Convex valuations on ordered fields, with particular emphasis on fields of generalised power series

Salma Kuhlmann Caserta, April 05' 2011

Part I: Convex valuations on ordered fields (05.04.2011)	
§1. Ordered abelian groups	1
§2. Valued fields	4
§3. Ordered fields - Real closed fields	6
§4. The natural valuation in an ordered field	8
§5. Convex valuations	

Part II: Fields of generalized power series (07.04.2011)

Part I: Convex valuations on ordered fields

§1. Ordered abelian groups

Let $(\Gamma, +, 0, \leq)$ be an ordered abelian group written additively. i.e. it satisfy axioms of **total order**:

(1) $\gamma \leq \gamma$ (Reflexive) (2) $\gamma \leq \delta$, $\delta \leq \Gamma \Rightarrow \Gamma = \delta$ (Antisymmetric) (3) $\Gamma \leq \delta$, $\delta \leq \lambda \Rightarrow \Gamma \leq \lambda$ (Transitive) (4) $\Gamma \leq \delta$ or $\delta \leq \Gamma$ (Total) (5) Compatible with $+ : \Gamma \leq \delta \Rightarrow \Gamma + \lambda \leq \delta + \lambda$.

Definition 1.1. Convex Subgroups: $\Delta \leq \Gamma$ convex if $\forall \delta \in \Delta, \gamma \in \Gamma$ with $0 \leq \gamma \leq \delta : \gamma \in \Delta$. (Note: Torsion free: $\gamma > 0 \Rightarrow \gamma < 2\gamma < \dots$)

Definition 1.2. The collection of $\{\Delta \subseteq \Gamma; \Delta \text{ convex proper subgroup }\}$ is **totally ordered** by inclusion.

The order type of this ordered set is called the **rank** of Γ . **e.g.** {0} is a convex subgroup. (Rank 1 valuations) Thus if Γ has exactly *n* proper convex subgroups, we say that Γ has rank *n*, where $n \in \mathbb{N}_+ = \{1, 2, \ldots\}$.

- **e.g.** if $\{0\}$ is the only convex subgroup say Γ has rank 1.
- **e.g.** \mathbb{Z} has rank 1 (i.e. to show that if $\Delta \neq 0$, Δ convex $\Rightarrow \Delta = \mathbb{Z}$) (discrete rank 1 valuations)
- Rank 1 is characterised by the archimedean property: $\forall \gamma, \epsilon \in \Gamma$ such that $\epsilon > 0 \exists n \in \mathbb{N}$ s.t. $-\gamma, \gamma \leq n\epsilon$.

Example: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{R}^{>0}, .)$ all are archimedean.

e.g. (higher rank)

$$\mathbb{Z}_{(1)} \times \mathbb{Z}_{(2)} \dots \times \mathbb{Z}_{(n)}$$
 has rank *n*,

(the direct product endowed with lexicographic order)

proper convex subgroups are:

 $\mathbb{Z}_{(n)}$ $\mathbb{Z}_{(n-1)} \times \mathbb{Z}_{(n)}$ $\mathbb{Z}_{(n-2)} \times \mathbb{Z}_{(n-1)} \times \mathbb{Z}_{(n)}$

doing it for n = 2, $\mathbb{Z} \times \mathbb{Z}$ has 2 proper convex subgroups: $\Delta_1 = 0$, $\Delta_2 =$ second copy of $\mathbb{Z} = \{(0, z) \mid z \in \mathbb{Z}\}$ [Since $(0, 0) \le (z_1, z_2) \le (0, z)$]

Lemma 1.3. Γ is archimedean iff rank(Γ) = 1

Proof. " \Rightarrow " Assume Γ archimedean, $\Delta \neq 0, \Delta$ convex **show** $\Delta = \Gamma$ fix $\delta > 0$; $\delta \in \Delta$ and $\gamma \in \Gamma$, wlog $\gamma > 0$. By the archimedean property $\exists n \text{ s.t. } 0 < \gamma < n\delta$ then by convexity $\gamma \in \Delta$.

"⇐ " Assume only {0} is convex, **show** Γ archimedean Fix $\epsilon \in \Gamma$; $\epsilon > 0$ we want to **prove that** $\forall \gamma \in \Gamma \exists n \in \mathbb{N}$ s.t. $-\gamma, \gamma \leq n\epsilon$

Set $\Delta := \{ \gamma \in \Gamma ; -\gamma, \gamma \le n\epsilon \text{ for some } n \in \mathbb{N} \}$

Clearly $0 \in \Delta$, $\gamma \in \Delta \Rightarrow -\gamma \in \Delta$ Also $\gamma_1, \gamma_2 \in \Delta \Rightarrow -\gamma_1, \gamma_1 \le n_1 \epsilon$; $-\gamma_2, \gamma_2 \le n_2 \epsilon$ $\Rightarrow -(\gamma_1 + \gamma_2), (\gamma_1 + \gamma_2) \le (n_1 + n_2) \epsilon$ So, Δ is a subgroup.

 Δ is convex: since for $\gamma \in \Gamma$, $0 \le \gamma \le \delta \in \Delta \Rightarrow \gamma \in \Delta$

$$\Delta \neq \{0\}$$
, since $\epsilon \in \Delta$

So $\Delta = \Gamma$ and Γ is archimedean.

Theorem 1.4. (Hölder) Γ is archimedean \Leftrightarrow isomorphic to a subgroup of $(\mathbb{R}, +, 0, \leq)$.

Proof. Assume $\Gamma \neq \{0\}$ Fix $\epsilon \in \Gamma$; $\epsilon > 0$ for any $\gamma \in \Gamma$ consider

$$L(\gamma) := \left\{ \frac{m}{n} \in \mathbb{Q} \mid (n > 0) \text{ and } m\epsilon \le n\gamma \right\}$$
$$U(\gamma) := \left\{ \frac{m}{n} \in \mathbb{Q} \mid (n > 0) \text{ and } m\epsilon \ge n\gamma \right\}$$

Show $L(\gamma) \neq \phi$, $U(\gamma) \neq \phi$, $L(\gamma) \leq U(\gamma)$, $L(\gamma) \cup U(\gamma) = \mathbb{Q}$

Dedekind cut in the rationals

 $\gamma \mapsto r(\gamma)$, where $r(\gamma)$ is the real determined by the Dedikind cut $(L(\gamma), U(\gamma))$. \Box

Example 1.5 The direct product $\mathbb{Z} \times \mathbb{Z}$ is discrete (has a smallest positive element) of rank 2, when endowed with the lexicographic order.

We can endow it with ordering of rank 1,

namely $\mathbb{Z} \times \mathbb{Z}$ is identified with the (additive) subgroup $\mathbb{Z} + \mathbb{Z}\sqrt{2}$ of $(\mathbb{R}, +, 0, \leq)$.

With this ordering $\mathbb{Z} \times \mathbb{Z}$ is archimedean and densely ordered ($\gamma_1 < \gamma_2 \Rightarrow \exists \gamma_3 \text{ s.t. } \gamma_1 < \gamma_3 < \gamma_2$).

§2. Valued fields

Let $\infty > \Gamma$, *K* a field $v : K \twoheadrightarrow \Gamma \cup \{\infty\}$, then

- (1) $v(x) = \infty \Leftrightarrow x = 0$
- (2) v(xy) = v(x) + v(y)
- (3) $v(x + y) \ge \min\{v(x), v(y)\}$

Proposition 2.1. (Basic properties:)

(4) v(1) = 0 and $v(x) = v(-x), x \neq 0$

- (5) for $x \neq 0$, $v(x^{-1}) = -v(x)$
- (6) for $y \neq 0$, $v(\frac{x}{y}) = v(x) v(y)$
- (7) $v(x) < v(y) \Rightarrow v(x + y) = v(x)$

Proof of (7). Assume for a contradiction that v(x + y) > v(x) and compute:

$$v(x) = v((x + y) - x) \ge \min\{v(x + y), v(-y)\}$$

= min { $v(x + y), v(y)$ }
> $v(x)$, a contradiction.

Definition 2.2. $O_v := \{x \in K \mid v(x) \ge 0\}$ is a **valuation ring** of *K*, i.e. it satisfies that $\forall x \in K^{\times} : x \in O_v$ or $x^{-1} \in O_v$.

Definition 2.3. The group of units of O_{ν} is

 $O_{v}^{\times} := \{ x \in K \mid x, x^{-1} \in O_{v} \} = \{ x \in K \mid v(x) = 0 \}.$

Definition 2.4. The set of non units of O_v is

$$m_{v} := \{ x \in K \mid v(x) \ge 0 \text{ but } v(x) \ne 0 \} \\= \{ x \in K \mid v(x) > 0 \},\$$

is an ideal; it is a <u>maximal</u> ideal, and the **unique maximal ideal** [Since *I* ideal, $I \supseteq \mathfrak{m}_v \Rightarrow I$ contains a unit of $O_v \Rightarrow I = O_v$] (**proper** since v(1) = 0). (So that O_v is a so called "local ring ").

Definition 2.5. $\overline{K_{\nu}} := O_{\nu}/\mathfrak{m}_{\nu}$ is a field called the **residue field**. The canonical homomorphism

$$\begin{array}{ccc}
O_v \twoheadrightarrow \overline{K_v} \\
x \longmapsto x + \mathfrak{m}_v
\end{array}$$

is the residue map.

So, $\overline{x} := x + \mathfrak{m}_v$ is zero $\Leftrightarrow x \in \mathfrak{m}_v$, nonzero $\Leftrightarrow x \in O_v^{\times}$.

Example 2.6. Let k be any field and consider k[X] := polynomial ring in 1-variable,

K := k(X) := qq(k[X]) = rational function field in 1-variable.

The **degree valuation** v := -deg on K is defined by

$$v: K \twoheadrightarrow \mathbb{Z} \cup \{\infty\}$$

 $v\left(\frac{f}{g}\right) := \deg g - \deg f$

The axioms can be easily verified. Also,

 $\underbrace{\text{Valuation ring}}_{Valuation ring} O_v := \left\{ \frac{f}{g} \in K \mid \deg g \ge \deg f \right\}$ $\underbrace{\text{Maximal ideal}}_{Mv} \text{ is } = \left\{ \frac{f}{g} \in K \mid \deg g > \deg f \right\}$ $\underbrace{\text{Units}}_{g} \frac{f}{g} \text{ is a unit} \Leftrightarrow \deg g = \deg f$ $\underbrace{\text{Residues}}_{f(X)} \text{ If } f(X) \in k[X],$ $f(X) = a_n X^n + \ldots + a_0; a_n \neq 0, a_i \in k$ $\underbrace{\text{then}}_{u} := \frac{f(X)}{X^n} \text{ is a unit of } O_v$ Let us compute u?

We **claim** that $\overline{\mathfrak{u}} = a_n$, i.e. we show that $\mathfrak{u} - a_n \in \mathfrak{m}_v$: Now

$$\mathfrak{u} = a_n + \frac{a_{n-1}}{X} + \frac{a_{n-2}}{X^2} + \ldots + \frac{a_0}{X^n}$$
$$\Rightarrow \mathfrak{u} - a_n = \underbrace{\frac{a_{n-1}}{X}}_{\in \mathfrak{m}_v} + \underbrace{\frac{a_{n-2}}{X^2}}_{\in \mathfrak{m}_v} + \ldots + \underbrace{\frac{a_0}{X^n}}_{\in \mathfrak{m}_v}$$

 $\in \mathfrak{m}_{v}$ (Since \mathfrak{m}_{v} is an ideal)

So residue field is k.

§3. Ordered fields - Real closed fields

Definition 3.1. Totally ordered fields: $(K, +, ., 0, 1, \le)$ is an ordered field if $(K, +, 0, \le)$ is an ordered abelain group and compatible with multiplication $(x \le y \Rightarrow zx \le zy \text{ if } z \ge 0)$. It follows: $1 > 0, -1 < 0, x^2 \ge 0, -1$ is not a square. $\Rightarrow \text{Char}K = 0$

 $\ensuremath{\mathbb{C}}$ admits no ordering.

Analogue of ``algebraically closed fields " for class of ordered fields is Real closed fields.

Theorem 3.2. (Artin Schreier) Let (K, \leq) be an ordered field, then TFAE:

- (i) (K, \leq) has no proper ordered algebraic extension.
- (ii) in (K, \leq) every positive element is a square and every odd degree polynomial $f \in K[X]$ has a zero in *K*.
- (iii) $K(\sqrt{-1})$ is algebraically closed and $K \neq K(\sqrt{-1})$.
- (iv) $[\tilde{K}^{alg}: K] = 2.$

Any such ordered field is a RCF.

Examples 3.3.

• Examples of RCF:

(i) \mathbb{Q}^{ralg} : real algebraic numbers.

(ii) \mathbb{R} with its ordering $(r > 0 \Rightarrow r = s^2 \text{ and IVT})$.

[More by power series constructions.

k real closed, Γ divisible ordered abelian group $\Rightarrow k((\Gamma))$ real closed.]

• Examples of ordered fields (not necessarily real closed):

(i) $\mathbb{Q} \quad \left(\sqrt{2} \notin \mathbb{Q}\right)$

(ii) \mathbb{R}

These are Archimedean fields (archimedean property) of the reals. By Hölder: every such field is a subfield of the reals.

Are there non archimedean ordered fields?

Well since \mathbb{R} is real closed by the fact (theorem above) we cannot produce algebraic examples so let us go to trascendental examples:

 $\mathbb{R}(t) = \text{Rational function field in one variable}$ $\mathbb{R}(t) := qf(\mathbb{R}[t])$ $f(X) = a_0 + \ldots + a_n X^n; a_i \in \mathbb{R}$

Decide on the sign of f by looking at the sign of the lowest coefficient:

X and X^2 are both positive but also $X - nX^2$ is positive for all $n \in \mathbb{N}$, i.e. $X - nX^2 > 0 \forall n \in \mathbb{N}$ So, $X > nX^2 \forall n$ So, $X >> X^2$ Also for $a \neq 0, a \in \mathbb{R}$: $a - nX > 0 \forall n \in \mathbb{N}$

i.e.
$$a > nX \forall n$$

So, $X \ll \mathbb{R}$

More examples with power series fields in lecture II. Measure the degree of "nonachimedeanity".

§4. The natural valuation in an ordered field

Definition 4.1. The natural valuation has a convex valuation ring, in fact the valuation ring is the convex hull of \mathbb{Z} , this is the ring of finite elements.

•
$$v(1) = 0$$

•
$$v(a) \ge 0$$
 i.e. $v(a) \ge v(1)$
either $\underbrace{a \sim^{+} 1}_{(\text{units})}$ or $\underbrace{a <^{+} < 1}_{(\text{non units})}$ (ideal of infinitesimals).

• $v(0) = \infty$ $\infty > v(K)$

Compatibility:

$$0 < a < b \Rightarrow v(b) < v(a)$$

Part II: Fields of generalized power series