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THE MOMENT PROBLEM

Let A := R[X] := R[x1, . . . , xn] be the algebra of polynomials in
n variables with real coefficients and L : A −→ R a real valued
linear functional.

The multidimensional moment problem
When is L representable as an integral with respect to a positive
Radon measure µ on Rn, i.e.

L(f ) =

∫
f dµ, ∀f ∈ R[X],

and what is the support of µ?
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GENERAL SET UP

We study this problem in the following more general set up.

Let A be a commutative ring with 1 which is an R-algebra.
X(A) denotes the character space of A, i.e., the set of all ring
homomorphisms (that send 1 to 1) α : A→ R.
To every a ∈ A we associate a map

â : X(A) → R
α 7→ α(a)

X(A) is given the weakest topology such that the functions â,
a ∈ A are continuous.
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DEFINITIONS AND NOTATIONS

I Fix d ≥ 1. A subset M ⊆ A is a 2d-power module if:
I M is a cone:

0, 1 ∈M, M + M ⊆M and [0,∞) ·M ⊆M.

I ∀f ∈ A f 2dM ⊆M.

I A 2d-power module T with T · T ⊆ T is called a 2d-power
preordering.

I We denote by
∑

A2d the set of all finite sums
∑

a2d
i , ai ∈ A.

I
∑

A2d is the unique smallest 2d-power module of A.
I

∑
A2d is closed under multiplication, so

∑
A2d is also the unique

smallest 2d-power preordering of A.

I A linear functional L : A→ R is said to be positive if
L(
∑

A2d) ⊆ [0,∞).
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For a linear functional L : A→ R, one can consider the set of
Radon measures µ on X(A) such that L(a) =

∫
âdµ ∀a ∈ A.

The moment problem in this general setting is to understand
this set of measures, for a given linear functional L : A→ R.
In particular, one wants to know if this set is non-empty and in
case it is non-empty, when it is a singleton set.

We note that the moment problem for R[x] is a special case.
Indeed, ring homomorphisms from R[x] to R correspond to
point evaluations f 7→ f (α), α ∈ Rn and X(R[x]) is identified (as
a topological space) with Rn.
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SEMINORMS ON R- VECTOR SPACES AND

R-ALGEBRAS

A map ρ : A −→ [0,∞) is called a seminorm if
1 ∀a ∈ A ∀r ∈ R ρ(ra) = |r|ρ(a),
2 ∀a, b ∈ A ρ(a + b) ≤ ρ(a) + ρ(b);

ρ is submultiplicative if
3 ∀a, b ∈ A ρ(ab) ≤ ρ(a)ρ(b).

The pair (A, ρ) is called a seminormed algebra.
The Gelfand spectrum of (A, ρ):

sp(ρ) := {α ∈ X(A) : α is ρ-continuous}
= {α ∈ X(A) : |α(a)| ≤ ρ(a) ∀a ∈ A}
⊆

∏
a∈A[−ρ(a), ρ(a)],

is a compact Hausdorff space.
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LOCALLY MULTIPLICATIVELY CONVEX TOPOLOGIES

Let F be a family of submultiplicative seminorms on A. The
family F induces a locally convex topology τF on A such that
(A, τF ) is a topological algebra.

A topology τ is said to be locally multiplicatively convex (lmc) if
τ = τF for some family F of submultiplicative seminorms on A.

Wlog we assume that the family S is directed, i.e.,
∀ ρ1, ρ2 ∈ S, ∃ ρ ∈ S such that ρ � max{ρ1, ρ2}.

With this assumption, the open balls

Ur(ρ) := {v ∈ V : ρ(v) < r}, ρ ∈ S, r > 0

form a basis of neighbourhoods of zero (not just a subbasis).
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Proposition
Suppose τ is a locally convex topology generated by a directed
family F of seminorms and L is a τ -continuous linear
functional. Then there exists ρ ∈ F such that L is ρ-continuous
(and conversely, of course).

Corollary
If F is directed then sp(τF ) =

⋃
ρ∈F sp(ρ).
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MOMENT PROBLEM FOR SUBMULTIPLICATIVE

SEMINORMED ALGEBRAS AND LMC ALGEBRAS

[GKM, JFA 2014]

Theorem
For each submultiplicative seminorm ρ on A and each integer
d ≥ 1 there is a natural one-to-one correspondence L↔ µ given
by L(a) =

∫
âdµ ∀ a ∈ A between ρ-continuous, positive linear

functionals L : A→ R and positive Radon measures µ on X(A)
supported by sp(ρ).
The theorem extends to general LMC topologies. By the
Proposition above, the unique Radon measure µ corresponding
to a τ -continuous, positive linear functional L : A→ R is
supported by the compact set sp(ρ) for some ρ ∈ F .

The results apply in some interesting cases. We now study the
main application in [GIKM, submitted 2015].
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BACKGROUND: THE SYMMETRIC ALGEBRA

Let V be an R-vector space. We denote by S(V) the symmetric
algebra of V, i.e., the tensor algebra T(V) factored by the ideal
generated by the elements v⊗ w− w⊗ v, v,w ∈ V.
If we fix a basis xi, i ∈ Ω of V, then S(V) is identified with the
polynomial ring R[xi : i ∈ Ω], i.e., the free R-algebra in
commuting variables xi, i ∈ Ω. The algebra S(V) is a graded.
Denote by S(V)k the k-th homogeneous part of S(V), k ≥ 0, i.e.,
the image of k-th homogeneous part V⊗k of T(V) under the
canonical map

n∑
i=1

fi1 ⊗ · · · ⊗ fik 7→
n∑

i=1

fi1 · · · fik.

Here, fij ∈ V for i = 1, . . . ,n, j = 1, . . . , k and n ≥ 1. Note that
S(V)0 = R and S(V)1 = V.
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commuting variables xi, i ∈ Ω.

The algebra S(V) is a graded.
Denote by S(V)k the k-th homogeneous part of S(V), k ≥ 0, i.e.,
the image of k-th homogeneous part V⊗k of T(V) under the
canonical map

n∑
i=1

fi1 ⊗ · · · ⊗ fik 7→
n∑

i=1

fi1 · · · fik.

Here, fij ∈ V for i = 1, . . . ,n, j = 1, . . . , k and n ≥ 1. Note that
S(V)0 = R and S(V)1 = V.
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BACKGROUND: THE TENSOR SEMINORM

Suppose (Vi, ρi) are seminormed R-vector spaces, i = 1, 2. The
tensor seminorm ρ1 ⊗ ρ2 on V1 ⊗ V2 is defined by

(ρ1⊗ρ2)(f ) := inf{
n∑

i=1

ρ1(fi1)ρ2(fi2) : f =
n∑

i=1

fi1⊗fi2, fij ∈ Vj, n ≥ 1}.

If (Vi, ρi) are seminormed R-vector spaces, i = 1, . . . , k, then
ρ1 ⊗ · · · ⊗ ρk is defined recursively, i.e.,

(ρ1 ⊗ · · · ⊗ ρk)(f ) :=

inf{
n∑

i=1

ρ1(fi1) · · · ρk(fik) : f =
n∑

i=1

fi1 ⊗ · · · ⊗ fik, fij ∈ Vj, n ≥ 1}.

If all the (Vi, ρi) are equal, say (Vi, ρi) = (V, ρ), i = 1, . . . , k, the
associated tensor seminorm ρ1 ⊗ · · · ⊗ ρk on V⊗k is denoted ρ⊗k.
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SUBMULTIPLICATIVE SEMINORMS ON SYMMETRIC

ALGEBRAS

Below πk : V⊗k → S(V)k denotes the canonical map.

Now let ρ is a seminorm on V. For k ≥ 1 define ρk to be the
quotient seminorm on S(V)k induced by ρ⊗k via πk, i.e.,

ρk(f ) := inf{ρ⊗k(g) : g ∈ V⊗k, πk(g) = f}

= inf{
n∑

i=1

ρ(fi1) · · · ρ(fik) : f =

n∑
i=1

fi1 · · · fik, fij ∈ V,n ≥ 1}.

Define ρ0 to be the usual absolute value on R.

Proposition
Let f ∈ S(V)i, g ∈ S(V)j, then ρi+j(fg) ≤ ρi(f )ρj(g).
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We now extend ρ to a ρ on S(V) as follows: For f = f0 + · · ·+ f`,
fk ∈ S(V)k, k = 0, . . . , `, define

ρ(f ) :=
∑̀
k=0

ρk(fk).

We refer to ρ as the projective extension of ρ to S(V).

Corollary
ρ is a submultiplicative seminorm on S(V) extending the
seminorm ρ on V.

We are now in a position to apply [GKM 2014]. We still need to
determine explicitly the character space and the Gelfand
spectrum.
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EXPLOITING THE UNIVERSAL PROPERTY

S(V) is characterized by the following universal property:
For each R-linear map π : V → A, where A is an R-algebra
(commutative with 1), there exists a unique R-algebra
homomorphism π : S(V)→ A extending π.
Suppose now that A is an R-algebra equipped with σ and
π : V → A is R-linear and continuous w.r.t.ρ and σ, i.e.there is
C > 0 such that σ(π(f )) ≤ Cρ(f ) ∀ f ∈ V. It follows that:
σ(π(f )) ≤ Ckρk(f ) ∀ f ∈ S(V)k.Therefore if the operator norm of
π with respect to ρ and σ is ≤ 1 (i.e., if one can choose C ≤ 1)
then π is continuous with respect to ρ and σ.

Proposition
If π : (V, ρ)→ (A, σ) has operator norm ≤ 1, then the induced
algebra homomorphism π : (S(V), ρ)→ (A, σ) has operator
norm ≤ σ(1).
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THE CHARACTER SPACE AND THE THE GELFAND

SPECTRUM

The character space X(S(V)) of S(V) can be identified with the
algebraic dual V∗ = Hom(V,R) of V by identifying
α ∈ X(S(V)) with v∗ ∈ V∗ if α = v∗, equivalently, if
v∗ = α|V.The topology on V∗ is the weak topology, i.e., the
weakest topology such that v∗ ∈ V∗ 7→ v∗(f ) ∈ R is continuous
∀f ∈ V.If we fix a basis xi, i ∈ Ω for V, then S(V) is equal to the
polynomial ring R[xi : i ∈ Ω], V∗ = RΩ endowed with the
product topology, and the ring homomorphism α : S(V)→ R
corresponding to v∗ ∈ V∗ is evaluation at v∗. We now
determine the Gelfand spectrum sp(ρ).

Proposition
sp(ρ) is naturally identified with the closed ball B1(ρ′). Here ρ′

denotes the operator norm on V∗, i.e.,
ρ′(v∗) := inf{C ∈ [0,∞) : |v∗(w)| ≤ Cρ(w) ∀w ∈ V}.
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v∗ = α|V.The topology on V∗ is the weak topology, i.e., the
weakest topology such that v∗ ∈ V∗ 7→ v∗(f ) ∈ R is continuous
∀f ∈ V.If we fix a basis xi, i ∈ Ω for V, then S(V) is equal to the
polynomial ring R[xi : i ∈ Ω], V∗ = RΩ endowed with the
product topology, and the ring homomorphism α : S(V)→ R
corresponding to v∗ ∈ V∗ is evaluation at v∗. We now
determine the Gelfand spectrum sp(ρ).

Proposition
sp(ρ) is naturally identified with the closed ball B1(ρ′). Here ρ′

denotes the operator norm on V∗, i.e.,
ρ′(v∗) := inf{C ∈ [0,∞) : |v∗(w)| ≤ Cρ(w) ∀w ∈ V}.
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THE MOMENT PROBLEM

Main Corollary I
For each seminormed R-vector space (V, ρ) and each integer
d ≥ 1 there is a natural one-to-one correspondence L↔ µ given
by L(f ) =

∫
f̂ dµ ∀ f ∈ S(V) between ρ-continuous, positive

linear functionals L : S(V)→ R and positive Radon measures µ
on V∗ supported by B1(ρ′).

Main Corollary II
Let τ be the locally convex topology on an R-vector space V
defined by a directed family S of seminorms on V. For each
integer d ≥ 1 there is a natural one-to-one correspondence
L↔ µ given by L(f ) =

∫
f̂ dµ ∀ f ∈ S(V) between τ -continuous,

positive linear functionals L : S(V)→ R and positive Radon
measures µ on V∗ supported by Bi(ρ

′) for some ρ ∈ S and some
integer i ≥ 1. If µ is supported by Bi(ρ

′) then L is iρ-continuous,
and conversely.
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Thank you
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