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Part I: Convex valuations on ordered fields

§1. Ordered abelian groups

Let (Γ,+, 0,≤) be an ordered abelian group written additively.
i.e. it satisfy axioms of total order:

(1) γ ≤ γ (Reflexive)
(2) γ ≤ δ , δ ≤ Γ⇒ Γ = δ (Antisymmetric)
(3) Γ ≤ δ , δ ≤ λ⇒ Γ ≤ λ (Transitive)
(4) Γ ≤ δ or δ ≤ Γ (Total)
(5) Compatible with + : Γ ≤ δ⇒ Γ + λ ≤ δ + λ.

Definition 1.1. Convex Subgroups: ∆ ≤ Γ convex if ∀ δ ∈ ∆, γ ∈ Γ

with 0 ≤ γ ≤ δ : γ ∈ ∆.
(Note: Torsion free: γ > 0⇒ γ < 2γ < . . . )

Definition 1.2. The collection of
{
∆ ( Γ; ∆ convex proper subgroup

}
is

totally ordered by inclusion.
The order type of this ordered set is called the rank of Γ.
e.g. {0} is a convex subgroup. (Rank 1 valuations)
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Thus if Γ has exactly n proper convex subgroups, we say that Γ has rank
n, where n ∈ N+ = {1, 2, . . .}.

e.g. if {0} is the only convex subgroup say Γ has rank 1.

e.g. Z has rank 1 (i.e. to show that if ∆ , 0, ∆ convex⇒ ∆ = Z)
(discrete rank 1 valuations)

Rank 1 is characterised by the archimedean property:
∀γ, ε ∈ Γ such that ε > 0 ∃ n ∈ N s.t. −γ, γ ≤ nε.

Example: (Z,+), (Q,+), (R,+),
(
R>0, .

)
all are archimedean.

e.g. (higher rank) Z(1) × Z(2) . . . × Z(n)︸                  ︷︷                  ︸
(the direct product endowed with lexicographic order)

has rank n,

proper convex subgroups are:
Z(n)

Z(n−1) × Z(n)

Z(n−2) × Z(n−1) × Z(n)

doing it for n = 2, Z × Z has 2 proper convex subgroups:
∆1 = 0, ∆2 = second copy of Z =

{
(0, z) | z ∈ Z

}[
Since (0, 0) ≤ (z1, z2) ≤ (0, z)

]
Lemma 1.3. Γ is archimedean iff rank(Γ) = 1

Proof. `̀⇒ ´́ Assume Γ archimedean, ∆ , 0,∆ convex show ∆ = Γ

fix δ > 0 ; δ ∈ ∆ and γ ∈ Γ, wlog γ > 0.
By the archimedean property ∃ n s.t. 0 < γ < nδ
then by convexity γ ∈ ∆. �

`̀⇐ ´́ Assume only {0} is convex, show Γ archimedean
Fix ε ∈ Γ ; ε > 0 we want to prove that ∀γ ∈ Γ ∃ n ∈ N s.t. −γ, γ ≤ nε

Set ∆ :=
{
γ ∈ Γ ; −γ, γ ≤ nε for some n ∈ N

}
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Clearly 0 ∈ ∆ , γ ∈ ∆⇒ −γ ∈ ∆

Also γ1, γ2 ∈ ∆⇒ −γ1, γ1 ≤ n1ε ; −γ2, γ2 ≤ n2ε
⇒ −(γ1 + γ2), (γ1 + γ2) ≤ (n1 + n2)ε
So, ∆ is a subgroup.

∆ is convex: since for γ ∈ Γ, 0 ≤ γ ≤ δ ∈ ∆⇒ γ ∈ ∆

∆ , {0}, since ε ∈ ∆

So ∆ = Γ and Γ is archimedean. �

Theorem 1.4. (Hölder) Γ is archimedean ⇔ isomorphic to a subgroup
of (R,+, 0,≤).

Proof. Assume Γ , {0}
Fix ε ∈ Γ ; ε > 0
for any γ ∈ Γ consider

L(γ) :=
{

m
n ∈ Q | (n > 0) and mε ≤ nγ

}
U(γ) :=

{
m
n ∈ Q | (n > 0) and mε ≥ nγ

}
Show L(γ) , φ , U(γ) , φ , L(γ) ≤ U(γ) , L(γ) ∪ U(γ) = Q

Dedekind cut in the rationals
γ 7−→ r(γ),

where r(γ) is the real determined by the Dedikind cut
(
L(γ),U(γ)

)
. �

Example 1.5 The direct product Z×Z is discrete (has a smallest positive
element) of rank 2, when endowed with the lexicographic order.

We can endow it with ordering of rank 1,
namely Z × Z is identified with the (additive) subgroup Z + Z

√
2 of

(R,+, 0,≤).
With this ordering Z×Z is archimedean and densely ordered

(
γ1 < γ2 ⇒

∃ γ3 s.t. γ1 < γ3 < γ2
)
.
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§2. Valued fields

Let∞ > Γ, K a field
v : K � Γ ∪ {∞}, then

(1) v(x) = ∞ ⇔ x = 0

(2) v(xy) = v(x) + v(y)

(3) v(x + y) ≥ min
{
v(x), v(y)

}
Proposition 2.1. (Basic properties:)

(4) v(1) = 0 and v(x) = v(−x), x , 0

(5) for x , 0, v(x−1) = −v(x)

(6) for y , 0, v
(

x
y

)
= v(x) − v(y)

(7) v(x) < v(y)⇒ v(x + y) = v(x)

Proof of (7). Assume for a contradiction that
v(x + y) > v(x) and compute:
v(x) = v

(
(x + y) − x

)
≥ min

{
v(x + y), v(−y)

}
= min

{
v(x + y), v(y)

}
> v(x) , a contradiction. �

Definition 2.2. Ov :=
{
x ∈ K | v(x) ≥ 0

}
is a valuation ring of K, i.e. it

satisfies that ∀ x ∈ K× : x ∈ Ov or x−1 ∈ Ov.

Definition 2.3. The group of units of Ov is

O×v :=
{
x ∈ K | x, x−1 ∈ Ov

}
=

{
x ∈ K | v(x) = 0

}
.

Definition 2.4. The set of non units of Ov is

mv :=
{
x ∈ K | v(x) ≥ 0 but v(x) , 0

}
=

{
x ∈ K | v(x) > 0

}
,
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is an ideal; it is a maximal ideal, and the unique maximal ideal [Since
I ideal, I ) mv ⇒ I contains a unit of Ov ⇒ I = Ov]

(
proper since

v(1) = 0
)
.(

So that Ov is a so called `̀ local ring ´́
)
.

Definition 2.5. Kv := Ov/mv is a field called the residue field.
The canonical homomorphism

Ov � Kv

x 7−→ x +mv

is the residue map.

So, x := x +mv is zero⇔ x ∈ mv, nonzero⇔ x ∈ O×v .

Example 2.6. Let k be any field and consider
k[X] := polynomial ring in 1-variable,

K := k(X) := qq
(
k[X]

)
= rational function field in 1-variable.

The degree valuation v := −deg on K is defined by

v : K � Z ∪ {∞}

v
(

f
g

)
:= degg− deg f

The axioms can be easily verified. Also,

Valuation ring Ov :=
{

f
g ∈ K | degg ≥ deg f

}
Maximal ideal mv :=

{
f
g ∈ K | degg > deg f

}
Units f

g is a unit⇔ degg = deg f

Residues If f (X) ∈ k[X],
f (X) = anXn + . . . + a0 ; an , 0, ai ∈ k

then
u := f (X)

Xn is a unit of Ov

Let us compute u?
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We claim that u = an , i.e. we show that u − an ∈ mv:
Now
u = an + an−1

X + an−2
X2 + . . . + a0

Xn

⇒ u − an =
an−1

X︸︷︷︸
∈mv

+
an−2

X2︸︷︷︸
∈mv

+ . . . +
a0

Xn︸︷︷︸
∈mv

∈ mv (Since mv is an ideal)

So residue field is k. �

§3. Ordered fields - Real closed fields

Definition 3.1. Totally ordered fields: (K,+, ., 0, 1,≤) is an ordered
field if (K,+, 0,≤) is an ordered abelain group and compatible with mul-
tiplication (x ≤ y⇒ zx ≤ zy if z ≥ 0).
It follows: 1 > 0, −1 < 0, x2 ≥ 0, −1 is not a square.
⇒ CharK = 0

C admits no ordering.

Analogue of `̀ algebraically closed fields ´́ for class of ordered fields is
Real closed fields.

Theorem 3.2. (Artin Schreier) Let (K,≤) be an ordered field, then
TFAE:

(i) (K,≤) has no proper ordered algebraic extension.

(ii) in (K,≤) every positive element is a square and every odd degree
polynomial f ∈ K[X] has a zero in K.

(iii) K
(√
−1

)
is algebraically closed and K , K

(√
−1

)
.

(iv)
[
K̃alg : K

]
= 2.

Any such ordered field is a RCF.
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Examples 3.3.

• Examples of RCF:
(i) Qralg : real algebraic numbers.
(ii) R with its ordering (r > 0⇒ r = s2 and IVT).[
More by power series constructions.

k real closed, Γ divisible ordered abelian group⇒ k((Γ)) real closed.
]

• Examples of ordered fields (not necessarily real closed):

(i) Q
(√

2 < Q
)

(ii) R
These are Archimedean fields (archimedean property) of the reals.
By Hölder: every such field is a subfield of the reals.

Are there non archimedean ordered fields?

Well since R is real closed by the fact (theorem above) we cannot pro-
duce algebraic examples so let us go to trascendental examples:

R(t) = Rational function field in one variable
R(t) := q f

(
R[t]

)
f (X) = a0 + . . . + anXn; ai ∈ R

Decide on the sign of f by looking at the sign of the lowest coefficient:

X and X2 are both positive but also

X − nX2 is positive for all n ∈ N, i.e. X − nX2 > 0 ∀ n ∈ N

So, X > nX2 ∀ n

So, X >> X2

Also for a , 0, a ∈ R:

a − nX > 0 ∀ n ∈ N
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i.e. a > nX ∀ n

So, X << R �

More examples with power series fields in lecture II. Measure the
degree of `̀ nonachimedeanity ´́ .

§4. The natural valuation in an ordered field

Definition 4.1. The natural valuation has a convex valuation ring, in
fact the valuation ring is the convex hull of Z, this is the ring of finite
elements.

• v(1) = 0

• v(a) ≥ 0 i.e. v(a) ≥ v(1)
either a ∼+ 1︸ ︷︷ ︸

(units)

or a <+< 1︸   ︷︷   ︸
(non units)

(ideal of infinitesimals).

• v(0) = ∞

∞ > v(K)

Compatibility:
0 < a < b⇒ v(b) < v(a) �

Part II: Fields of generalized power series


