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THE K-MOMENT PROBLEM

Let A := R[X] := R[X1, . . . ,Xn] be the algebra of polynomials in
n variables with real coefficients and L : A −→ R a real valued
linear functional.

The K-moment problem
Given ∅ 6= K ⊆ Rn, when is L representable as an integral with
respect to a positive Borel measure, i.e.

L(f ) =
∫

K
f dµ, ∀f ∈ R[X],

where µ is supported on K?
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THE K-MOMENT PROBLEM

Haviland, 1936
Such a measure exists if and only if L(Psd(K)) ⊆ [0,∞), where
Psd(K) := {f ∈ A : f (x) ≥ 0 ∀x ∈ K}.

Scheiderer, 1999
Except for a few cases, checking L(Psd(K)) ⊆ [0,∞) is not a
finite procedure, i.e. Psd(K) usually is not finitely generated.
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DEFINITIONS
I M ⊆ A is a quadratic module:

I M is a cone:

0, 1 ∈M, M + M ⊆M and [0,∞) ·M ⊆M.

I ∀f ∈ A f 2M ⊆M.

I M is Archimedean:

∀f ∈ A ∃N ≥ 1 N + f ∈M.

I A quadratic module T with T · T ⊆ T is called a preordering.
I Let S ⊂ A; MS (resp. TS):= The smallest quadratic module (resp.

preordering) containing S.
I M (or T) is finitely generated, if M = MS (or T = TS) for some

finite S.
I S ⊂ A:

KS := {x ∈ Rn : f (x) ≥ 0 ∀f ∈ S}.
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CLASSICAL SOLUTIONS

Schmüdgen, 1991
If S is finite and KS is compact, then

L(TS) ⊆ [0,∞)⇒ L(Psd(KS)) ⊆ [0,∞).

Putinar, 1993
If S is finite and MS is Archimedean, then

L(MS) ⊆ [0,∞)⇒ L(Psd(KS)) ⊆ [0,∞).

Since TS and MS are finitely generated, Haviland’s Theorem is
effectively applicable to them.
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TOPOLOGICAL INTERPRETATION

ϕ := The finest locally convex topology on A.

Schmüdgen:

Psd(KS) = TS
ϕ

Putinar:

Psd(KS) = MS
ϕ

⇒ Psd(K) = Cτ

I For a locally convex topology τ on A,
I C is a convex cone of A,
I and K is a closed subset of Rn.
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EXAMPLE

1. Replace ϕ by ‖ · ‖K-topology, where K = [−1, 1]n and

‖f‖K := sup
x∈K
|f (x)|.

Stone-Weierestrass ⇒ Psd(K) =
∑

R[X]2
‖·‖K .

2. Replace ϕ by ‖ · ‖1-topology, K = [−1, 1]n where

‖
∑
α

fαXα‖1 :=
∑
α

|fα|.

Berg et al. ⇒ Psd(K) =
∑

R[X]2
‖·‖1 .
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EXAMPLE

In term of moments:
If L is a ‖ · ‖K or ‖ · ‖1- continuous positive semidefinite
functional, then there exists a Borel measure µ on [−1, 1]n such
that

∀f ∈ R[X] L(f ) =
∫

[−1,1]n
f dµ.
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GENERAL SETTINGS:
Now, let A be a unital commutative R-algebra and
X (A) := HomR(A,R) ⊆ RA endowed with the product topology.

To every a ∈ A we associate a map

â : X (A) → R
α 7→ α(a)

K ⊆ X (A) −→ Psd(K) := {a ∈ A : â ≥ 0 on K},
S ⊆ A −→ KS := {α ∈ X (A) : α(S) ⊆ [0,∞)}.

A
∑

A2d-module (d ≥ 1 an integer), is a cone C ⊆ A such that

∀a ∈ A a2d · C ⊆ C.

T. Jacobi’s Theorem, 2001
Let C be an Archimedean

∑
A2d-module of A. Then for each a ∈ A

â > 0 on KC ⇒ a ∈ C.
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â > 0 on KC ⇒ a ∈ C.

9 / 20



Introduction Seminormed Algebras LMC Algebras Some Applications

GENERAL SETTINGS:
Now, let A be a unital commutative R-algebra and
X (A) := HomR(A,R) ⊆ RA endowed with the product topology.
To every a ∈ A we associate a map
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SEMINORMED ALGEBRAS

A map ρ : A −→ [0,∞) is called a seminorm if
1 ∀a ∈ A ∀r ∈ R ρ(ra) = |r|ρ(a),
2 ∀a, b ∈ A ρ(a + b) ≤ ρ(a) + ρ(b);

ρ is submultiplicative if
3 ∀a, b ∈ A ρ(ab) ≤ ρ(a)ρ(b).

The pair (A, ρ) is called a seminormed algebra.

The Gelfand spectrum of (A, ρ):

sp(ρ) := {α ∈ X (A) : α is ρ-continuous}
= {α ∈ X (A) : |α(a)| ≤ ρ(a) ∀a ∈ A}
⊆

∏
a∈A[−ρ(a), ρ(a)],

is a compact Hausdorff space.
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SEMINORMED ALGEBRAS
Iρ := {a ∈ A : ρ(a) = 0} is an ideal of A and

ρ̄ : Ā = A/Iρ → [0,∞)
ā 7→ ρ(a)

induces a norm on Ā which admits a completion (Ã, ρ̃) and

sp(ρ) ∼ sp(ρ̃).

Lemma
Let (B, ‖ · ‖) be a Banach algebra, a ∈ B, r > ‖a‖ and k ≥ 1 an
integer. Then there exist b ∈ B such that bk = r + a. Thus any∑

B2d-module is archimedean and any α ∈ X (B) is continuous.

Proof.
The Taylor expansion of (1 + t)

1
k =

∑∞
i=0 λiti converges

absolutely for |t| < 1. Now set t := a
r .
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sp(ρ) ∼ sp(ρ̃).

Lemma
Let (B, ‖ · ‖) be a Banach algebra, a ∈ B, r > ‖a‖ and k ≥ 1 an
integer. Then there exist b ∈ B such that bk = r + a. Thus any∑

B2d-module is archimedean and any α ∈ X (B) is continuous.

Proof.
The Taylor expansion of (1 + t)

1
k =

∑∞
i=0 λiti converges

absolutely for |t| < 1. Now set t := a
r .

11 / 20



Introduction Seminormed Algebras LMC Algebras Some Applications

SEMINORMED ALGEBRAS
Iρ := {a ∈ A : ρ(a) = 0} is an ideal of A and
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MAIN RESULT

Theorem 1
Let (A, ρ) be a seminormed R-algebra, d ≥ 1 an integer, C ⊆ A
a

∑
A2d-module. Then

Cρ = Psd(KC ∩ sp(ρ)).
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MAIN RESULT

Proof.
C ⊆ Psd(KC ∩ sp(ρ)) =

⋂
α∈KC∩sp(ρ) α

−1([0,∞)) which is closed.
Therefore C

ρ ⊆ Psd(KC ∩ sp(ρ)).

For the other inclusion, set C̃ := The
closure of the image of C in (Ã, ρ̃). C̃ is a

∑
Ã2d-module of Ã. So C̃ is

Archimedean.
Take b ∈ Psd(KC ∩ sp(ρ)) with image b̃ in Ã. For any α ∈ KC̃ we have
0 ≤ α(b̃) = α|A(b), so ∀n ≥ 1 ∀α ∈ KC̃ α( 1

n + b̃) > 0. By T. Jacobi’s
Theorem, b̃ + 1

n ∈ C̃. Letting n→∞, b̃ ∈ C̃, and hence b ∈ C
ρ
.
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By T. Jacobi’s
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ρ
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Ã2d-module of Ã. So C̃ is

Archimedean.
Take b ∈ Psd(KC ∩ sp(ρ)) with image b̃ in Ã. For any α ∈ KC̃ we have
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CORRESPONDING MOMENT PROBLEM

Corollary

Let L : A −→ R be a ρ-continuous linear functional. If
L(C) ⊆ [0,∞) then there exists a unique Radon measure µ on
KC ∩ sp(ρ) such that

L(a) =
∫

â dµ, ∀a ∈ A.
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LOCALLY MULTIPLICATIVELY CONVEX TOPOLOGIES

Let F be a family of submultiplicative seminorms on A. The
family F induces a locally convex topology τF on A such that
(A, τF ) is a topological algebra.

A topology τ is said to be locally multiplicatively convex (lmc) if
τ = τF for some family F of submultiplicative seminorms on A.

Proposition
If F is saturated then sp(τF ) =

⋃
ρ∈F sp(ρ).
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CLOSURES AND MOMENTS IN LMC TOPOLOGIES

Theorem 2
Let τ be an lmc topology on A, d ≥ 1 an integer, C a∑

A2d-module. Then

Cτ = Psd(KC ∩ sp(τ)).
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Let L : A −→ R be a τ -continuous functional with
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SCHMÜDGEN’S RESULT

Schmüdgen, 1978
Let η be the finest lmc topology on A and d ≥ 1. Then∑

A2d
η

= Psd(X (A)).
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INVOLUTIVE C-ALGEBRAS

Let (A, ρ, ∗) be a seminormed C-algebra equipped with an
involution ∗.

I X∗(A) := {α : A −→ C : α is a *-algebra homomorphism},
I sp∗(ρ) := {α ∈ X∗(A) : α is ρ-continuous},
I H(A) := {a ∈ A : a∗ = a}.

Corollary

Let C ⊆ H(A) be a
∑

H(A)2d-module of H(A). Let L : A −→ C
be a ρ-continuous ∗-functional such that L(C) ⊆ [0,∞). Then
there exists a unique Radon measure µ on KC ∩ sp∗(ρ) such that

L(a) =
∫

â dµ, ∀a ∈ A.
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BERG-MASERICK

Let (S, 1, ∗) be a commutative unitary ∗-semigroup.
An absolute value on S is a map φ : S −→ [0,∞) such that

1. φ(1) ≥ 1,
2. ∀s, t ∈ S, φ(st) ≤ φ(s)φ(t),
3. ∀s ∈ S φ(s∗) = φ(s).

The map ‖ · ‖φ on C[S] defined by ‖
∑

s fss‖φ =
∑

s |fs|φ(s) is a
submultiplicative seminorm on C[S].

Berg-Maserick, 1984
If L : C[S] −→ C is an ∗-functional such that
L(

∑
H(C[S])2d) ⊆ [0,∞) and ∃c > 0∀s ∈ S |L(s)| ≤ cφ(s). Then

there exists a unique Radon measure µ on sp∗(‖ · ‖φ) such that
L(f ) =

∫
f̂ dµ ∀f ∈ C[S].
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Thank you
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