subseteq M.$	

► *M* is Archimedean:

Seminormed Algebras

$$\forall f \in A \ \exists N \ge 1 \quad N + f \in M.$$

- A quadratic module *T* with $T \cdot T \subseteq T$ is called a preordering.
- ▶ Let $S \subset A$; M_S (resp. T_S):= The smallest quadratic module (resp. preordering) containing *S*.
- ► *M* (or *T*) is finitely generated, if *M* = *M_S* (or *T* = *T_S*) for some finite *S*.
- \blacktriangleright $S \subset A$:

Introduction

$$\mathcal{K}_S := \{ x \in \mathbb{R}^n : f(x) \ge 0 \quad \forall f \in S \}.$$

Some Applications

CLASSICAL SOLUTIONS

Schmüdgen, 1991 If *S* is finite and K_S is compact, then

$$L(T_S) \subseteq [0,\infty) \Rightarrow L(\operatorname{Psd}(\mathcal{K}_S)) \subseteq [0,\infty).$$

CLASSICAL SOLUTIONS

Schmüdgen, 1991 If *S* is finite and \mathcal{K}_S is compact, then

$$L(T_S) \subseteq [0,\infty) \Rightarrow L(\operatorname{Psd}(\mathcal{K}_S)) \subseteq [0,\infty).$$

Putinar, 1993 If *S* is finite and M_S is Archimedean, then

$$L(M_S) \subseteq [0,\infty) \Rightarrow L(\operatorname{Psd}(\mathcal{K}_S)) \subseteq [0,\infty).$$

CLASSICAL SOLUTIONS

Schmüdgen, 1991 If *S* is finite and \mathcal{K}_S is compact, then

$$L(T_S) \subseteq [0,\infty) \Rightarrow L(\operatorname{Psd}(\mathcal{K}_S)) \subseteq [0,\infty).$$

Putinar, 1993

If *S* is finite and M_S is Archimedean, then

$$L(M_S) \subseteq [0,\infty) \Rightarrow L(\operatorname{Psd}(\mathcal{K}_S)) \subseteq [0,\infty).$$

Since T_S and M_S are finitely generated, Haviland's Theorem is effectively applicable to them.

$\varphi :=$ The *finest locally convex* topology on *A*.

 $\varphi :=$ The *finest locally convex* topology on *A*.

Schmüdgen:

 $\operatorname{Psd}(\mathcal{K}_S) = \overline{T_S}^{\varphi}$

 $\varphi :=$ The *finest locally convex* topology on *A*.

Schmüdgen:

 $\operatorname{Psd}(\mathcal{K}_S) = \overline{T_S}^{\varphi}$

Putinar:

 $\operatorname{Psd}(\mathcal{K}_S) = \overline{M_S}^{\varphi}$

 $\varphi :=$ The *finest locally convex* topology on *A*.

Schmüdgen:

 $\operatorname{Psd}(\mathcal{K}_S) = \overline{T_S}^{\varphi}$

Putinar:

$$\Rightarrow$$
 Psd(K) = \overline{C}^{τ}

 $\operatorname{Psd}(\mathcal{K}_S) = \overline{M_S}^{\varphi}$

 $\varphi :=$ The *finest locally convex* topology on *A*.

Schmüdgen:

$$\operatorname{Psd}(\mathcal{K}_S) = \overline{T_S}^{\varphi}$$

Putinar:

$$\Rightarrow$$
 Psd(K) = \overline{C}^{τ}

 $\operatorname{Psd}(\mathcal{K}_S) = \overline{M_S}^{\varphi}$

- For a locally convex topology τ on A,
- ► *C* is a convex cone of *A*,
- and *K* is a closed subset of \mathbb{R}^n .

introduction	Seminormed Aigebras	LIVIC Algebras	Some Applications
Example			

1. Replace φ by $\|\cdot\|_{K}$ -topology, where $K = [-1, 1]^{n}$ and

To the desired of

$$||f||_K := \sup_{x \in K} |f(x)|.$$

Stone-Weierestrass
$$\Rightarrow$$
 Psd $(K) = \overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_K}$.

1. Replace φ by $\|\cdot\|_{K}$ -topology, where $K = [-1, 1]^{n}$ and

$$||f||_K := \sup_{x \in K} |f(x)|.$$

Stone-Weierestrass \Rightarrow Psd(K) = $\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_K}$.

2. Replace φ by $\|\cdot\|_1$ -topology, $K = [-1, 1]^n$ where

$$\|\sum_{\alpha} f_{\alpha} \underline{X}^{\alpha}\|_{1} := \sum_{\alpha} |f_{\alpha}|.$$

Berg *et al.*
$$\Rightarrow$$
 Psd(K) = $\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_1}$.

EXAMPLE

In term of moments:

If *L* is a $\|\cdot\|_K$ or $\|\cdot\|_1$ - continuous positive semidefinite functional, then there exists a Borel measure μ on $[-1,1]^n$ such that

$$\forall f \in \mathbb{R}[\underline{X}] \quad L(f) = \int_{[-1,1]^n} f \, d\mu.$$

GENERAL SETTINGS:

Now, let *A* be a unital commutative \mathbb{R} -algebra and $\mathcal{X}(A) := \operatorname{Hom}_{\mathbb{R}}(A, \mathbb{R}) \subseteq \mathbb{R}^A$ endowed with the product topology.

Now, let *A* be a unital commutative \mathbb{R} -algebra and $\mathcal{X}(A) := \operatorname{Hom}_{\mathbb{R}}(A, \mathbb{R}) \subseteq \mathbb{R}^A$ endowed with the product topology. To every $a \in A$ we associate a map

$$\hat{a}: \mathcal{X}(A) \to \mathbb{R}$$

 $\alpha \mapsto \alpha(a)$

Now, let *A* be a unital commutative \mathbb{R} -algebra and $\mathcal{X}(A) := \operatorname{Hom}_{\mathbb{R}}(A, \mathbb{R}) \subseteq \mathbb{R}^A$ endowed with the product topology. To every $a \in A$ we associate a map

$$\hat{a}: \mathcal{X}(A) \to \mathbb{R}$$

 $\alpha \mapsto \alpha(a)$

 $K \subseteq \mathcal{X}(A) \longrightarrow \operatorname{Psd}(K) := \{a \in A : \hat{a} \ge 0 \text{ on } K\},\$

Now, let *A* be a unital commutative \mathbb{R} -algebra and $\mathcal{X}(A) := \operatorname{Hom}_{\mathbb{R}}(A, \mathbb{R}) \subseteq \mathbb{R}^A$ endowed with the product topology. To every $a \in A$ we associate a map

$$\hat{a}: \mathcal{X}(A) \to \mathbb{R}$$

 $\alpha \mapsto \alpha(a)$

$$\begin{array}{ll} K \subseteq \mathcal{X}(A) & \longrightarrow & \operatorname{Psd}(K) := \{a \in A : \hat{a} \ge 0 \text{ on } K\}, \\ S \subseteq A & \longrightarrow & \mathcal{K}_S := \{\alpha \in \mathcal{X}(A) : \alpha(S) \subseteq [0, \infty)\}. \end{array}$$

Introduction	Seminormed Algebras	LMC Algebras	Some Applications
CENEDAL			
GENEKAL	SETTINGS:		
Now, let A	A be a unital commutativ	ve $\mathbb R$ -algebra and	
$\mathcal{X}(A) := \mathbf{H}$	$\operatorname{fom}_{\mathbb{R}}(A,\mathbb{R})\subseteq\mathbb{R}^{A}$ endow	ed with the product to	opology.
T	- 1		

To every $a \in A$ we associate a map

$$\hat{a}: \mathcal{X}(A) \to \mathbb{R}$$

 $\alpha \mapsto \alpha(a)$

 $\begin{array}{rcl} K \subseteq \mathcal{X}(A) & \longrightarrow & \mathrm{Psd}(K) := \{a \in A : \hat{a} \geq 0 \text{ on } K\}, \\ S \subseteq A & \longrightarrow & \mathcal{K}_S := \{\alpha \in \mathcal{X}(A) : \alpha(S) \subseteq [0, \infty)\}. \end{array}$

A $\sum A^{2d}$ -module ($d \ge 1$ an integer), is a cone $C \subseteq A$ such that

$$\forall a \in A \quad a^{2d} \cdot C \subseteq C.$$

Introduction	Seminormed Algebras	LMC Algebras	Some Applications
$\begin{array}{c} \textbf{GENERAL} \\ \text{Now, let } \mathcal{X}(A) := H \\ \text{To every } a \end{array}$	SETTINGS: A be a unital commutative fom _{\mathbb{R}} $(A, \mathbb{R}) \subseteq \mathbb{R}^A$ endow $\in A$ we associate a map	ve \mathbb{R} -algebra and ed with the product t	opology.
	^ 21 (4)	TD	

$$\hat{a}: \mathcal{X}(A) \to \mathbb{R}$$

 $\alpha \mapsto \alpha(a)$

$$\begin{array}{rcl} K \subseteq \mathcal{X}(A) & \longrightarrow & \mathrm{Psd}(K) := \{a \in A : \hat{a} \geq 0 \text{ on } K\}, \\ S \subseteq A & \longrightarrow & \mathcal{K}_S := \{\alpha \in \mathcal{X}(A) : \alpha(S) \subseteq [0, \infty)\}. \end{array}$$

A $\sum A^{2d}$ -module ($d \ge 1$ an integer), is a cone $C \subseteq A$ such that

$$\forall a \in A \quad a^{2d} \cdot C \subseteq C.$$

T. Jacobi's Theorem, 2001

Let *C* be an Archimedean $\sum A^{2d}$ -module of *A*. Then for each $a \in A$

 $\hat{a} > 0$ on $\mathcal{K}_C \Rightarrow a \in C$.

A map $\rho: A \longrightarrow [0,\infty)$ is called a seminorm if

$$1 \ \forall a \in A \ \forall r \in \mathbb{R} \quad \rho(ra) = |r|\rho(a),$$

 $2 \ \, \forall a,b \in A \quad \rho(a+b) \leq \rho(a) + \rho(b);$

 ρ is submultiplicative if

3 $\forall a, b \in A$ $\rho(ab) \leq \rho(a)\rho(b)$.

The pair (A,ρ) is called a seminormed algebra.

A map $\rho: A \longrightarrow [0, \infty)$ is called a seminorm if

1
$$\forall a \in A \ \forall r \in \mathbb{R}$$
 $\rho(ra) = |r|\rho(a),$

2 $\forall a, b \in A$ $\rho(a+b) \leq \rho(a) + \rho(b);$

 ρ is submultiplicative if

3 $\forall a, b \in A$ $\rho(ab) \leq \rho(a)\rho(b)$.

The pair (A, ρ) is called a seminormed algebra. The Gelfand spectrum of (A, ρ) :

 $\mathfrak{sp}(\rho) := \{ \alpha \in \mathcal{X}(A) : \alpha \text{ is } \rho \text{-continuous} \}$

A map $\rho: A \longrightarrow [0, \infty)$ is called a seminorm if

1
$$\forall a \in A \ \forall r \in \mathbb{R}$$
 $\rho(ra) = |r|\rho(a),$

 $2 \ \forall a,b \in A \quad \rho(a+b) \leq \rho(a) + \rho(b);$

 ρ is submultiplicative if

3 $\forall a, b \in A$ $\rho(ab) \leq \rho(a)\rho(b)$.

The pair (A, ρ) is called a seminormed algebra. The Gelfand spectrum of (A, ρ) :

$$\mathfrak{sp}(\rho) := \{ \alpha \in \mathcal{X}(A) : \alpha \text{ is } \rho \text{-continuous} \} \\ = \{ \alpha \in \mathcal{X}(A) : |\alpha(a)| \le \rho(a) \quad \forall a \in A \}$$

A map $\rho: A \longrightarrow [0, \infty)$ is called a seminorm if

1
$$\forall a \in A \ \forall r \in \mathbb{R}$$
 $\rho(ra) = |r|\rho(a),$

 $2 \ \forall a,b \in A \quad \rho(a+b) \leq \rho(a) + \rho(b);$

 ρ is submultiplicative if

3 $\forall a, b \in A$ $\rho(ab) \leq \rho(a)\rho(b)$.

The pair (A, ρ) is called a seminormed algebra. The Gelfand spectrum of (A, ρ) :

$$\mathfrak{sp}(\rho) := \{ \alpha \in \mathcal{X}(A) : \alpha \text{ is } \rho \text{-continuous} \} \\ = \{ \alpha \in \mathcal{X}(A) : |\alpha(a)| \le \rho(a) \quad \forall a \in A \} \\ \subseteq \prod_{a \in A} [-\rho(a), \rho(a)],$$

is a compact Hausdorff space.

 $I_{\rho} := \{a \in A : \rho(a) = 0\}$ is an *ideal* of A and

$$\bar{\rho}: \bar{A} = A/I_{\rho} \quad \to \quad [0,\infty) \\ \bar{a} \quad \mapsto \quad \rho(a)$$

induces a norm on \overline{A} which admits a *completion* $(\widetilde{A}, \widetilde{\rho})$ and $\mathfrak{sp}(\rho) \sim \mathfrak{sp}(\widetilde{\rho}).$

 $I_{\rho} := \{a \in A : \rho(a) = 0\}$ is an *ideal* of A and

$$ar{o}:ar{A}=A/I_
ho ~~
ightarrow~ [0,\infty) \ ar{a} ~~
ightarrow~
ho(a)$$

induces a norm on \overline{A} which admits a *completion* $(\tilde{A}, \tilde{\rho})$ and $\mathfrak{sp}(\rho) \sim \mathfrak{sp}(\tilde{\rho}).$

Lemma

Let $(B, \|\cdot\|)$ be a Banach algebra, $a \in B$, $r > \|a\|$ and $k \ge 1$ an integer. Then there exist $b \in B$ such that $b^k = r + a$. Thus any $\sum B^{2d}$ -module is archimedean and any $\alpha \in \mathcal{X}(B)$ is continuous.

 $I_{\rho} := \{a \in A : \rho(a) = 0\}$ is an *ideal* of A and

$$ar{o}:ar{A}=A/I_
ho ~~
ightarrow~ [0,\infty) \ ar{a} ~~
ightarrow~
ho(a)$$

induces a norm on \overline{A} which admits a *completion* $(\widetilde{A}, \widetilde{\rho})$ and $\mathfrak{sp}(\rho) \sim \mathfrak{sp}(\widetilde{\rho}).$

Lemma

Let $(B, \|\cdot\|)$ be a Banach algebra, $a \in B$, $r > \|a\|$ and $k \ge 1$ an integer. Then there exist $b \in B$ such that $b^k = r + a$. Thus any $\sum B^{2d}$ -module is archimedean and any $\alpha \in \mathcal{X}(B)$ is continuous.

Proof.

The Taylor expansion of $(1 + t)^{\frac{1}{k}} = \sum_{i=0}^{\infty} \lambda_i t^i$ converges absolutely for |t| < 1. Now set $t := \frac{a}{r}$.

MAIN RESULT

Theorem 1

Let (A, ρ) be a seminormed \mathbb{R} -algebra, $d \ge 1$ an integer, $C \subseteq A$ a $\sum A^{2d}$ -module. Then

 $\overline{C}^{\rho} = \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho)).$

Proof. $C \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho)) = \bigcap_{\alpha \in \mathcal{K}_C \cap \mathfrak{sp}(\rho)} \alpha^{-1}([0,\infty))$ which is closed. Therefore $\overline{C}^{\rho} \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho))$.

Proof. $C \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho)) = \bigcap_{\alpha \in \mathcal{K}_C \cap \mathfrak{sp}(\rho)} \alpha^{-1}([0,\infty))$ which is closed. Therefore $\overline{C}^{\rho} \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho))$. For the other inclusion, set $\tilde{C} :=$ The closure of the image of C in $(\tilde{A}, \tilde{\rho})$.

Proof.

 $C \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho)) = \bigcap_{\alpha \in \mathcal{K}_C \cap \mathfrak{sp}(\rho)} \alpha^{-1}([0,\infty))$ which is closed. Therefore $\overline{C}^{\rho} \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho))$. For the other inclusion, set $\tilde{C} :=$ The closure of the image of C in $(\tilde{A}, \tilde{\rho})$. \tilde{C} is a $\sum \tilde{A}^{2d}$ -module of \tilde{A} . So \tilde{C} is Archimedean.

Proof.

 $C \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho)) = \bigcap_{\alpha \in \mathcal{K}_C \cap \mathfrak{sp}(\rho)} \alpha^{-1}([0,\infty))$ which is closed. Therefore $\overline{C}^{\rho} \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho))$. For the other inclusion, set $\tilde{C} :=$ The closure of the image of C in $(\tilde{A}, \tilde{\rho})$. \tilde{C} is a $\sum \tilde{A}^{2d}$ -module of \tilde{A} . So \tilde{C} is Archimedean.

Take $b \in \operatorname{Psd}(\mathcal{K}_{\mathbb{C}} \cap \mathfrak{sp}(\rho))$ with image \tilde{b} in \tilde{A} . For any $\alpha \in \mathcal{K}_{\tilde{\mathbb{C}}}$ we have $0 \leq \alpha(\tilde{b}) = \alpha|_A(b)$, so $\forall n \geq 1 \ \forall \alpha \in \mathcal{K}_{\tilde{\mathbb{C}}} \quad \alpha(\frac{1}{n} + \tilde{b}) > 0$.

Proof.

 $C \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho)) = \bigcap_{\alpha \in \mathcal{K}_C \cap \mathfrak{sp}(\rho)} \alpha^{-1}([0,\infty))$ which is closed. Therefore $\overline{C}^{\rho} \subseteq \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho))$. For the other inclusion, set $\tilde{C} :=$ The closure of the image of C in $(\tilde{A}, \tilde{\rho})$. \tilde{C} is a $\sum \tilde{A}^{2d}$ -module of \tilde{A} . So \tilde{C} is Archimedean.

Take $b \in \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\rho))$ with image \tilde{b} in \tilde{A} . For any $\alpha \in \mathcal{K}_{\tilde{C}}$ we have $0 \leq \alpha(\tilde{b}) = \alpha|_A(b)$, so $\forall n \geq 1 \ \forall \alpha \in \mathcal{K}_{\tilde{C}} \quad \alpha(\frac{1}{n} + \tilde{b}) > 0$. By T. Jacobi's Theorem, $\tilde{b} + \frac{1}{n} \in \tilde{C}$. Letting $n \to \infty$, $\tilde{b} \in \tilde{C}$, and hence $b \in \overline{C}^{\rho}$.

CORRESPONDING MOMENT PROBLEM

Corollary

Let $L : A \longrightarrow \mathbb{R}$ be a ρ -continuous linear functional. If $L(C) \subseteq [0, \infty)$ then there exists a unique Radon measure μ on $\mathcal{K}_C \cap \mathfrak{sp}(\rho)$ such that

$$L(a) = \int \hat{a} \, d\mu, \quad \forall a \in A.$$

LOCALLY MULTIPLICATIVELY CONVEX TOPOLOGIES

Let \mathcal{F} be a family of submultiplicative seminorms on A. The family \mathcal{F} induces a locally convex topology $\tau_{\mathcal{F}}$ on A such that $(A, \tau_{\mathcal{F}})$ is a topological algebra.

LOCALLY MULTIPLICATIVELY CONVEX TOPOLOGIES

Let \mathcal{F} be a family of submultiplicative seminorms on A. The family \mathcal{F} induces a locally convex topology $\tau_{\mathcal{F}}$ on A such that $(A, \tau_{\mathcal{F}})$ is a topological algebra.

A topology τ is said to be *locally multiplicatively convex (lmc)* if $\tau = \tau_{\mathcal{F}}$ for some family \mathcal{F} of submultiplicative seminorms on A.

LOCALLY MULTIPLICATIVELY CONVEX TOPOLOGIES

Let \mathcal{F} be a family of submultiplicative seminorms on A. The family \mathcal{F} induces a locally convex topology $\tau_{\mathcal{F}}$ on A such that $(A, \tau_{\mathcal{F}})$ is a topological algebra.

A topology τ is said to be *locally multiplicatively convex (lmc)* if $\tau = \tau_{\mathcal{F}}$ for some family \mathcal{F} of submultiplicative seminorms on A.

Proposition

If \mathcal{F} is saturated then $\mathfrak{sp}(\tau_{\mathcal{F}}) = \bigcup_{\rho \in \mathcal{F}} \mathfrak{sp}(\rho)$.

CLOSURES AND MOMENTS IN LMC TOPOLOGIES

Theorem 2

Let τ be an lmc topology on $A, d \ge 1$ an integer, C a $\sum A^{2d}$ -module. Then

$$\overline{C}^{\tau} = \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\tau)).$$

CLOSURES AND MOMENTS IN LMC TOPOLOGIES

Theorem 2

Let τ be an lmc topology on $A, d \ge 1$ an integer, C a $\sum A^{2d}$ -module. Then

$$\overline{C}^{\tau} = \operatorname{Psd}(\mathcal{K}_C \cap \mathfrak{sp}(\tau)).$$

Corollary

Let $L : A \longrightarrow \mathbb{R}$ be a τ -continuous functional with $L(C) \subseteq [0, \infty)$. Then there exists a unique Radon measure μ on $\mathcal{K}_C \cap \mathfrak{sp}(\tau)$ such that

$$L(a) = \int \hat{a} \, d\mu, \quad \forall a \in A.$$

SCHMÜDGEN'S RESULT

Schmüdgen, 1978

Let η be the finest lmc topology on A and $d \ge 1$. Then

$$\overline{\sum A^{2d}}^{\eta} = \operatorname{Psd}(\mathcal{X}(A)).$$

Involutive \mathbb{C} -algebras

Let $(A,\rho,*)$ be a seminormed $\mathbb{C}\text{-algebra}$ equipped with an involution *.

Involutive \mathbb{C} -algebras

Let $(A, \rho, *)$ be a seminormed \mathbb{C} -algebra equipped with an involution *.

- ► $\mathcal{X}_*(A) := \{ \alpha : A \longrightarrow \mathbb{C} : \alpha \text{ is a *-algebra homomorphism} \},$
- ▶ $\mathfrak{sp}_*(\rho) := \{ \alpha \in \mathcal{X}_*(A) : \alpha \text{ is } \rho \text{-continuous} \},\$

►
$$H(A) := \{a \in A : a^* = a\}.$$

INVOLUTIVE \mathbb{C} -ALGEBRAS

Let $(A, \rho, *)$ be a seminormed \mathbb{C} -algebra equipped with an involution *.

- $\blacktriangleright \ \mathcal{X}_*(A) := \{ \alpha : A \longrightarrow \mathbb{C} \ : \ \alpha \text{ is a *-algebra homomorphism} \},$
- ▶ $\mathfrak{sp}_*(\rho) := \{ \alpha \in \mathcal{X}_*(A) : \alpha \text{ is } \rho \text{-continuous} \},\$

•
$$H(A) := \{a \in A : a^* = a\}$$

Corollary

Let $C \subseteq H(A)$ be a $\sum H(A)^{2d}$ -module of H(A). Let $L : A \longrightarrow \mathbb{C}$ be a ρ -continuous *-functional such that $L(C) \subseteq [0, \infty)$. Then there exists a unique Radon measure μ on $\mathcal{K}_C \cap \mathfrak{sp}_*(\rho)$ such that

$$L(a) = \int \hat{a} \, d\mu, \quad \forall a \in A.$$

BERG-MASERICK

Let (S, 1, *) be a commutative unitary *-semigroup. An *absolute value* on *S* is a map $\phi : S \longrightarrow [0, \infty)$ such that

- 1. $\phi(1) \ge 1$,
- 2. $\forall s, t \in S, \phi(st) \le \phi(s)\phi(t)$,
- 3. $\forall s \in S \quad \phi(s^*) = \phi(s).$

BERG-MASERICK

Let (S, 1, *) be a commutative unitary *-semigroup. An *absolute value* on *S* is a map $\phi : S \longrightarrow [0, \infty)$ such that

- 1. $\phi(1) \ge 1$,
- 2. $\forall s, t \in S, \phi(st) \le \phi(s)\phi(t)$,
- 3. $\forall s \in S \quad \phi(s^*) = \phi(s).$

The map $\|\cdot\|_{\phi}$ on $\mathbb{C}[S]$ defined by $\|\sum_{s} f_{s} s\|_{\phi} = \sum_{s} |f_{s}|\phi(s)$ is a submultiplicative seminorm on $\mathbb{C}[S]$.

BERG-MASERICK

Let (S, 1, *) be a commutative unitary *-semigroup. An *absolute value* on *S* is a map $\phi : S \longrightarrow [0, \infty)$ such that

- 1. $\phi(1) \ge 1$,
- 2. $\forall s, t \in S, \phi(st) \le \phi(s)\phi(t)$,
- 3. $\forall s \in S \quad \phi(s^*) = \phi(s).$

The map $\|\cdot\|_{\phi}$ on $\mathbb{C}[S]$ defined by $\|\sum_{s} f_{s} s\|_{\phi} = \sum_{s} |f_{s}|\phi(s)$ is a submultiplicative seminorm on $\mathbb{C}[S]$.

Berg-Maserick, 1984

If $L : \mathbb{C}[S] \longrightarrow \mathbb{C}$ is an *-functional such that $L(\sum H(\mathbb{C}[S])^{2d}) \subseteq [0, \infty)$ and $\exists c > 0 \forall s \in S \ |L(s)| \le c\phi(s)$. Then there exists a unique Radon measure μ on $\mathfrak{sp}_*(\|\cdot\|_{\phi})$ such that $L(f) = \int \hat{f} d\mu \quad \forall f \in \mathbb{C}[S].$

Thank you