Convex valuations on ordered fields, with particular emphasis on fields of generalised power series

Salma Kuhlmann

Caserta, April 05’ 2011

Part I: Convex valuations on ordered fields (05.04.2011)
§1. Ordered abelian groups 1
§2. Valued fields 4
§3. Ordered fields - Real closed fields 6
§4. The natural valuation in an ordered field 8
§5. Convex valuations
Part II: Fields of generalized power series $(07.04 .2011)$

Part I: Convex valuations on ordered fields

§1. Ordered abelian groups

Let $(\Gamma,+, 0, \leq)$ be an ordered abelian group written additively.
i.e. it satisfy axioms of total order:
(1) $\gamma \leq \gamma$ (Reflexive)
(2) $\gamma \leq \delta, \delta \leq \Gamma \Rightarrow \Gamma=\delta$ (Antisymmetric)
(3) $\Gamma \leq \delta, \delta \leq \lambda \Rightarrow \Gamma \leq \lambda$ (Transitive)
(4) $\Gamma \leq \delta$ or $\delta \leq \Gamma$ (Total)
(5) Compatible with $+: \Gamma \leq \delta \Rightarrow \Gamma+\lambda \leq \delta+\lambda$.

Definition 1.1. Convex Subgroups: $\Delta \leq \Gamma$ convex if $\forall \delta \in \Delta, \gamma \in \Gamma$ with $0 \leq \gamma \leq \delta: \gamma \in \Delta$.
(Note: Torsion free: $\gamma>0 \Rightarrow \gamma<2 \gamma<\ldots$)
Definition 1.2. The collection of $\{\Delta \subsetneq \Gamma ; \Delta$ convex proper subgroup $\}$ is totally ordered by inclusion.
The order type of this ordered set is called the rank of Γ.
e.g. $\{0\}$ is a convex subgroup. (Rank 1 valuations)

Thus if Γ has exactly n proper convex subgroups, we say that Γ has rank n, where $n \in \mathbb{N}_{+}=\{1,2, \ldots\}$.
e.g. if $\{0\}$ is the only convex subgroup say Γ has rank 1 .
e.g. \mathbb{Z} has rank 1 (i.e. to show that if $\Delta \neq 0, \Delta$ convex $\Rightarrow \Delta=\mathbb{Z}$)
(discrete rank 1 valuations)
Rank 1 is characterised by the archimedean property:
$\forall \gamma, \epsilon \in \Gamma$ such that $\epsilon>0 \exists n \in \mathbb{N}$ s.t. $-\gamma, \gamma \leq n \epsilon$.
Example: $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),\left(\mathbb{R}^{>0},.\right)$ all are archimedean.
e.g. (higher rank) $\underbrace{\mathbb{Z}_{(1)} \times \mathbb{Z}_{(2)} \ldots \times \mathbb{Z}_{(n)}}_{\text {(the direct product endowed with lexicographic order) }}$ has rank n,
proper convex subgroups are:

$$
\begin{aligned}
& \mathbb{Z}_{(n)} \\
& \mathbb{Z}_{(n-1)} \times \mathbb{Z}_{(n)} \\
& \mathbb{Z}_{(n-2)} \times \mathbb{Z}_{(n-1)} \times \mathbb{Z}_{(n)}
\end{aligned}
$$

doing it for $n=2, \mathbb{Z} \times \mathbb{Z}$ has 2 proper convex subgroups:
$\Delta_{1}=0, \Delta_{2}=$ second copy of $\mathbb{Z}=\{(0, z) \mid z \in \mathbb{Z}\}$
[Since $(0,0) \leq\left(z_{1}, z_{2}\right) \leq(0, z)$]
Lemma 1.3. Γ is archimedean iff $\operatorname{rank}(\Gamma)=1$
Proof. " \Rightarrow " Assume Γ archimedean, $\Delta \neq 0, \Delta$ convex show $\Delta=\Gamma$
fix $\delta>0 ; \delta \in \Delta$ and $\gamma \in \Gamma$, wlog $\gamma>0$.
By the archimedean property $\exists n$ s.t. $0<\gamma<n \delta$ then by convexity $\gamma \in \Delta$.
$" \Leftarrow$ " Assume only $\{0\}$ is convex, show Γ archimedean
Fix $\epsilon \in \Gamma ; \epsilon>0$ we want to prove that $\forall \gamma \in \Gamma \exists n \in \mathbb{N}$ s.t. $-\gamma, \gamma \leq n \epsilon$
Set $\Delta:=\{\gamma \in \Gamma ;-\gamma, \gamma \leq n \in$ for some $n \in \mathbb{N}\}$

Clearly $0 \in \Delta, \gamma \in \Delta \Rightarrow-\gamma \in \Delta$
Also $\gamma_{1}, \gamma_{2} \in \Delta \Rightarrow-\gamma_{1}, \gamma_{1} \leq n_{1} \epsilon ;-\gamma_{2}, \gamma_{2} \leq n_{2} \epsilon$ $\Rightarrow-\left(\gamma_{1}+\gamma_{2}\right),\left(\gamma_{1}+\gamma_{2}\right) \leq\left(n_{1}+n_{2}\right) \epsilon$
So, Δ is a subgroup.
Δ is convex: since for $\gamma \in \Gamma, 0 \leq \gamma \leq \delta \in \Delta \Rightarrow \gamma \in \Delta$
$\Delta \neq\{0\}$, since $\epsilon \in \Delta$
So $\Delta=\Gamma$ and Γ is archimedean.
Theorem 1.4. (Hölder) Γ is archimedean \Leftrightarrow isomorphic to a subgroup of $(\mathbb{R},+, 0, \leq)$.

Proof. Assume $\Gamma \neq\{0\}$
Fix $\epsilon \in \Gamma ; \epsilon>0$
for any $\gamma \in \Gamma$ consider

$$
\begin{aligned}
& L(\gamma):=\left\{\left.\frac{m}{n} \in \mathbb{Q} \right\rvert\,(n>0) \text { and } m \epsilon \leq n \gamma\right\} \\
& U(\gamma):=\left\{\left.\frac{m}{n} \in \mathbb{Q} \right\rvert\,(n>0) \text { and } m \epsilon \geq n \gamma\right\}
\end{aligned}
$$

Show $L(\gamma) \neq \phi, U(\gamma) \neq \phi, L(\gamma) \leq U(\gamma), L(\gamma) \cup U(\gamma)=\mathbb{Q}$
Dedekind cut in the rationals
$\gamma \longmapsto r(\gamma)$,
where $r(\gamma)$ is the real determined by the Dedikind cut $(L(\gamma), U(\gamma))$.
Example 1.5 The direct product $\mathbb{Z} \times \mathbb{Z}$ is discrete (has a smallest positive element) of rank 2 , when endowed with the lexicographic order.

We can endow it with ordering of rank 1 ,
namely $\mathbb{Z} \times \mathbb{Z}$ is identified with the (additive) subgroup $\mathbb{Z}+\mathbb{Z} \sqrt{2}$ of ($\mathbb{R},+, 0, \leq$).
With this ordering $\mathbb{Z} \times \mathbb{Z}$ is archimedean and densely ordered $\left(\gamma_{1}<\gamma_{2} \Rightarrow\right.$ $\exists \gamma_{3}$ s.t. $\gamma_{1}<\gamma_{3}<\gamma_{2}$).

§2. Valued fields

Let $\infty>\Gamma, K$ a field
$v: K \rightarrow \Gamma \cup\{\infty\}$, then
(1) $v(x)=\infty \Leftrightarrow x=0$
(2) $v(x y)=v(x)+v(y)$
(3) $v(x+y) \geq \min \{v(x), v(y)\}$

Proposition 2.1. (Basic properties:)
(4) $v(1)=0$ and $v(x)=v(-x), x \neq 0$
(5) for $x \neq 0, v\left(x^{-1}\right)=-v(x)$
(6) for $y \neq 0, v\left(\frac{x}{y}\right)=v(x)-v(y)$
(7) $v(x)<v(y) \Rightarrow v(x+y)=v(x)$

Proof of (7). Assume for a contradiction that $v(x+y)>v(x)$ and compute:
$v(x)=v((x+y)-x) \geq \min \{v(x+y), v(-y)\}$ $=\min \{v(x+y), v(y)\}$ $>v(x)$, a contradiction.

Definition 2.2. $O_{v}:=\{x \in K \mid v(x) \geq 0\}$ is a valuation ring of K, i.e. it satisfies that $\forall x \in K^{\times}: x \in O_{v}$ or $x^{-1} \in O_{v}$.

Definition 2.3. The group of units of O_{v} is

$$
O_{v}^{\times}:=\left\{x \in K \mid x, x^{-1} \in O_{v}\right\}=\{x \in K \mid v(x)=0\} .
$$

Definition 2.4. The set of non units of O_{v} is

$$
\begin{aligned}
\mathfrak{m}_{v}: & =\{x \in K \mid v(x) \geq 0 \text { but } v(x) \neq 0\} \\
& =\{x \in K \mid v(x)>0\},
\end{aligned}
$$

is an ideal; it is a maximal ideal, and the unique maximal ideal [Since I ideal, $I \supsetneq \mathfrak{m}_{v} \Rightarrow I$ contains a unit of $O_{v} \Rightarrow I=O_{v}$] (proper since $v(1)=0)$.
(So that O_{v} is a so called "local ring ").
Definition 2.5. $\overline{K_{v}}:=O_{v} / \mathfrak{m}_{v}$ is a field called the residue field.
The canonical homomorphism

$$
\begin{aligned}
O_{v} & \mapsto \overline{K_{v}} \\
x & \longmapsto x+\mathfrak{m}_{v}
\end{aligned}
$$

is the residue map.
So, $\bar{x}:=x+\mathfrak{m}_{v}$ is zero $\Leftrightarrow x \in \mathfrak{m}_{v}$, nonzero $\Leftrightarrow x \in O_{v}^{\times}$.
Example 2.6. Let k be any field and consider
$k[X]:=$ polynomial ring in 1-variable,
$K:=k(X):=q q(k[X])=$ rational function field in 1-variable.
The degree valuation $v:=-\operatorname{deg}$ on K is defined by

$$
\begin{aligned}
& v: K \rightarrow \mathbb{Z} \cup\{\infty\} \\
& v\left(\frac{f}{g}\right):=\operatorname{deg} g-\operatorname{deg} f
\end{aligned}
$$

The axioms can be easily verified. Also,
Valuation ring $O_{v}:=\left\{\left.\frac{f}{g} \in K \right\rvert\, \operatorname{deg} g \geq \operatorname{deg} f\right\}$
$\underline{\text { Maximal ideal }} \mathfrak{m}_{v}:=\left\{\left.\frac{f}{g} \in K \right\rvert\, \operatorname{deg} g>\operatorname{deg} f\right\}$
Units $\frac{f}{g}$ is a unit $\Leftrightarrow \operatorname{deg} g=\operatorname{deg} f$
Residues If $f(X) \in k[X]$,

$$
f(X)=a_{n} X^{n}+\ldots+a_{0} ; a_{n} \neq 0, a_{i} \in k
$$

then
$\mathfrak{u}:=\frac{f(X)}{X^{n}}$ is a unit of O_{v}
Let us compute $\underline{\mathfrak{u}}$?

We claim that $\overline{\mathfrak{u}}=a_{n}$, i.e. we show that $\mathfrak{u}-a_{n} \in \mathfrak{m}_{v}$:
Now

$$
\begin{aligned}
\mathfrak{u}=a_{n} & +\frac{a_{n-1}}{X}+\frac{a_{n-2}}{X^{2}}+\ldots+\frac{a_{0}}{X^{n}} \\
\Rightarrow \mathfrak{u}-a_{n} & =\underbrace{\frac{a_{n-1}}{X}}_{\in \mathfrak{m}_{v}}+\underbrace{\frac{a_{n-2}}{X^{2}}}_{\in \mathfrak{m}_{v}}+\ldots+\underbrace{\frac{a_{0}}{X^{n}}}_{\in \mathfrak{m}_{v}} \\
& \in \mathfrak{m}_{v}\left(\text { Since } \mathfrak{m}_{v} \text { is an ideal }\right)
\end{aligned}
$$

So residue field is k.

§3. Ordered fields - Real closed fields

Definition 3.1. Totally ordered fields: $(K,+, ., 0,1, \leq)$ is an ordered field if $(K,+, 0, \leq)$ is an ordered abelain group and compatible with multiplication $(x \leq y \Rightarrow z x \leq z y$ if $z \geq 0)$.
It follows: $1>0,-1<0, x^{2} \geq 0,-1$ is not a square.
\Rightarrow Char $K=0$
\mathbb{C} admits no ordering.
Analogue of "algebraically closed fields " for class of ordered fields is Real closed fields.

Theorem 3.2. (Artin Schreier) Let (K, \leq) be an ordered field, then TFAE:
(i) (K, \leq) has no proper ordered algebraic extension.
(ii) in (K, \leq) every positive element is a square and every odd degree polynomial $f \in K[X]$ has a zero in K.
(iii) $K(\sqrt{-1})$ is algebraically closed and $K \neq K(\sqrt{-1})$.
(iv) $\left[\tilde{\mathrm{K}}^{\mathrm{alg}}: K\right]=2$.

Any such ordered field is a RCF.

Examples 3.3.

- Examples of RCF:

(i) $\mathbb{Q}^{\text {ralg }}$: real algebraic numbers.
(ii) \mathbb{R} with its ordering $\left(r>0 \Rightarrow r=s^{2}\right.$ and IVT).
[More by power series constructions.
k real closed, Γ divisible ordered abelian group $\Rightarrow k((\Gamma))$ real closed.]

- Examples of ordered fields (not necessarily real closed):
(i) $\mathbb{Q} \quad(\sqrt{2} \notin \mathbb{Q})$
(ii) \mathbb{R}

These are Archimedean fields (archimedean property) of the reals. By Hölder: every such field is a subfield of the reals.

Are there non archimedean ordered fields?
Well since \mathbb{R} is real closed by the fact (theorem above) we cannot produce algebraic examples so let us go to trascendental examples:

$$
\begin{aligned}
& \mathbb{R}(t)=\text { Rational function field in one variable } \\
& \mathbb{R}(t):=q f(\mathbb{R}[t]) \\
& f(X)=a_{0}+\ldots+a_{n} X^{n} ; a_{i} \in \mathbb{R}
\end{aligned}
$$

Decide on the sign of f by looking at the sign of the lowest coefficient:
X and X^{2} are both positive but also
$X-n X^{2}$ is positive for all $n \in \mathbb{N}$, i.e. $X-n X^{2}>0 \forall n \in \mathbb{N}$
So, $X>n X^{2} \forall n$
So, $X \gg X^{2}$
Also for $a \neq 0, a \in \mathbb{R}$:
$a-n X>0 \forall n \in \mathbb{N}$
i.e. $a>n X \forall n$

So, $X \ll \mathbb{R}$
More examples with power series fields in lecture II. Measure the degree of "nonachimedeanity ".

§4. The natural valuation in an ordered field

Definition 4.1. The natural valuation has a convex valuation ring, in fact the valuation ring is the convex hull of \mathbb{Z}, this is the ring of finite elements.

- $v(1)=0$
- $v(a) \geq 0$ i.e. $v(a) \geq v(1)$
either $\underbrace{a \sim^{+} 1}_{\text {(units) }}$ or $\underbrace{a<^{+}<1}_{\text {(non units) }}$ (ideal of infinitesimals).
- $v(0)=\infty$
$\infty>v(K)$

Compatibility:
$0<a<b \Rightarrow v(b)<v(a)$

Part II: Fields of generalized power series

