Talk at MTNS 2016, University of Minnesota, Minneapolis, USA by Salma Kuhlmann, Universität Konstanz, Germany

Moment problem for symmetric algebras of locally convex spaces

July 14, 2016

THE MOMENT PROBLEM

Let $A := \mathbb{R}[\underline{X}] := \mathbb{R}[x_1, \dots, x_n]$ be the algebra of polynomials in n variables with real coefficients and $L : A \longrightarrow \mathbb{R}$ a real valued linear functional.

THE MOMENT PROBLEM

Let $A := \mathbb{R}[\underline{X}] := \mathbb{R}[x_1, \dots, x_n]$ be the algebra of polynomials in n variables with real coefficients and $L : A \longrightarrow \mathbb{R}$ a real valued linear functional.

The multidimensional moment problem

When is *L* representable as an integral with respect to a positive Radon measure μ on \mathbb{R}^n , i.e.

$$L(f) = \int f \, d\mu, \quad \forall f \in \mathbb{R}[\underline{X}],$$

and what is the support of μ ?

We study this problem in the following more general set up.

We study this problem in the following more general set up.

Let *A* be a commutative ring with 1 which is an \mathbb{R} -algebra. *X*(*A*) denotes the character space of *A*, i.e., the set of all ring homomorphisms (that send 1 to 1) $\alpha : A \to \mathbb{R}$.

We study this problem in the following more general set up.

Let *A* be a commutative ring with 1 which is an \mathbb{R} -algebra. *X*(*A*) denotes the character space of *A*, i.e., the set of all ring homomorphisms (that send 1 to 1) $\alpha : A \to \mathbb{R}$.

To every $a \in A$ we associate a map

$$\begin{array}{rccc} \hat{a}: X(A) & \to & \mathbb{R} \\ \alpha & \mapsto & \alpha(a) \end{array}$$

We study this problem in the following more general set up.

Let *A* be a commutative ring with 1 which is an \mathbb{R} -algebra. *X*(*A*) denotes the character space of *A*, i.e., the set of all ring homomorphisms (that send 1 to 1) $\alpha : A \to \mathbb{R}$.

To every $a \in A$ we associate a map

$$\begin{array}{rccc} \hat{a}: X(A) & \to & \mathbb{R} \\ \alpha & \mapsto & \alpha(a) \end{array}$$

X(A) is given the weakest topology such that the functions \hat{a} , $a \in A$ are continuous.

- Fix $d \ge 1$. A subset $M \subseteq A$ is a 2d-power module if:
 - *M* is a cone:

 $0, 1 \in M$, $M + M \subseteq M$ and $[0, \infty) \cdot M \subseteq M$.

- Fix $d \ge 1$. A subset $M \subseteq A$ is a 2d-power module if:
 - ► *M* is a cone:

 $0, 1 \in M$, $M + M \subseteq M$ and $[0, \infty) \cdot M \subseteq M$.

 $\blacktriangleright \quad \forall f \in A \quad f^{2d}M \subseteq M.$

A 2d-power module *T* with $T \cdot T \subseteq T$ is called a 2d-power preordering.

- Fix $d \ge 1$. A subset $M \subseteq A$ is a 2d-power module if:
 - ► *M* is a cone:

 $0, 1 \in M$, $M + M \subseteq M$ and $[0, \infty) \cdot M \subseteq M$.

- A 2d-power module *T* with $T \cdot T \subseteq T$ is called a 2d-power preordering.
- We denote by $\sum A^{2d}$ the set of all finite sums $\sum a_i^{2d}$, $a_i \in A$.

- Fix $d \ge 1$. A subset $M \subseteq A$ is a 2d-power module if:
 - ► *M* is a cone:

 $0, 1 \in M$, $M + M \subseteq M$ and $[0, \infty) \cdot M \subseteq M$.

- A 2d-power module *T* with $T \cdot T \subseteq T$ is called a 2d-power preordering.
- We denote by $\sum A^{2d}$ the set of all finite sums $\sum a_i^{2d}$, $a_i \in A$.
- $\sum A^{2d}$ is the unique smallest 2*d*-power module of *A*.

- Fix $d \ge 1$. A subset $M \subseteq A$ is a 2d-power module if:
 - ► *M* is a cone:

 $0, 1 \in M, \quad M + M \subseteq M \text{ and } [0, \infty) \cdot M \subseteq M.$

- A 2d-power module *T* with $T \cdot T \subseteq T$ is called a 2d-power preordering.
- We denote by $\sum A^{2d}$ the set of all finite sums $\sum a_i^{2d}$, $a_i \in A$.
- $\sum A^{2d}$ is the unique smallest 2*d*-power module of *A*.
- $\sum A^{2d}$ is closed under multiplication, so $\sum A^{2d}$ is also the unique smallest 2*d*-power preordering of *A*.
- A linear functional $L : A \to \mathbb{R}$ is said to be positive if $L(\sum A^{2d}) \subseteq [0, \infty)$.

The moment problem in this general setting is to understand this set of measures, for a given linear functional $L : A \to \mathbb{R}$.

The moment problem in this general setting is to understand this set of measures, for a given linear functional $L : A \to \mathbb{R}$. In particular, one wants to know if this set is non-empty and in case it is non-empty, when it is a singleton set.

The moment problem in this general setting is to understand this set of measures, for a given linear functional $L : A \to \mathbb{R}$. In particular, one wants to know if this set is non-empty and in case it is non-empty, when it is a singleton set.

We note that the moment problem for $\mathbb{R}[\underline{x}]$ is a special case. Indeed, ring homomorphisms from $\mathbb{R}[\underline{x}]$ to \mathbb{R} correspond to point evaluations $f \mapsto f(\alpha), \alpha \in \mathbb{R}^n$ and $X(\mathbb{R}[\underline{x}])$ is identified (as a topological space) with \mathbb{R}^n .

A map $\rho : A \longrightarrow [0, \infty)$ is called a seminorm if 1 $\forall a \in A \ \forall r \in \mathbb{R} \quad \rho(ra) = |r|\rho(a),$ 2 $\forall a, b \in A \quad \rho(a+b) \le \rho(a) + \rho(b);$

A map $\rho : A \longrightarrow [0, \infty)$ is called a seminorm if 1 $\forall a \in A \ \forall r \in \mathbb{R} \quad \rho(ra) = |r|\rho(a),$ 2 $\forall a, b \in A \quad \rho(a+b) \le \rho(a) + \rho(b);$ a is submultiplicative if

 ρ is submultiplicative if

3 $\forall a, b \in A$ $\rho(ab) \leq \rho(a)\rho(b)$.

The pair (A, ρ) is called a seminormed algebra.

A map $\rho : A \longrightarrow [0, \infty)$ is called a seminorm if 1 $\forall a \in A \ \forall r \in \mathbb{R}$ $\rho(ra) = |r|\rho(a),$

2 $\forall a, b \in A$ $\rho(a+b) \leq \rho(a) + \rho(b);$

 ρ is submultiplicative if

3 $\forall a, b \in A$ $\rho(ab) \leq \rho(a)\rho(b)$.

The pair (A, ρ) is called a seminormed algebra. The Gelfand spectrum of (A, ρ) :

 $\mathfrak{sp}(\rho) := \{ \alpha \in X(A) : \alpha \text{ is } \rho \text{-continuous} \}$

A map $\rho : A \longrightarrow [0, \infty)$ is called a seminorm if

1
$$\forall a \in A \ \forall r \in \mathbb{R} \quad \rho(ra) = |r|\rho(a),$$

2 $\forall a, b \in A$ $\rho(a+b) \leq \rho(a) + \rho(b);$

 ρ is submultiplicative if

3 $\forall a, b \in A$ $\rho(ab) \leq \rho(a)\rho(b)$.

The pair (A, ρ) is called a seminormed algebra. The Gelfand spectrum of (A, ρ) :

$$\mathfrak{sp}(\rho) := \{ \alpha \in X(A) : \alpha \text{ is } \rho \text{-continuous} \} \\ = \{ \alpha \in X(A) : |\alpha(a)| \le \rho(a) \quad \forall a \in A \}$$

A map $\rho: A \longrightarrow [0,\infty)$ is called a seminorm if

1
$$\forall a \in A \ \forall r \in \mathbb{R}$$
 $\rho(ra) = |r|\rho(a),$

2 $\forall a, b \in A$ $\rho(a+b) \leq \rho(a) + \rho(b);$

 ρ is submultiplicative if

3 $\forall a, b \in A$ $\rho(ab) \leq \rho(a)\rho(b)$.

The pair (A, ρ) is called a seminormed algebra. The Gelfand spectrum of (A, ρ) :

$$\mathfrak{sp}(\rho) := \{ \alpha \in X(A) : \alpha \text{ is } \rho \text{-continuous} \} \\ = \{ \alpha \in X(A) : |\alpha(a)| \le \rho(a) \quad \forall a \in A \} \\ \subseteq \prod_{a \in A} [-\rho(a), \rho(a)], \end{cases}$$

is a compact Hausdorff space.

Let \mathcal{F} be a family of submultiplicative seminorms on A. The family \mathcal{F} induces a locally convex topology $\tau_{\mathcal{F}}$ on A such that $(A, \tau_{\mathcal{F}})$ is a topological algebra.

Let \mathcal{F} be a family of submultiplicative seminorms on A. The family \mathcal{F} induces a locally convex topology $\tau_{\mathcal{F}}$ on A such that $(A, \tau_{\mathcal{F}})$ is a topological algebra.

A topology τ is said to be *locally multiplicatively convex (lmc)* if $\tau = \tau_{\mathcal{F}}$ for some family \mathcal{F} of submultiplicative seminorms on A.

Let \mathcal{F} be a family of submultiplicative seminorms on A. The family \mathcal{F} induces a locally convex topology $\tau_{\mathcal{F}}$ on A such that $(A, \tau_{\mathcal{F}})$ is a topological algebra.

A topology τ is said to be *locally multiplicatively convex (lmc)* if $\tau = \tau_{\mathcal{F}}$ for some family \mathcal{F} of submultiplicative seminorms on A. Wlog we assume that the family \mathcal{S} is directed, i.e., $\forall \rho_1, \rho_2 \in \mathcal{S}, \exists \rho \in \mathcal{S}$ such that $\rho \succeq \max\{\rho_1, \rho_2\}$.

Let \mathcal{F} be a family of submultiplicative seminorms on A. The family \mathcal{F} induces a locally convex topology $\tau_{\mathcal{F}}$ on A such that $(A, \tau_{\mathcal{F}})$ is a topological algebra.

A topology τ is said to be *locally multiplicatively convex (lmc)* if $\tau = \tau_{\mathcal{F}}$ for some family \mathcal{F} of submultiplicative seminorms on A. Wlog we assume that the family \mathcal{S} is directed, i.e., $\forall \rho_1, \rho_2 \in \mathcal{S}, \exists \rho \in \mathcal{S}$ such that $\rho \succeq \max{\rho_1, \rho_2}$.

With this assumption, the open balls

$$U_r(\rho) := \{ v \in V : \rho(v) < r \}, \ \rho \in S, \ r > 0$$

form a basis of neighbourhoods of zero (not just a subbasis).

Proposition

Suppose τ is a locally convex topology generated by a directed family \mathcal{F} of seminorms and L is a τ -continuous linear functional. Then there exists $\rho \in \mathcal{F}$ such that L is ρ -continuous (and conversely, of course).

Proposition

Suppose τ is a locally convex topology generated by a directed family \mathcal{F} of seminorms and L is a τ -continuous linear functional. Then there exists $\rho \in \mathcal{F}$ such that L is ρ -continuous (and conversely, of course).

Corollary

If \mathcal{F} is directed then $\mathfrak{sp}(\tau_{\mathcal{F}}) = \bigcup_{\rho \in \mathcal{F}} \mathfrak{sp}(\rho)$.

Theorem

For each submultiplicative seminorm ρ on A and each integer $d \ge 1$ there is a natural one-to-one correspondence $L \leftrightarrow \mu$ given by $L(a) = \int \hat{a}d\mu \,\forall \, a \in A$ between ρ -continuous, positive linear functionals $L : A \to \mathbb{R}$ and positive Radon measures μ on X(A) supported by $\mathfrak{sp}(\rho)$.

Theorem

For each submultiplicative seminorm ρ on A and each integer $d \ge 1$ there is a natural one-to-one correspondence $L \leftrightarrow \mu$ given by $L(a) = \int \hat{a}d\mu \,\forall \, a \in A$ between ρ -continuous, positive linear functionals $L : A \to \mathbb{R}$ and positive Radon measures μ on X(A) supported by $\mathfrak{sp}(\rho)$.

The theorem extends to general LMC topologies. By the Proposition above, the unique Radon measure μ corresponding to a τ -continuous, positive linear functional $L : A \to \mathbb{R}$ is supported by the compact set $\mathfrak{sp}(\rho)$ for some $\rho \in \mathcal{F}$.

Theorem

For each submultiplicative seminorm ρ on A and each integer $d \ge 1$ there is a natural one-to-one correspondence $L \leftrightarrow \mu$ given by $L(a) = \int \hat{a}d\mu \,\forall \, a \in A$ between ρ -continuous, positive linear functionals $L : A \to \mathbb{R}$ and positive Radon measures μ on X(A) supported by $\mathfrak{sp}(\rho)$.

The theorem extends to general LMC topologies. By the Proposition above, the unique Radon measure μ corresponding to a τ -continuous, positive linear functional $L : A \to \mathbb{R}$ is supported by the compact set $\mathfrak{sp}(\rho)$ for some $\rho \in \mathcal{F}$.

The results apply in some interesting cases. We now study the main application in [GIKM, submitted 2015].

Let *V* be an \mathbb{R} -vector space. We denote by *S*(*V*) the symmetric algebra of *V*, i.e., the tensor algebra *T*(*V*) factored by the ideal generated by the elements $v \otimes w - w \otimes v$, $v, w \in V$.

Let *V* be an \mathbb{R} -vector space. We denote by *S*(*V*) the symmetric algebra of *V*, i.e., the tensor algebra *T*(*V*) factored by the ideal generated by the elements $v \otimes w - w \otimes v$, $v, w \in V$.

If we fix a basis x_i , $i \in \Omega$ of V, then S(V) is identified with the polynomial ring $\mathbb{R}[x_i : i \in \Omega]$, i.e., the free \mathbb{R} -algebra in commuting variables x_i , $i \in \Omega$.

Let *V* be an \mathbb{R} -vector space. We denote by *S*(*V*) the symmetric algebra of *V*, i.e., the tensor algebra *T*(*V*) factored by the ideal generated by the elements $v \otimes w - w \otimes v$, $v, w \in V$.

If we fix a basis x_i , $i \in \Omega$ of V, then S(V) is identified with the polynomial ring $\mathbb{R}[x_i : i \in \Omega]$, i.e., the free \mathbb{R} -algebra in commuting variables x_i , $i \in \Omega$. The algebra S(V) is a graded. Denote by $S(V)_k$ the *k*-th homogeneous part of S(V), $k \ge 0$, i.e., the image of *k*-th homogeneous part $V^{\otimes k}$ of T(V) under the canonical map

$$\sum_{i=1}^n f_{i1} \otimes \cdots \otimes f_{ik} \mapsto \sum_{i=1}^n f_{i1} \cdots f_{ik}.$$

Let *V* be an \mathbb{R} -vector space. We denote by *S*(*V*) the symmetric algebra of *V*, i.e., the tensor algebra *T*(*V*) factored by the ideal generated by the elements $v \otimes w - w \otimes v$, $v, w \in V$.

If we fix a basis x_i , $i \in \Omega$ of V, then S(V) is identified with the polynomial ring $\mathbb{R}[x_i : i \in \Omega]$, i.e., the free \mathbb{R} -algebra in commuting variables x_i , $i \in \Omega$. The algebra S(V) is a graded. Denote by $S(V)_k$ the *k*-th homogeneous part of S(V), $k \ge 0$, i.e., the image of *k*-th homogeneous part $V^{\otimes k}$ of T(V) under the canonical map

$$\sum_{i=1}^n f_{i1} \otimes \cdots \otimes f_{ik} \mapsto \sum_{i=1}^n f_{i1} \cdots f_{ik}.$$

Here, $f_{ij} \in V$ for $i = 1, \ldots, n, j = 1, \ldots, k$ and $n \ge 1$.

BACKGROUND: THE SYMMETRIC ALGEBRA

Let *V* be an \mathbb{R} -vector space. We denote by *S*(*V*) the symmetric algebra of *V*, i.e., the tensor algebra *T*(*V*) factored by the ideal generated by the elements $v \otimes w - w \otimes v$, $v, w \in V$.

If we fix a basis x_i , $i \in \Omega$ of V, then S(V) is identified with the polynomial ring $\mathbb{R}[x_i : i \in \Omega]$, i.e., the free \mathbb{R} -algebra in commuting variables x_i , $i \in \Omega$. The algebra S(V) is a graded. Denote by $S(V)_k$ the *k*-th homogeneous part of S(V), $k \ge 0$, i.e., the image of *k*-th homogeneous part $V^{\otimes k}$ of T(V) under the canonical map

$$\sum_{i=1}^n f_{i1} \otimes \cdots \otimes f_{ik} \mapsto \sum_{i=1}^n f_{i1} \cdots f_{ik}.$$

Here, $f_{ij} \in V$ for i = 1, ..., n, j = 1, ..., k and $n \ge 1$. Note that $S(V)_0 = \mathbb{R}$ and $S(V)_1 = V$.

Suppose (V_i, ρ_i) are seminormed \mathbb{R} -vector spaces, i = 1, 2. The tensor seminorm $\rho_1 \otimes \rho_2$ on $V_1 \otimes V_2$ is defined by

$$(\rho_1 \otimes \rho_2)(f) := \inf\{\sum_{i=1}^n \rho_1(f_{i1})\rho_2(f_{i2}) : f = \sum_{i=1}^n f_{i1} \otimes f_{i2}, f_{ij} \in V_j, n \ge 1\}.$$

Suppose (V_i, ρ_i) are seminormed \mathbb{R} -vector spaces, i = 1, 2. The tensor seminorm $\rho_1 \otimes \rho_2$ on $V_1 \otimes V_2$ is defined by

$$(\rho_1 \otimes \rho_2)(f) := \inf\{\sum_{i=1}^n \rho_1(f_{i1})\rho_2(f_{i2}) : f = \sum_{i=1}^n f_{i1} \otimes f_{i2}, f_{ij} \in V_j, n \ge 1\}.$$

If (V_i, ρ_i) are seminormed \mathbb{R} -vector spaces, i = 1, ..., k, then $\rho_1 \otimes \cdots \otimes \rho_k$ is defined recursively, i.e.,

$$(\rho_1 \otimes \cdots \otimes \rho_k)(f) := \inf\{\sum_{i=1}^n \rho_1(f_{i1}) \cdots \rho_k(f_{ik}) : f = \sum_{i=1}^n f_{i1} \otimes \cdots \otimes f_{ik}, f_{ij} \in V_j, n \ge 1\}$$

Suppose (V_i, ρ_i) are seminormed \mathbb{R} -vector spaces, i = 1, 2. The tensor seminorm $\rho_1 \otimes \rho_2$ on $V_1 \otimes V_2$ is defined by

$$(\rho_1 \otimes \rho_2)(f) := \inf\{\sum_{i=1}^n \rho_1(f_{i1})\rho_2(f_{i2}) : f = \sum_{i=1}^n f_{i1} \otimes f_{i2}, f_{ij} \in V_j, n \ge 1\}.$$

If (V_i, ρ_i) are seminormed \mathbb{R} -vector spaces, i = 1, ..., k, then $\rho_1 \otimes \cdots \otimes \rho_k$ is defined recursively, i.e.,

$$(\rho_1 \otimes \cdots \otimes \rho_k)(f) := \inf\{\sum_{i=1}^n \rho_1(f_{i1}) \cdots \rho_k(f_{ik}) : f = \sum_{i=1}^n f_{i1} \otimes \cdots \otimes f_{ik}, f_{ij} \in V_j, n \ge 1\}$$

If all the (V_i, ρ_i) are equal, say $(V_i, \rho_i) = (V, \rho)$, i = 1, ..., k, the associated tensor seminorm $\rho_1 \otimes \cdots \otimes \rho_k$ on $V^{\otimes k}$ is denoted $\rho^{\otimes k}$.

Below $\pi_k : V^{\otimes k} \to S(V)_k$ denotes the canonical map.

Below $\pi_k : V^{\otimes k} \to S(V)_k$ denotes the canonical map.

Now let ρ is a seminorm on *V*.

Below $\pi_k : V^{\otimes k} \to S(V)_k$ denotes the canonical map.

Now let ρ is a seminorm on V. For $k \ge 1$ define $\overline{\rho}_k$ to be the quotient seminorm on $S(V)_k$ induced by $\rho^{\otimes k}$ via π_k , i.e.,

Below $\pi_k : V^{\otimes k} \to S(V)_k$ denotes the canonical map.

Now let ρ is a seminorm on V. For $k \ge 1$ define $\overline{\rho}_k$ to be the quotient seminorm on $S(V)_k$ induced by $\rho^{\otimes k}$ via π_k , i.e.,

$$\overline{\rho}_{k}(f) := \inf\{\rho^{\otimes k}(g) : g \in V^{\otimes k}, \ \pi_{k}(g) = f\} \\= \inf\{\sum_{i=1}^{n} \rho(f_{i1}) \cdots \rho(f_{ik}) : f = \sum_{i=1}^{n} f_{i1} \cdots f_{ik}, f_{ij} \in V, n \ge 1\}.$$

Below $\pi_k : V^{\otimes k} \to S(V)_k$ denotes the canonical map.

Now let ρ is a seminorm on V. For $k \ge 1$ define $\overline{\rho}_k$ to be the quotient seminorm on $S(V)_k$ induced by $\rho^{\otimes k}$ via π_k , i.e.,

$$\overline{\rho}_{k}(f) := \inf\{\rho^{\otimes k}(g) : g \in V^{\otimes k}, \ \pi_{k}(g) = f\} \\= \inf\{\sum_{i=1}^{n} \rho(f_{i1}) \cdots \rho(f_{ik}) : f = \sum_{i=1}^{n} f_{i1} \cdots f_{ik}, f_{ij} \in V, n \ge 1\}.$$

Define $\overline{\rho}_0$ to be the usual absolute value on \mathbb{R} .

Below $\pi_k : V^{\otimes k} \to S(V)_k$ denotes the canonical map.

Now let ρ is a seminorm on V. For $k \ge 1$ define $\overline{\rho}_k$ to be the quotient seminorm on $S(V)_k$ induced by $\rho^{\otimes k}$ via π_k , i.e.,

$$\overline{\rho}_{k}(f) := \inf\{\rho^{\otimes k}(g) : g \in V^{\otimes k}, \ \pi_{k}(g) = f\} \\= \inf\{\sum_{i=1}^{n} \rho(f_{i1}) \cdots \rho(f_{ik}) : f = \sum_{i=1}^{n} f_{i1} \cdots f_{ik}, f_{ij} \in V, n \ge 1\}.$$

Define $\overline{\rho}_0$ to be the usual absolute value on \mathbb{R} .

Proposition

Let
$$f \in S(V)_i$$
, $g \in S(V)_j$, then $\overline{\rho}_{i+j}(fg) \le \overline{\rho}_i(f)\overline{\rho}_j(g)$.

We now extend ρ to a $\overline{\rho}$ on S(V) as follows: For $f = f_0 + \cdots + f_\ell$, $f_k \in S(V)_k$, $k = 0, \ldots, \ell$, define

$$\overline{\rho}(f) := \sum_{k=0}^{\ell} \overline{\rho}_k(f_k).$$

We refer to $\overline{\rho}$ as the projective extension of ρ to S(V).

Corollary

 $\overline{\rho}$ is a submultiplicative seminorm on S(V) extending the seminorm ρ on V.

We now extend ρ to a $\overline{\rho}$ on S(V) as follows: For $f = f_0 + \cdots + f_\ell$, $f_k \in S(V)_k$, $k = 0, \ldots, \ell$, define

$$\overline{\rho}(f) := \sum_{k=0}^{\ell} \overline{\rho}_k(f_k).$$

We refer to $\overline{\rho}$ as the projective extension of ρ to S(V).

Corollary

 $\overline{\rho}$ is a submultiplicative seminorm on S(V) extending the seminorm ρ on V.

We are now in a position to apply [GKM 2014]. We still need to determine explicitly the character space and the Gelfand spectrum.

S(V) is characterized by the following universal property:

S(V) is characterized by the following universal property: For each \mathbb{R} -linear map $\pi : V \to A$, where A is an \mathbb{R} -algebra (commutative with 1), there exists a unique \mathbb{R} -algebra homomorphism $\overline{\pi} : S(V) \to A$ extending π .

S(V) is characterized by the following universal property: For each \mathbb{R} -linear map $\pi : V \to A$, where A is an \mathbb{R} -algebra (commutative with 1), there exists a unique \mathbb{R} -algebra homomorphism $\overline{\pi} : S(V) \to A$ extending π .

Suppose now that *A* is an \mathbb{R} -algebra equipped with σ and $\pi : V \to A$ is \mathbb{R} -linear and continuous w.r.t. ρ and σ , i.e.there is C > 0 such that $\sigma(\pi(f)) \leq C\rho(f) \forall f \in V$.

S(V) is characterized by the following universal property: For each \mathbb{R} -linear map $\pi : V \to A$, where A is an \mathbb{R} -algebra (commutative with 1), there exists a unique \mathbb{R} -algebra homomorphism $\overline{\pi} : S(V) \to A$ extending π .

Suppose now that *A* is an \mathbb{R} -algebra equipped with σ and $\pi : V \to A$ is \mathbb{R} -linear and continuous w.r.t. ρ and σ , i.e.there is C > 0 such that $\sigma(\pi(f)) \leq C\rho(f) \ \forall f \in V$. It follows that: $\sigma(\overline{\pi}(f)) \leq C^k \overline{\rho}_k(f) \ \forall f \in S(V)_k$.

S(V) is characterized by the following universal property: For each \mathbb{R} -linear map $\pi : V \to A$, where A is an \mathbb{R} -algebra (commutative with 1), there exists a unique \mathbb{R} -algebra homomorphism $\overline{\pi} : S(V) \to A$ extending π .

Suppose now that *A* is an \mathbb{R} -algebra equipped with σ and $\pi : V \to A$ is \mathbb{R} -linear and continuous w.r.t. ρ and σ , i.e.there is C > 0 such that $\sigma(\pi(f)) \leq C\rho(f) \forall f \in V$. It follows that: $\sigma(\overline{\pi}(f)) \leq C^k \overline{\rho}_k(f) \forall f \in S(V)_k$. Therefore if the operator norm of π with respect to ρ and σ is ≤ 1 (i.e., if one can choose $C \leq 1$) then $\overline{\pi}$ is continuous with respect to $\overline{\rho}$ and σ .

S(V) is characterized by the following universal property: For each \mathbb{R} -linear map $\pi : V \to A$, where A is an \mathbb{R} -algebra (commutative with 1), there exists a unique \mathbb{R} -algebra homomorphism $\overline{\pi} : S(V) \to A$ extending π .

Suppose now that *A* is an \mathbb{R} -algebra equipped with σ and $\pi : V \to A$ is \mathbb{R} -linear and continuous w.r.t. ρ and σ , i.e.there is C > 0 such that $\sigma(\pi(f)) \leq C\rho(f) \forall f \in V$. It follows that: $\sigma(\overline{\pi}(f)) \leq C^k \overline{\rho}_k(f) \forall f \in S(V)_k$. Therefore if the operator norm of π with respect to ρ and σ is ≤ 1 (i.e., if one can choose $C \leq 1$) then $\overline{\pi}$ is continuous with respect to $\overline{\rho}$ and σ .

Proposition

If $\pi : (V, \rho) \to (A, \sigma)$ has operator norm ≤ 1 , then the induced algebra homomorphism $\overline{\pi} : (S(V), \overline{\rho}) \to (A, \sigma)$ has operator norm $\leq \sigma(1)$.

The character space X(S(V)) of S(V) can be identified with the algebraic dual $V^* = \text{Hom}(V, \mathbb{R})$ of V

The character space X(S(V)) of S(V) can be identified with the algebraic dual $V^* = \text{Hom}(V, \mathbb{R})$ of V by identifying $\alpha \in X(S(V))$ with $v^* \in V^*$ if $\alpha = \overline{v^*}$, equivalently, if $v^* = \alpha|_V$.

The character space X(S(V)) of S(V) can be identified with the algebraic dual $V^* = \text{Hom}(V, \mathbb{R})$ of V by identifying $\alpha \in X(S(V))$ with $v^* \in V^*$ if $\alpha = \overline{v^*}$, equivalently, if $v^* = \alpha|_V$. The topology on V^* is the weak topology, i.e., the weakest topology such that $v^* \in V^* \mapsto v^*(f) \in \mathbb{R}$ is continuous $\forall f \in V$.

The character space X(S(V)) of S(V) can be identified with the algebraic dual $V^* = \text{Hom}(V, \mathbb{R})$ of V by identifying $\alpha \in X(S(V))$ with $v^* \in V^*$ if $\alpha = \overline{v^*}$, equivalently, if $v^* = \alpha|_V$. The topology on V^* is the weak topology, i.e., the weakest topology such that $v^* \in V^* \mapsto v^*(f) \in \mathbb{R}$ is continuous $\forall f \in V$. If we fix a basis $x_i, i \in \Omega$ for V, then S(V) is equal to the polynomial ring $\mathbb{R}[x_i : i \in \Omega], V^* = \mathbb{R}^{\Omega}$ endowed with the product topology, and the ring homomorphism $\alpha : S(V) \to \mathbb{R}$ corresponding to $v^* \in V^*$ is evaluation at v^* .

The character space X(S(V)) of S(V) can be identified with the algebraic dual $V^* = \text{Hom}(V, \mathbb{R})$ of V by identifying $\alpha \in X(S(V))$ with $v^* \in V^*$ if $\alpha = \overline{v^*}$, equivalently, if $v^* = \alpha|_V$. The topology on V^* is the weak topology, i.e., the weakest topology such that $v^* \in V^* \mapsto v^*(f) \in \mathbb{R}$ is continuous $\forall f \in V$. If we fix a basis $x_i, i \in \Omega$ for V, then S(V) is equal to the polynomial ring $\mathbb{R}[x_i : i \in \Omega], V^* = \mathbb{R}^{\Omega}$ endowed with the product topology, and the ring homomorphism $\alpha : S(V) \to \mathbb{R}$ corresponding to $v^* \in V^*$ is evaluation at v^* . We now determine the Gelfand spectrum $\mathfrak{sp}(\overline{\rho})$.

Proposition

 $\mathfrak{sp}(\overline{\rho})$ is naturally identified with the closed ball $\overline{B}_1(\rho')$. Here ρ' denotes the operator norm on V^* , i.e., $\rho'(v^*) := \inf\{C \in [0,\infty) : |v^*(w)| \le C\rho(w) \ \forall w \in V\}.$

THE MOMENT PROBLEM

Main Corollary I

For each seminormed \mathbb{R} -vector space (V, ρ) and each integer $d \geq 1$ there is a natural one-to-one correspondence $L \leftrightarrow \mu$ given by $L(f) = \int \hat{f} d\mu \ \forall f \in S(V)$ between $\overline{\rho}$ -continuous, positive linear functionals $L : S(V) \to \mathbb{R}$ and positive Radon measures μ on V^* supported by $\overline{B}_1(\rho')$.

THE MOMENT PROBLEM

Main Corollary I

For each seminormed \mathbb{R} -vector space (V, ρ) and each integer $d \geq 1$ there is a natural one-to-one correspondence $L \leftrightarrow \mu$ given by $L(f) = \int \hat{f} d\mu \,\forall f \in S(V)$ between $\overline{\rho}$ -continuous, positive linear functionals $L : S(V) \rightarrow \mathbb{R}$ and positive Radon measures μ on V^* supported by $\overline{B}_1(\rho')$.

Main Corollary II

Let τ be the locally convex topology on an \mathbb{R} -vector space V defined by a directed family S of seminorms on V. For each integer $d \ge 1$ there is a natural one-to-one correspondence $L \leftrightarrow \mu$ given by $L(f) = \int \hat{f} d\mu \ \forall f \in S(V)$ between $\overline{\tau}$ -continuous, positive linear functionals $L : S(V) \rightarrow \mathbb{R}$ and positive Radon measures μ on V^* supported by $\overline{B}_i(\rho')$ for some $\rho \in S$ and some integer $i \ge 1$. If μ is supported by $\overline{B}_i(\rho')$ then L is $\overline{i\rho}$ -continuous, and conversely.

Thank you