Test Sets for Positivity of Invariant Forms and Applications to Sums of Squares Representations

Salma Kuhlmann, University of Konstanz

IWOTA 2014

July 15th, 2014

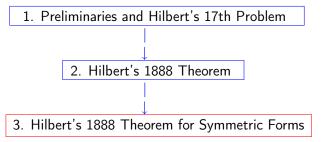
¹Dissertation of Ph.D. student Ms. Charu Goel

1. Preliminaries and Hilbert's 17th Problem

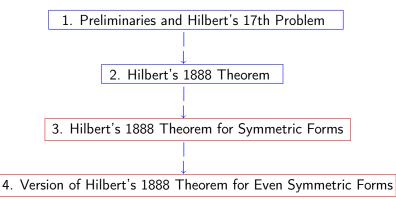
¹Dissertation of Ph.D. student Ms. Charu Goel

1. Preliminaries and Hilbert's 17th Problem

¹Dissertation of Ph.D. student Ms. Charu Goel



¹Dissertation of Ph.D. student Ms. Charu Goel



¹Dissertation of Ph.D. student Ms. Charu Goel

- ▶ For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}] = \mathbb{R}[x_1, \dots, x_n]$ is called
 - ▶ nonnegative or positive semidefinite (psd) if $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$

- ▶ For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}] = \mathbb{R}[x_1, \dots, x_n]$ is called
 - ▶ nonnegative or positive semidefinite (psd) if $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$
 - ▶ a sum of squares (sos) if $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[\underline{x}]$.

- ▶ For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}] = \mathbb{R}[x_1, \dots, x_n]$ is called
 - ▶ nonnegative or positive semidefinite (psd) if $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$
 - ▶ a sum of squares (sos) if $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[\underline{x}]$.
- ► Clearly every sos is psd from their representation.

- ▶ For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}] = \mathbb{R}[x_1, \dots, x_n]$ is called
 - ▶ nonnegative or positive semidefinite (psd) if $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$
 - ▶ a sum of squares (sos) if $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[\underline{x}]$.
- Clearly every sos is psd from their representation.
- What about converse?

- ▶ For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}] = \mathbb{R}[x_1, \dots, x_n]$ is called
 - ▶ nonnegative or positive semidefinite (psd) if $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$
 - ▶ a sum of squares (sos) if $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[\underline{x}]$.
- ► Clearly every sos is psd from their representation.
- ► What about converse?
- ▶ Hilbert's 17th Problem: Can we write every nonnegative polynomial p as a sum of squares of rational functions, i.e.

$$p = \sum_{i} \left(\frac{q_i}{r_i}\right)^2$$
 for some $q_i, r_i(\text{nonzero}) \in \mathbb{R}[\underline{x}]$?

- ▶ For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}] = \mathbb{R}[x_1, \dots, x_n]$ is called
 - ▶ nonnegative or positive semidefinite (psd) if $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$
 - ▶ a sum of squares (sos) if $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[\underline{x}]$.
- ► Clearly every sos is psd from their representation.
- ► What about converse?
- ► Hilbert's 17th Problem: Can we write every nonnegative polynomial p as a sum of squares of rational functions, i.e.

$$p = \sum_{i} \left(\frac{q_i}{r_i}\right)^2$$
 for some $q_i, r_i (\mathsf{nonzero}) \in \mathbb{R}[\underline{x}]$?

Solution (Artin, Schreier 1920's): YES

- ▶ For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}] = \mathbb{R}[x_1, \dots, x_n]$ is called
 - ▶ nonnegative or positive semidefinite (psd) if $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$
 - ▶ a sum of squares (sos) if $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[\underline{x}]$.
- ► Clearly every sos is psd from their representation.
- ▶ What about converse?
- ► Hilbert's 17th Problem: Can we write every nonnegative polynomial *p* as a sum of squares of rational functions, i.e.

$$p = \sum_{i} \left(\frac{q_i}{r_i}\right)^2$$
 for some $q_i, r_i (\mathsf{nonzero}) \in \mathbb{R}[\underline{x}]$?

Solution (Artin, Schreier 1920's): YES

Example: The Motzkin polynomial

 $M(x, y, z) = z^6 + x^4y^2 + x^2y^4 - 3x^2y^2z^2$ is a sos of rational functions, since $(x^2 + y^2 + z^2)^2 M(x, y, z)$ is a sos.

- ▶ For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}] = \mathbb{R}[x_1, \dots, x_n]$ is called
 - ▶ nonnegative or positive semidefinite (psd) if $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$
 - ▶ a sum of squares (sos) if $p = \sum_i q_i^2$ for some $q_i \in \mathbb{R}[\underline{x}]$.
- Clearly every sos is psd from their representation.
- What about converse?
- ▶ Hilbert's 17th Problem: Can we write every nonnegative polynomial p as a sum of squares of rational functions, i.e. $p = \sum \left(rac{q_i}{r_i}
 ight)^2$ for some $q_i, r_i (ext{nonzero}) \in \mathbb{R}[\underline{x}]$?

$$p = \sum_{i} \left(\frac{-}{r_i}\right) \text{ for some } q_i, r_i (\text{nonzero}) \in$$

Solution (Artin, Schreier 1920's): YES Example: The Motzkin polynomial $M(x, y, z) = z^6 + x^4y^2 + x^2y^4 - 3x^2y^2z^2$ is a sos of rational functions, since $(x^2 + y^2 + z^2)^2 M(x, y, z)$ is a sos.

But what if rational functions are not allowed in the sos representation and we want only sos of polynomials?

► The main question is: when can a psd polynomial be written as a sos of polynomials?

- ► The main question is: when can a psd polynomial be written as a sos of polynomials?
- ▶ Since a polynomial $p \in \mathbb{R}[X]$ of degree m is psd (resp. sos) iff its homogenization $p_h(x_0, x_1, \dots, x_n) := x_0^m p(x_1/x_0, \dots, x_n/x_0)$ is psd (resp. sos),

- ► The main question is: when can a psd polynomial be written as a sos of polynomials?
- ▶ Since a polynomial $p \in \mathbb{R}[X]$ of degree m is psd (resp. sos) iff its homogenization $p_h(x_0, x_1, \ldots, x_n) := x_0^m p(x_1/x_0, \ldots, x_n/x_0)$ is psd (resp. sos), it is sufficient to consider this question for homogeneous polynomials (i.e. polynomials in which all terms have the same degree), also called **forms**. Let

- ► The main question is: when can a psd polynomial be written as a sos of polynomials?
- Since a polynomial $p \in \mathbb{R}[X]$ of degree m is psd (resp. sos) iff its homogenization $p_h(x_0, x_1, \ldots, x_n) := x_0^m p(x_1/x_0, \ldots, x_n/x_0)$ is psd (resp. sos), it is sufficient to consider this question for homogeneous polynomials (i.e. polynomials in which all terms have the same degree), also called **forms**. Let
- ▶ $\mathcal{F}_{n,m}$ be the vector space of all real forms in n variables and degree m, called n-ary m-ics, where $n, m \in \mathbb{N}$.

- ► The main question is: when can a psd polynomial be written as a sos of polynomials?
- Since a polynomial $p \in \mathbb{R}[X]$ of degree m is psd (resp. sos) iff its homogenization $p_h(x_0, x_1, \ldots, x_n) := x_0^m p(x_1/x_0, \ldots, x_n/x_0)$ is psd (resp. sos), it is sufficient to consider this question for homogeneous polynomials (i.e. polynomials in which all terms have the same degree), also called **forms**. Let
- ▶ $\mathcal{F}_{n,m}$ be the vector space of all real forms in n variables and degree m, called \mathbf{n} -ary \mathbf{m} -ics, where $n, m \in \mathbb{N}$.
- $ightharpoonup \mathcal{P}_{n,m} := \{ f \in \mathcal{F}_{n,m} \mid f \text{ is psd } \}, \text{ the set of psd forms.}$
- ▶ $\sum_{n,m}$:= { $f \in \mathcal{F}_{n,m} \mid f \text{ is sos}$ }, the set of sos forms.

- ► The main question is: when can a psd polynomial be written as a sos of polynomials?
- Since a polynomial $p \in \mathbb{R}[X]$ of degree m is psd (resp. sos) iff its homogenization $p_h(x_0, x_1, \ldots, x_n) := x_0^m p(x_1/x_0, \ldots, x_n/x_0)$ is psd (resp. sos), it is sufficient to consider this question for homogeneous polynomials (i.e. polynomials in which all terms have the same degree), also called **forms**. Let
- ▶ $\mathcal{F}_{n,m}$ be the vector space of all real forms in n variables and degree m, called n-ary m-ics, where $n, m \in \mathbb{N}$.
- $ightharpoonup \mathcal{P}_{n,m} := \{ f \in \mathcal{F}_{n,m} \mid f \text{ is psd } \}, \text{ the set of psd forms.}$
- ▶ $\sum_{n,m}$:= { $f \in \mathcal{F}_{n,m} \mid f \text{ is sos}$ }, the set of sos forms.
- Since a psd form always has even degree, it is sufficient to study this question for even degree forms.

- ► The main question is: when can a psd polynomial be written as a sos of polynomials?
- Since a polynomial $p \in \mathbb{R}[X]$ of degree m is psd (resp. sos) iff its homogenization $p_h(x_0, x_1, \ldots, x_n) := x_0^m p(x_1/x_0, \ldots, x_n/x_0)$ is psd (resp. sos), it is sufficient to consider this question for homogeneous polynomials (i.e. polynomials in which all terms have the same degree), also called **forms**. Let
- ▶ $\mathcal{F}_{n,m}$ be the vector space of all real forms in n variables and degree m, called \mathbf{n} -ary \mathbf{m} -ics, where $n, m \in \mathbb{N}$.
- $ightharpoonup \mathcal{P}_{n,m} := \{ f \in \mathcal{F}_{n,m} \mid f \text{ is psd } \}, \text{ the set of psd forms.}$
- ▶ $\sum_{n,m}$:= { $f \in \mathcal{F}_{n,m} \mid f \text{ is sos}$ }, the set of sos forms.
- ▶ Since a psd form always has even degree, it is sufficient to study this question for even degree forms. So we will write $\mathcal{P}_{n,2d}$ and $\Sigma_{n,2d}$ instead of $\mathcal{P}_{n,m}$ and $\Sigma_{n,m}$.

- ► The main question is: when can a psd polynomial be written as a sos of polynomials?
- ▶ Since a polynomial $p \in \mathbb{R}[X]$ of degree m is psd (resp. sos) iff its homogenization $p_h(x_0, x_1, \ldots, x_n) := x_0^m p(x_1/x_0, \ldots, x_n/x_0)$ is psd (resp. sos), it is sufficient to consider this question for homogeneous polynomials (i.e. polynomials in which all terms have the same degree), also called **forms**. Let
- ▶ $\mathcal{F}_{n,m}$ be the vector space of all real forms in n variables and degree m, called \mathbf{n} -ary \mathbf{m} -ics, where $n, m \in \mathbb{N}$.
- $ightharpoonup \mathcal{P}_{n,m} := \{ f \in \mathcal{F}_{n,m} \mid f \text{ is psd } \}, \text{ the set of psd forms.}$
- ▶ $\sum_{n,m}$:= { $f \in \mathcal{F}_{n,m} \mid f \text{ is sos}$ }, the set of sos forms.
- ▶ Since a psd form always has even degree, it is sufficient to study this question for even degree forms. So we will write $\mathcal{P}_{n,2d}$ and $\Sigma_{n,2d}$ instead of $\mathcal{P}_{n,m}$ and $\Sigma_{n,m}$.
- ▶ (Q): For what pairs (n, 2d) we have $\mathcal{P}_{n,2d} \subseteq \Sigma_{n,2d}$?

► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).

- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).
- ▶ The arguments for the equality $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n=2 and d=1 were already known in the late 19th century (factorization theory of binary forms and diagonalization theorem of quadratic forms).

- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).
- ▶ The arguments for the equality $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n=2 and d=1 were already known in the late 19th century (factorization theory of binary forms and diagonalization theorem of quadratic forms). For equality $\mathcal{P}_{3,4} = \sum_{3,4}$, Hilbert showed that indeed every psd ternary quartic is a sum of at most three squares of quadratic forms.

- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).
- ▶ The arguments for the equality $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n=2 and d=1 were already known in the late 19th century (factorization theory of binary forms and diagonalization theorem of quadratic forms). For equality $\mathcal{P}_{3,4} = \sum_{3,4}$, Hilbert showed that indeed every psd ternary quartic is a sum of at most three squares of quadratic forms. The idea of Hilbert's proof is to associate to any ternary quartic a curve and then use the classically well-developed theory of algebraic curves.

- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).
- ▶ The arguments for the equality $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n=2 and d=1were already known in the late 19th century (factorization theory of binary forms and diagonalization theorem of quadratic forms). For equality $\mathcal{P}_{3,4} = \sum_{3,4}$, Hilbert showed that indeed every psd ternary quartic is a sum of at most three squares of quadratic forms. The idea of Hilbert's proof is to associate to any ternary quartic a curve and then use the classically well-developed theory of algebraic curves. Choi and Lam in 1977, gave an elementary proof of the equality $\mathcal{P}_{3,4} = \sum_{3,4}$, by exploiting extremal forms. They, however, did not show that only three quadratic forms suffice in such a sos representation.

- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).
- ▶ The arguments for the equality $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n=2 and d=1were already known in the late 19th century (factorization theory of binary forms and diagonalization theorem of quadratic forms). For equality $\mathcal{P}_{3,4} = \sum_{3,4}$, Hilbert showed that indeed every psd ternary quartic is a sum of at most three squares of quadratic forms. The idea of Hilbert's proof is to associate to any ternary quartic a curve and then use the classically well-developed theory of algebraic curves. Choi and Lam in 1977, gave an elementary proof of the equality $\mathcal{P}_{3,4} = \sum_{3,4}$, by exploiting extremal forms. They, however, did not show that only three quadratic forms suffice in such a sos representation. A modern simplified version of Hilbert's proof due to Cassels, was given by Rajwade in 1993, this proof also shows that three squares suffice.

- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).
- ▶ The arguments for the equality $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n=2 and d=1were already known in the late 19th century (factorization theory of binary forms and diagonalization theorem of quadratic forms). For equality $\mathcal{P}_{3,4} = \sum_{3,4}$, Hilbert showed that indeed every psd ternary quartic is a sum of at most three squares of quadratic forms. The idea of Hilbert's proof is to associate to any ternary quartic a curve and then use the classically well-developed theory of algebraic curves. Choi and Lam in 1977, gave an elementary proof of the equality $\mathcal{P}_{3,4} = \sum_{3,4}$, by exploiting extremal forms. They, however, did not show that only three quadratic forms suffice in such a sos representation. A modern simplified version of Hilbert's proof due to Cassels, was given by Rajwade in 1993, this proof also shows that three squares suffice. There are new modern proofs by Powers, Scheiderer, Sottile and Reznick in 2004, and by Pfister and Scheiderer in 2012.

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+i,2d} \forall j \geq 0$.

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+j,2d} \forall j \geq 0$. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \forall i \geq 0$.

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+j,2d} \forall \ j \geq 0$. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \ \forall \ i \geq 0$. Indeed, assume for a contradiction that

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+j,2d} \forall j \geq 0$. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \forall i \geq 0$. Indeed, assume for a contradiction that $x_1^2 f(x_1,\ldots,x_n) = \sum_{j=1}^k h_j^2(x_1,\ldots,x_n)$.

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+j,2d} \forall j \geq 0$. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \forall i \geq 0$. Indeed, assume for a contradiction that $x_1^2 f(x_1,\ldots,x_n) = \sum_{j=1}^k h_j^2(x_1,\ldots,x_n)$. The L.H.S vanishes at $x_1 = 0$, so does the R.H.S.

Conversely, Hilbert proved that $\Sigma_{4,4} \subseteq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subseteq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subseteq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subseteq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subseteq \mathcal{P}_{n,2d}$ for all n > 3, 2d > 4 and $(n, 2d) \neq (3, 4)$.

Proof. Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+i,2d} \forall j \geq 0$. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,2d+2i} \setminus \sum_{n,2d+2i} \forall i \geq 0$. Indeed, assume for a contradiction that $x_1^2 f(x_1, \dots, x_n) = \sum_{i=1}^k h_i^2(x_1, \dots, x_n)$. The L.H.S vanishes at $x_1 = 0$, so does the R.H.S. It follows that $h_j(x_1,\ldots,x_n)$ vanishes at $x_1=0$ and so $x_1\mid h_i\;\forall\; j$, so $x_1^2\mid h_i^2\;\forall\; j$. So, R.H.S is divisible by x_1^2 .

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+j,2d} \forall \ j \geq 0$. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \forall \ i \geq 0$. Indeed, assume for a contradiction that $x_1^2 f(x_1,\ldots,x_n) = \sum_{j=1}^k h_j^2(x_1,\ldots,x_n)$. The L.H.S vanishes at $x_1 = 0$, so does the R.H.S. It follows that $h_j(x_1,\ldots,x_n)$ vanishes at $x_1 = 0$ and so $x_1 \mid h_j \ \forall \ j$, so $x_1^2 \mid h_j^2 \ \forall \ j$. So, R.H.S is divisible by x_1^2 . Dividing both sides by x_1^2 we get a sos representation of f, a contradiction.

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+j,2d} \forall \ j \geq 0$. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \forall \ i \geq 0$. Indeed, assume for a contradiction that $x_1^2 f(x_1,\ldots,x_n) = \sum_{j=1}^k h_j^2(x_1,\ldots,x_n)$. The L.H.S vanishes at $x_1=0$, so does the R.H.S. It follows that $h_j(x_1,\ldots,x_n)$ vanishes at $x_1=0$ and so $x_1 \mid h_j \ \forall \ j$, so $x_1^2 \mid h_j^2 \ \forall \ j$. So, R.H.S is divisible by x_1^2 . Dividing both sides by x_1^2 we get a sos representation of f, a contradiction. So, $x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} for i=1$.

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially, $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+j,2d} \forall j \geq 0$. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \forall \ i \geq 0$. Indeed, assume for a contradiction that $x_1^2 f(x_1,\ldots,x_n) = \sum_{j=1}^k h_j^2(x_1,\ldots,x_n)$. The L.H.S vanishes at $x_1=0$, so does the R.H.S. It follows that $h_j(x_1,\ldots,x_n)$ vanishes at $x_1=0$ and so $x_1\mid h_j \ \forall \ j,\ \text{so}\ x_1^2\mid h_j^2 \ \forall \ j.$ So, R.H.S is divisible by x_1^2 . Dividing both sides by x_1^2 we get a sos representation of f, a contradiction. So, $x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} f \in \mathcal{P}_{n,\ 2d+2i}$ for i=1. Proceed by induction on i to get

Conversely, Hilbert proved that $\Sigma_{4,4}\subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6}\subsetneq \mathcal{P}_{3,6}$, and observed:

▶ Proposition 2.1[Reduction to Basic Cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \geq 3, 2d \geq 4$ and $(n,2d) \neq (3,4)$.

Proof.

Trivially,
$$f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow f \in \mathcal{P}_{n+j,2d} \setminus \sum_{n+j,2d} \forall j \geq 0$$
. We claim: $f \in \mathcal{P}_{n,2d} \setminus \sum_{n,2d} \Rightarrow x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \forall \ i \geq 0$. Indeed, assume for a contradiction that $x_1^2 f(x_1,\ldots,x_n) = \sum_{j=1}^k h_j^2(x_1,\ldots,x_n)$. The L.H.S vanishes at $x_1 = 0$, so does the R.H.S. It follows that $h_j(x_1,\ldots,x_n)$ vanishes at $x_1 = 0$ and so $x_1 \mid h_j \ \forall \ j$, so $x_1^2 \mid h_j^2 \ \forall \ j$. So, R.H.S is divisible by x_1^2 . Dividing both sides by x_1^2 we get a sos representation of f , a contradiction. So, $x_1^{2i} f \in \mathcal{P}_{n,\ 2d+2i} \setminus \sum_{n,\ 2d+2i} \int x_{n,\ 2d+2i} \forall i \geq 1$.

Examples of psd not sos quaternary quartics and ternary sextics:

Examples of psd not sos quaternary quartics and ternary sextics:

► Motzkin, 1967 $M(x,y,z) := z^6 + x^4y^2 + x^2y^4 - 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$

Examples of psd not sos quaternary quartics and ternary sextics:

- ► Motzkin, 1967 $M(x,y,z) := z^6 + x^4y^2 + x^2y^4 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$
- ► Robinson, 1969 $R(x, y, z) := x^6 + y^6 + z^6 (x^4y^2 + y^4z^2 + z^4x^2 + x^2y^4 + y^2z^4 + z^2x^4) + 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6},$

Examples of psd not sos quaternary quartics and ternary sextics:

- ► Motzkin, 1967 $M(x,y,z) := z^6 + x^4y^2 + x^2y^4 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$
- ▶ Robinson, 1969

$$R(x,y,z) := x^6 + y^6 + z^6 - (x^4y^2 + y^4z^2 + z^4x^2 + x^2y^4 + y^2z^4 + z^2x^4) + 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6},$$

$$W(x,y,z,w) := x^{2}(x-w)^{2} + (y(y-w) - z(z-w))^{2} + 2yz(x+y-w)(x+z-w) \in \mathcal{P}_{4,4} \setminus \Sigma_{4,4}$$

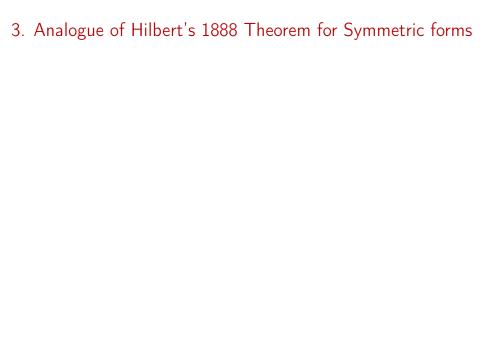
Examples of psd not sos quaternary quartics and ternary sextics:

- ► Motzkin, 1967 $M(x, y, z) := z^6 + x^4y^2 + x^2y^4 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$
- Robinson, 1969

$$R(x,y,z) := x^6 + y^6 + z^6 - (x^4y^2 + y^4z^2 + z^4x^2 + x^2y^4 + y^2z^4 + z^2x^4) + 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6},$$

$$W(x, y, z, w) := x^{2}(x - w)^{2} + (y(y - w) - z(z - w))^{2} + 2yz(x + y - w)(x + z - w) \in \mathcal{P}_{4,4} \setminus \Sigma_{4,4}$$

► Choi and Lam, 1976 $Q(x, y, z, w) := w^4 + x^2y^2 + y^2z^2 + z^2x^2 - 4xyzw \in \mathcal{P}_{4,4} \setminus \Sigma_{4,4},$ $S(x, y, z) = x^4y^2 + y^4z^2 + z^4x^2 - 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$



▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:

$$f \in \mathcal{F}_{n,2d}$$
 is called **symmetric** if $\forall \sigma \in \mathcal{S}_n$: $f^{\sigma}(x_1,\ldots,x_n) := f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ is equal to $f(x_1,\ldots,x_n)$.

- ▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$: $f^{\sigma}(x_1, \dots, x_n) := f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$ is equal to $f(x_1, \dots, x_n)$.
- $ightharpoonup S\mathcal{P}_{n,2d} := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and psd}\}$

- ▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:
 - $f^{\sigma}(x_1,\ldots,x_n):=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ is equal to $f(x_1,\ldots,x_n)$.
 - ▶ $SP_{n,2d}$:= { $f \in \mathcal{F}_{n,2d} \mid f$ is symmetric and psd}
 - ▶ $S\Sigma_{n,2d}$:= { $f \in \mathcal{F}_{n,2d} \mid f$ is symmetric and sos}

- ▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:
 - $f^{\sigma}(x_1,\ldots,x_n):=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ is equal to $f(x_1,\ldots,x_n)$.
- ▶ $SP_{n,2d}$:= { $f \in \mathcal{F}_{n,2d} \mid f$ is symmetric and psd}
- ▶ $S\Sigma_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and sos} \}$
- ▶ Q(S): For what pairs (n, 2d) we have $SP_{n,2d} \subseteq S\Sigma_{n,2d}$?

▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:

 $f^{\sigma}(x_1,\ldots,x_n):=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ is equal to $f(x_1,\ldots,x_n)$.

► $SP_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and psd} \}$ ► $S\Sigma_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and sos} \}$

▶ $\mathcal{Q}(S)$: For what pairs (n,2d) we have $S\mathcal{P}_{n,2d} \subseteq S\Sigma_{n,2d}$?

► Theorem (Choi and Lam, 1976): $SP_{n,2d} = S\Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).

▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:

 $f^{\sigma}(x_1,\ldots,x_n):=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ is equal to $f(x_1,\ldots,x_n)$.

► $SP_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and psd} \}$ ► $S\Sigma_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and sos} \}$

▶ $\mathcal{Q}(S)$: For what pairs (n,2d) we have $S\mathcal{P}_{n,2d} \subseteq S\Sigma_{n,2d}$?

► Theorem (Choi and Lam, 1976): $SP_{n,2d} = S\Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).

▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:

 $f^{\sigma}(x_1,\ldots,x_n):=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ is equal to $f(x_1,\ldots,x_n)$.

► $SP_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and psd} \}$ ► $S\Sigma_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and sos} \}$

▶ Q(S): For what pairs (n, 2d) we have $SP_{n,2d} \subseteq S\Sigma_{n,2d}$?

► Theorem (Choi and Lam, 1976): $SP_{n,2d} = S\Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).

▶ Proposition 3.1 [Reduction to Basic Cases] If $S\Sigma_{n,4} \subsetneq S\mathcal{P}_{n,4}$

▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:

 $f^{\sigma}(x_1, \dots, x_n) := f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$ is equal to $f(x_1, \dots, x_n)$. $\triangleright S\mathcal{P}_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and psd} \}$

 $\blacktriangleright \ \ \mathcal{S}\Sigma_{\textit{n},2\textit{d}} := \{f \in \mathcal{F}_{\textit{n},2\textit{d}} \mid f \text{ is symmetric and sos}\}$

▶ Q(S): For what pairs (n, 2d) we have $S\mathcal{P}_{n,2d} \subseteq S\Sigma_{n,2d}$? ▶ Theorem (Choi and Lam. 1976): $S\mathcal{P}_{n,2d} = S\Sigma_{n,2d}$ if and on

► Theorem (Choi and Lam, 1976): $SP_{n,2d} = S\Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).

▶ Proposition 3.1 [Reduction to Basic Cases] If $S\Sigma_{n,4} \subsetneq S\mathcal{P}_{n,4}$ for all $n \ge 4$ and $S\Sigma_{3,6} \subsetneq S\mathcal{P}_{3,6}$,

▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:

 $f^{\sigma}(x_1, \dots, x_n) := f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$ is equal to $f(x_1, \dots, x_n)$. $\triangleright S\mathcal{P}_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and psd} \}$

► $S\Sigma_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and sos} \}$

▶ Q(S): For what pairs (n,2d) we have $SP_{n,2d} \subseteq S\Sigma_{n,2d}$?

► Theorem (Choi and Lam, 1976): $SP_{n,2d} = S\Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).

▶ Proposition 3.1 [Reduction to Basic Cases] If $S\Sigma_{n,4} \subsetneq S\mathcal{P}_{n,4}$ for all $n \geq 4$ and $S\Sigma_{3,6} \subsetneq S\mathcal{P}_{3,6}$,then $S\Sigma_{n,2d} \subsetneq S\mathcal{P}_{n,2d}$ for all $n \geq 3, d \geq 2$ and $(n,2d) \neq (3,4)$.

- ▶ A form $f \in \mathcal{F}_{n,2d}$ is called **symmetric** if $\forall \sigma \in S_n$:
- $f^{\sigma}(x_1,\ldots,x_n):=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ is equal to $f(x_1,\ldots,x_n)$.
- ► $SP_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and psd} \}$ ► $S\Sigma_{n,2d} := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is symmetric and sos} \}$
- ▶ Q(S): For what pairs (n,2d) we have $SP_{n,2d} \subseteq S\Sigma_{n,2d}$?
- ► Theorem (Choi and Lam, 1976): $SP_{n,2d} = S\Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n,2d) = (3,4).
- ▶ Proposition 3.1 [Reduction to Basic Cases] If $S\Sigma_{n,4} \subsetneq S\mathcal{P}_{n,4}$ for all $n \ge 4$ and $S\Sigma_{3,6} \subsetneq S\mathcal{P}_{3,6}$,then $S\Sigma_{n,2d} \subsetneq S\mathcal{P}_{n,2d}$ for all $n \ge 3, d \ge 2$ and $(n,2d) \ne (3,4)$.
- ▶ Proposition [BCR]: Let R be a real closed field and p an irreducible polynomial in $R[x_1, ..., x_n]$. TFAE:
 - 1. $(p) = \mathcal{I}(Z(p))$, where $\mathcal{I}(A) = \{g \in R[\underline{x}] \mid g(\underline{a}) = 0 \ \forall \ \underline{a} \in A\}$ is the ideal of vanishing polynomials on $A \subseteq R^n$ and $Z(p) = \{\underline{x} \in R^n \mid p(\underline{x}) = 0\}$ is the zero set of p.
 - 2. The sign of the polynomial p changes on R^n (i.e. p(x)p(y) < 0 for some $x, y \in R^n$).

▶ Corollary 3.2 (G.): Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1, \ldots, x_n]$. Then $p^2 f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.

- ▶ Corollary 3.2 (G.): Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1, \dots, x_n]$. Then $p^2 f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.
- ▶ Proof of Proposition 3.1 "Reduction to Basic Cases": If $f \in S\mathcal{P}_{n,2d} \setminus S\Sigma_{n,2d}$, then $(x_1 + \ldots + x_n)^{2i} f \in S\mathcal{P}_{n,2d+2i} \setminus S\Sigma_{n,2d+2i} \, \forall \, i \geq 0$.

- ▶ Corollary 3.2 (G.): Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1, \dots, x_n]$. Then $p^2 f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.
- $f \in S\mathcal{P}_{n,2d} \setminus S\Sigma_{n,2d}$, then $(x_1 + \ldots + x_n)^{2i} f \in S\mathcal{P}_{n,2d+2i} \setminus S\Sigma_{n,2d+2i} \ orall \ i \ge 0$.

▶ Proof of Proposition 3.1 "Reduction to Basic Cases": If

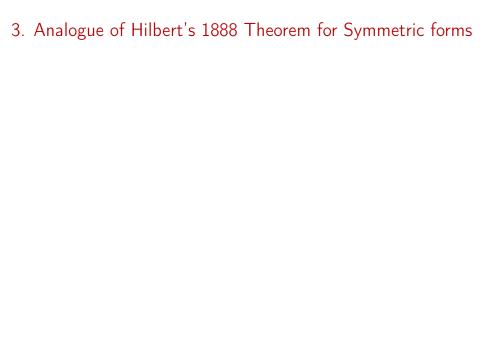
▶ Symmetric psd not sos ternary sextics and n—ary quartics for $n \ge 4$:

- ▶ Corollary 3.2 (G.): Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1,\ldots,x_n]$. Then $p^2f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.
- ▶ Proof of Proposition 3.1 "Reduction to Basic Cases": If $f \in S\mathcal{P}_{n,2d} \setminus S\Sigma_{n,2d}$, then $(x_1 + \ldots + x_n)^{2i} f \in S\mathcal{P}_{n,2d+2i} \setminus S\Sigma_{n,2d+2i} \, \forall \, i \geq 0$.
- ▶ Symmetric psd not sos ternary sextics and n—ary quartics for $n \ge 4$:
 - ▶ Robinson, 1969:

$$R(x,y,z) := x^6 + y^6 + z^6 - (x^4y^2 + y^4z^2 + z^4x^2 + x^2y^4 + y^2z^4 + z^2x^4) + 3x^2y^2z^2 \in S\mathcal{P}_{3,6} \setminus S\Sigma_{3,6}$$

- ▶ Corollary 3.2 (G.): Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1,\ldots,x_n]$. Then $p^2f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.
- ▶ Proof of Proposition 3.1 "Reduction to Basic Cases": If $f \in S\mathcal{P}_{n,2d} \setminus S\Sigma_{n,2d}$, then $(x_1 + \ldots + x_n)^{2i} f \in S\mathcal{P}_{n,2d+2i} \setminus S\Sigma_{n,2d+2i} \ \forall \ i \geq 0$.
- ▶ Symmetric psd not sos ternary sextics and n-ary quartics for $n \ge 4$:
 - ► Robinson, 1969: $R(x, y, z) := x^6 + y^6 + z^6 (x^4y^2 + y^4z^2 + z^4x^2 + x^2y^4 + y^2z^4 + z^2x^4) + 3x^2y^2z^2 \in S\mathcal{P}_{3,6} \setminus S\Sigma_{3,6}$
 - Choi-Lam, 1976: $f_{4,4} := \sum^6 x^2 y^2 + \sum^{12} x^2 yz 2xyzw \in S\mathcal{P}_{4,4} \setminus S\Sigma_{4,4}.$ ["the construction of $f_{n,4} \in S\mathcal{P}_{n,4} \setminus S\Sigma_{n,4}$ (for $n \geq 4$) requires considerable effort, so we shall not go into the full details here. Suffice it to record the special form $f_{4,4}$ "]

- ▶ Corollary 3.2 (G.): Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1,\ldots,x_n]$. Then $p^2f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.
- ▶ Proof of Proposition 3.1 "Reduction to Basic Cases": If $f \in S\mathcal{P}_{n,2d} \setminus S\Sigma_{n,2d}$, then $(x_1 + \ldots + x_n)^{2i} f \in S\mathcal{P}_{n,2d+2i} \setminus S\Sigma_{n,2d+2i} \ \forall \ i \geq 0$.
- ▶ Symmetric psd not sos ternary sextics and n—ary quartics for $n \ge 4$:
 - ► Robinson, 1969: $R(x, y, z) := x^6 + y^6 + z^6 (x^4y^2 + y^4z^2 + z^4x^2 + x^2y^4 + y^2z^4 + z^2x^4) + 3x^2y^2z^2 \in S\mathcal{P}_{3,6} \setminus S\Sigma_{3,6}$
 - ► Choi-Lam, 1976: $f_{4,4} := \sum^6 x^2 y^2 + \sum^{12} x^2 yz 2xyzw \in \mathcal{SP}_{4,4} \setminus \mathcal{S}\Sigma_{4,4}.$ ["the construction of $f_{n,4} \in \mathcal{SP}_{n,4} \setminus \mathcal{S}\Sigma_{n,4}$ (for $n \geq 4$) requires considerable effort, so we shall not go into the full details here. Suffice it to record the special form $f_{4,4}$ "]
 - ▶ We will construct explicit forms $f \in SP_{n,4} \setminus S\Sigma_{n,4}$ for $n \ge 5$



▶ Timofte's Half Degree Principle for Symmetric Polynomials : A symmetric real polynomial of degree 2d in n variables is nonnegative (> 0 respectively) on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative (> 0 respectively) on the subset $\Lambda_{n,k} := \{\underline{x} \in \mathbb{R}^n \mid \text{ number of distinct components in } x \text{ is } < k \}$, where $k := \max\{2, d\}$.

- ▶ Timofte's Half Degree Principle for Symmetric Polynomials : A symmetric real polynomial of degree 2d in n variables is nonnegative (> 0 respectively) on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative (> 0 respectively) on the subset $\Lambda_{n,k} := \{\underline{x} \in \mathbb{R}^n \mid \text{ number of distinct components in } \underline{x} \text{ is } \leq k \}$, where $k := \max\{2, d\}$.
- ▶ A form $f \in \mathcal{F}_{n,2d}$ is called **even symmetric** if it is symmetric and in each term of f every variable has even degree.

- ▶ Timofte's Half Degree Principle for Symmetric Polynomials : A symmetric real polynomial of degree 2d in n variables is nonnegative (> 0 respectively) on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative (> 0 respectively) on the subset $\Lambda_{n,k} := \{\underline{x} \in \mathbb{R}^n \mid \text{ number of distinct components in } \underline{x} \text{ is } \leq k \}$, where $k := \max\{2, d\}$.
- ▶ A form $f \in \mathcal{F}_{n,2d}$ is called **even symmetric** if it is symmetric and in each term of f every variable has even degree.
- ► Timofte's Half Degree Principle for Even Symmetric Polynomials : An even symmetric real polynomial of degree $2d \ge 4$ in n variables is nonnegative (> 0 respectively) on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative (> 0 respectively) on the subset $\Omega_{n,d/2} := \{\underline{x} \in \mathbb{R}^n_+ \mid \text{number of distinct nonzero components in } \underline{x} \text{ is } \le d/2 \}$.

- ▶ Timofte's Half Degree Principle for Symmetric Polynomials : A symmetric real polynomial of degree 2d in n variables is nonnegative (> 0 respectively) on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative (> 0 respectively) on the subset $\Lambda_{n,k} := \{\underline{x} \in \mathbb{R}^n \mid \text{ number of distinct components in } \underline{x} \text{ is } \leq k \}$, where $k := \max\{2, d\}$.
- ▶ A form $f \in \mathcal{F}_{n,2d}$ is called **even symmetric** if it is symmetric and in each term of f every variable has even degree.
- ► Timofte's Half Degree Principle for Even Symmetric Polynomials : An even symmetric real polynomial of degree $2d \ge 4$ in n variables is nonnegative (> 0 respectively) on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative (> 0 respectively) on the subset $\Omega_{n,d/2} := \{\underline{x} \in \mathbb{R}^n_+ \mid \text{number of distinct nonzero components in } \underline{x} \text{ is } \le d/2 \}.$
- ▶ Corollary : (i) For a symmetric real polynomial f of degree 2d in n variables $\exists \underline{x} \in \mathbb{R}^n$ s.t. $f(\underline{x}) = 0 \Leftrightarrow \exists \underline{x} \in \Lambda_{n,k}$ s.t. $f(\underline{x}) = 0$.

- ▶ Timofte's Half Degree Principle for Symmetric Polynomials : A symmetric real polynomial of degree 2d in n variables is nonnegative (> 0 respectively) on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative (> 0 respectively) on the subset $\Lambda_{n,k} := \{\underline{x} \in \mathbb{R}^n \mid \text{ number of distinct components in } \underline{x} \text{ is } \leq k \}$, where $k := \max\{2, d\}$.
- ▶ A form $f \in \mathcal{F}_{n,2d}$ is called **even symmetric** if it is symmetric and in each term of f every variable has even degree.
- ▶ Timofte's Half Degree Principle for Even Symmetric Polynomials : An even symmetric real polynomial of degree $2d \ge 4$ in n variables is nonnegative (> 0 respectively) on $\mathbb{R}^n \Leftrightarrow$ it is nonnegative (> 0 respectively) on the subset $\Omega_{n,d/2} := \{\underline{x} \in \mathbb{R}^n_+ \mid \text{number of distinct nonzero components in } \underline{x} \text{ is } \le d/2 \}.$
- Corollary: (i) For a symmetric real polynomial f of degree 2d in n variables ∃ x ∈ Rⁿ s.t. f(x) = 0 ⇔ ∃ x ∈ Λ_{n,k} s.t. f(x) = 0.
 (ii) For an even symmetric real polynomial f of degree 2d in n variables ∃ x ∈ Rⁿ s.t. f(x) = 0 ⇔ ∃ x ∈ Ω_{n,d/2} s.t. f(x) = 0.

3.1. Symmetric psd not sos n-ary quartics for n > 5

▶ Consider the following symmetric quartic in $n \ge 4$ variables,

$$L_n(x_1,...,x_n) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2,$$

where $m = [n/2].$

3.1. Symmetric psd not sos n-ary quartics for n > 5

ightharpoonup Consider the following symmetric quartic in $n \ge 4$ variables,

$$L_n(x_1, ..., x_n) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2,$$

where $m = [n/2].$

Proposition 3.3: L_n is psd for all n.

lacktriangle Consider the following symmetric quartic in $n\geq 4$ variables,

$$L_n(x_1,\ldots,x_n) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2,$$

where $m = \lfloor n/2 \rfloor$.

- **Proposition 3.3:** L_n is psd for all n.
- ▶ Theorem 3.4 (G.): If $n \ge 5$ is odd, then L_n is not a sos.

lacktriangle Consider the following symmetric quartic in $n\geq 4$ variables,

$$L_n(x_1,...,x_n) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2,$$

where $m = \lfloor n/2 \rfloor$.

- **Proposition 3.3:** L_n is psd for all n.
- ▶ Theorem 3.4 (G.): If $n \ge 5$ is odd, then L_n is not a sos.
- **Proposition 3.5:** L_n for even n is a sos.

▶ Consider the following symmetric quartic in $n \ge 4$ variables,

$$L_n(x_1, ..., x_n) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2,$$

where $m = \lfloor n/2 \rfloor$.

- ▶ Proposition 3.3: L_n is psd for all n.
- ▶ Theorem 3.4 (G.): If $n \ge 5$ is odd, then L_n is not a sos.
- **Proposition 3.5:** L_n for even n is a sos.

$$\left[L_{2m}(\underline{x}) = \sum_{i=1}^{n} (x_i - x_j)^2 \left(-(x_1 + \ldots + x_{2m}) + m(x_i + x_j) \right)^2 \right]$$

▶ Consider the following symmetric quartic in $n \ge 4$ variables,

$$L_n(x_1,...,x_n) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2,$$

where $m = [n/2].$

- **Proposition 3.3:** L_n is psd for all n.
- ▶ Theorem 3.4 (G.): If $n \ge 5$ is odd, then L_n is not a sos.
- ▶ Proposition 3.5: L_n for even n is a sos.

$$[L_{2m}(\underline{x}) = \sum_{i \in I} (x_i - x_j)^2 \Big(-(x_1 + \ldots + x_{2m}) + m(x_i + x_j) \Big)^2 \Big]$$

For $m \ge 2$, consider the following symmetric quartic in 2m variables, $C_{2m}(x_1, \ldots, x_{2m}) := L_{2m+1}(x_1, \ldots, x_{2m}, 0)$.

▶ Consider the following symmetric quartic in $n \ge 4$ variables,

$$L_n(x_1, ..., x_n) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2,$$

where $m = [n/2].$

- **Proposition 3.3:** L_n is psd for all n.
- ▶ Theorem 3.4 (G.): If $n \ge 5$ is odd, then L_n is not a sos.
- ▶ Proposition 3.5: L_n for even n is a sos.

$$\left[L_{2m}(\underline{x}) = \sum_{i < i} (x_i - x_j)^2 \left(-(x_1 + \ldots + x_{2m}) + m(x_i + x_j) \right)^2 \right]$$

- ► For $m \ge 2$, consider the following symmetric quartic in 2m variables, $C_{2m}(x_1, \ldots, x_{2m}) := L_{2m+1}(x_1, \ldots, x_{2m}, 0)$.
- ▶ For $m \ge 2$, $C_{2m}(x_1, ..., x_{2m})$ is psd.

▶ Consider the following symmetric quartic in $n \ge 4$ variables,

$$L_n(x_1, ..., x_n) := m(n-m) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2,$$

where $m = \lfloor n/2 \rfloor$.

- **Proposition 3.3:** L_n is psd for all n.
- ▶ Theorem 3.4 (G.): If $n \ge 5$ is odd, then L_n is not a sos.
- ▶ Proposition 3.5: L_n for even n is a sos.

$$\left[L_{2m}(\underline{x}) = \sum_{i < j} (x_i - x_j)^2 \left(-(x_1 + \ldots + x_{2m}) + m(x_i + x_j) \right)^2 \right]$$

- ► For $m \ge 2$, consider the following symmetric quartic in 2m variables, $C_{2m}(x_1, \ldots, x_{2m}) := L_{2m+1}(x_1, \ldots, x_{2m}, 0)$.
- ▶ For $m \ge 2$, $C_{2m}(x_1, ..., x_{2m})$ is psd.
- ▶ Theorem 3.6 (G.): For $m \ge 2$, $C_{2m}(x_1, ..., x_{2m})$ is not a sos.

▶ To prove: L_n is psd for all n.

- ▶ To prove: L_n is psd for all n.
 - ▶ $\Omega \subseteq \mathbb{R}^n$ is a **test set** for f if f is psd iff $f(\underline{x}) \ge 0$ for all $\underline{x} \in \Omega$.

- ▶ To prove: L_n is psd for all n.
 - ▶ $\Omega \subseteq \mathbb{R}^n$ is a **test set** for f if f is psd iff $f(\underline{x}) \ge 0$ for all $\underline{x} \in \Omega$.
 - ▶ **Theorem:** Let $n \ge 4$. A symmetric n—ary quartic f is psd iff $f(\underline{x}) \ge 0$ for every $\underline{x} \in \mathbb{R}^n$ with at most two distinct coordinates, i.e. $\Lambda_{n,2} := \{\underline{x} \in \mathbb{R}^n \mid x_i \in \{r,s\}; r \ne s, r, s \in \mathbb{R}\}$ is a test set for symmetric n—ary quartics.

- ▶ To prove: L_n is psd for all n.
 - ▶ $\Omega \subseteq \mathbb{R}^n$ is a **test set** for f if f is psd iff $f(\underline{x}) \ge 0$ for all $\underline{x} \in \Omega$.
 - ▶ **Theorem:** Let $n \ge 4$. A symmetric n—ary quartic f is psd iff $f(\underline{x}) \ge 0$ for every $\underline{x} \in \mathbb{R}^n$ with at most two distinct coordinates, i.e. $\Lambda_{n,2} := \{\underline{x} \in \mathbb{R}^n \mid x_i \in \{r,s\}; r \ne s, r, s \in \mathbb{R}\}$ is a test set for symmetric n—ary quartics.
- ▶ Proof: Enough to prove: $L_n \ge 0$ on $\Lambda_{n,2}$.

- ▶ To prove: L_n is psd for all n.
 - ▶ $\Omega \subseteq \mathbb{R}^n$ is a **test set** for f if f is psd iff $f(\underline{x}) \ge 0$ for all $\underline{x} \in \Omega$.
 - ▶ **Theorem:** Let $n \ge 4$. A symmetric n—ary quartic f is psd iff $f(\underline{x}) \ge 0$ for every $\underline{x} \in \mathbb{R}^n$ with at most two distinct coordinates, i.e. $\Lambda_{n,2} := \{\underline{x} \in \mathbb{R}^n \mid x_i \in \{r,s\}; r \ne s, r, s \in \mathbb{R}\}$ is a test set for symmetric n—ary quartics.
- ▶ Proof: Enough to prove: $L_n \ge 0$ on $\Lambda_{n,2}$.

Now for
$$\underline{x} \in \Lambda_{n,2} = \{(\underbrace{r, \dots, r}_{k}, \underbrace{s, \dots, s}_{n-k}) \mid r \neq s \in \mathbb{R}; 0 \leq k \leq n\}:$$

$$x_i - x_j = \begin{cases} \pm (r - s) \neq 0, & \text{for } k(n - k) \text{ terms,} \\ 0, & \text{otherwise} \end{cases}$$

- ▶ To prove: L_n is psd for all n.
 - ▶ $\Omega \subseteq \mathbb{R}^n$ is a **test set** for f if f is psd iff $f(\underline{x}) \ge 0$ for all $\underline{x} \in \Omega$.
 - ▶ **Theorem:** Let $n \ge 4$. A symmetric n—ary quartic f is psd iff $f(\underline{x}) \ge 0$ for every $\underline{x} \in \mathbb{R}^n$ with at most two distinct coordinates, i.e. $\Lambda_{n,2} := \{\underline{x} \in \mathbb{R}^n \mid x_i \in \{r,s\}; r \ne s, r,s \in \mathbb{R}\}$ is a test set for symmetric n—ary quartics.
- ▶ Proof: Enough to prove: $L_n \ge 0$ on $\Lambda_{n,2}$.

Now for
$$\underline{x} \in \Lambda_{n,2} = \{(\underbrace{r, \dots, r}_{k}, \underbrace{s, \dots, s}_{n-k}) \mid r \neq s \in \mathbb{R}; \ 0 \leq k \leq n\}:$$

$$x_{i} - x_{j} = \begin{cases} \pm (r - s) \neq 0, \text{ for } k(n - k) \text{ terms,} \\ 0, \text{ otherwise} \end{cases}$$
so, $L_{n}(\underline{x}) = m(n - m)k(n - k)(r - s)^{4} - [k(n - k)(r - s)^{2}]^{2}$

$$= k(n - k)(r - s)^{4}[m(n - m) - k(n - k)]$$

$$= k(n - k)(r - s)^{4}[(m - k)(n - m - k)] > 0.$$

▶ $SP_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$

- ▶ $SP_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$
- ▶ $S\Sigma_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos} \}$

- ▶ $SP_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$
- ▶ $S\Sigma_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos} \}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP_{n,2d}^e \subseteq S\Sigma_{n,2d}^e$?

- ▶ $SP_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$
- ▶ $S\Sigma_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos} \}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP_{n,2d}^e \subseteq S\Sigma_{n,2d}^e$?
- ► Known:
 - $SP_{n,2d}^e = S\Sigma_{n,2d}^e \text{ if } \underbrace{n=2, d=1, (n,2d)=(3,4)}_{\text{(by Hilbert's Theorem)}}$

- ▶ $SP_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$
- ▶ $S\Sigma_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos} \}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP_{n,2d}^e \subseteq S\Sigma_{n,2d}^e$?
- Known:
 - $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e \quad \text{if} \quad \underbrace{n=2,d=1,(n,2d)=(3,4)}_{\text{(by Hilbert's Theorem)}}, \underbrace{(n,4)_{n\geq 4},}_{\text{(C-L-R)}}, \underbrace{(3,8)}_{\text{(Harris)}}$

- ▶ $SP_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$
- ▶ $S\Sigma_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos} \}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP_{n,2d}^e \subseteq S\Sigma_{n,2d}^e$?
- ► Known:
 - $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e \quad \text{if} \quad \underbrace{n=2,d=1,(n,2d)=(3,4)}_{\text{(by Hilbert's Theorem)}}, \underbrace{(n,4)_{n\geq 4},}_{\text{(C-L-R)}}, \underbrace{(3,8)}_{\text{(Harris)}}$
 - $> S\mathcal{P}_{n,2d}^e \supseteq S\Sigma_{n,2d}^e \text{ for } (n,2d) = \underbrace{(n,6)_{n\geq 3}}_{\text{(C-L-R)}}, \underbrace{(3,10),(4,8)}_{\text{(Harris)}}.$

▶ To get a complete answer to $Q(S^e)$ it is interesting to look at the following remaining cases:

- ▶ To get a complete answer to $\mathcal{Q}(S^e)$ it is interesting to look at the following remaining cases:
 - ▶ (3,2d) for $d \ge 6$,

- ▶ To get a complete answer to $Q(S^e)$ it is interesting to look at the following remaining cases:
 - (3,2d) for $d \ge 6$,
 - (n,8) for $n \geq 5$, and

- ▶ To get a complete answer to $Q(S^e)$ it is interesting to look at the following remaining cases:
 - (3,2d) for $d \ge 6$,
 - (n,8) for $n \ge 5$, and
 - (n, 2d) for $n \ge 4, d \ge 5$.

- ▶ To get a complete answer to $Q(S^e)$ it is interesting to look at the following remaining cases:
 - (3,2d) for $d \ge 6$,
 - (n,8) for $n \geq 5$, and
 - (n, 2d) for $n \ge 4, d \ge 5$.
- ▶ We will
 - give a "Reduction to Basic Cases" by finding an appropriate indefinite irreducible even symmetric form

- ▶ To get a complete answer to $Q(S^e)$ it is interesting to look at the following remaining cases:
 - (3,2d) for $d \ge 6$,
 - (n,8) for $n \geq 5$, and
 - (n, 2d) for $n \ge 4, d \ge 5$.
- ▶ We will
 - give a "Reduction to Basic Cases" by finding an appropriate indefinite irreducible even symmetric form

- ▶ To get a complete answer to $Q(S^e)$ it is interesting to look at the following remaining cases:
 - (3,2d) for $d \ge 6$,
 - (n,8) for $n \geq 5$, and
 - ▶ (n, 2d) for $n \ge 4, d \ge 5$.
- ▶ We will
 - give a "Reduction to Basic Cases" by finding an appropriate indefinite irreducible even symmetric form
 - ▶ construct explicit forms $f \in S\mathcal{P}_{n,2d}^e \setminus S\Sigma_{n,2d}^e$ for the pairs $(n,2d)=(3,12), (n,8)_{n\geq 5}$
 - ▶ deduce that for $(n, 2d) = (n, 6)_{n \ge 3}$, $(n, 8)_{n \ge 4}$, $(3, 2d)_{d \ge 5}$, $(n, 2d)_{n > 4, d > 7}$, the answer to $\mathcal{Q}(S^e)$ is negative.

▶ Lemma 4.1 (G.): If 2t = 4, 6, and $n \ge 3$, then

$$h_t(x_1,\ldots,x_n) := \sum_{i=1}^n x_i^{2t} - 10 \sum_{i \neq j} x_i^{2t-2} x_j^2$$

is an indefinite irreducible even symmetric n-ary form of degree 2t.

▶ Lemma 4.1 (G.): If 2t = 4, 6, and $n \ge 3$, then

$$h_t(x_1,\ldots,x_n) := \sum_{i=1}^n x_i^{2t} - 10 \sum_{i \neq j} x_i^{2t-2} x_j^2$$

is an indefinite irreducible even symmetric n-ary form of degree 2t.

► Theorem 4.2 (G.) [Degree jumping principle]: Let $n \ge 3$. If $f \in S\mathcal{P}_{n,2d}^e \setminus S\Sigma_{n,2d}^e$, then

▶ Lemma 4.1 (G.): If 2t = 4, 6, and $n \ge 3$, then

$$h_t(x_1,\ldots,x_n) := \sum_{i=1}^n x_i^{2t} - 10 \sum_{i \neq j} x_i^{2t-2} x_j^2$$

is an indefinite irreducible even symmetric n-ary form of degree 2t.

- ► Theorem 4.2 (G.) [Degree jumping principle]: Let $n \ge 3$. If $f \in SP_{n,2d}^e \setminus S\Sigma_{n,2d}^e$, then
 - 1. for any integer $r \geq 2$, the form f h_2^{2a} $h_3^{2b} \in S\mathcal{P}_{n,2d+4r}^e \setminus S\Sigma_{n,2d+4r}^e$ where r = 2a + 3b; $a, b \in \mathbb{Z}_+$.
 - 2. $(x_1 \ldots x_n)^2 f \in S\mathcal{P}_{n,2d+2n}^e \setminus S\Sigma_{n,2d+2n}^e$.

▶ Lemma 4.1 (G.): If 2t = 4, 6, and $n \ge 3$, then

$$h_t(x_1,\ldots,x_n) := \sum_{i=1}^n x_i^{2t} - 10 \sum_{i \neq j} x_i^{2t-2} x_j^2$$

is an indefinite irreducible even symmetric n-ary form of degree 2t.

- ► Theorem 4.2 (G.) [Degree jumping principle]: Let $n \ge 3$. If $f \in SP_{n,2d}^e \setminus S\Sigma_{n,2d}^e$, then
 - 1. for any integer $r \geq 2$, the form f h_2^{2a} $h_3^{2b} \in S\mathcal{P}_{n,2d+4r}^e \setminus S\Sigma_{n,2d+4r}^e$ where r = 2a + 3b; $a, b \in \mathbb{Z}_+$.
 - 2. $(x_1 \ldots x_n)^2 f \in S\mathcal{P}_{n,2d+2n}^e \setminus S\Sigma_{n,2d+2n}^e$.

4.2. Answer to $\mathcal{Q}(S^e)$: for what (n,2d) $S\mathcal{P}_{n,2d}^e \subseteq S\Sigma_{n,2d}^e$?

- ► Proposition (Reduction to Basic Cases:) If we can find psd not sos even symmetric *n*—ary 2*d*—ic forms for the following pairs:
 - 1. (n,2d) = (n,8) for $n \ge 5$, and
 - 2. (n,2d) for $n \ge 4, d = 5,6$.

then the complete answer to $Q(S^e)$ will be:

$$SP_{n,2d}^e \subseteq S\Sigma_{n,2d}^e$$
 if and only if $n = 2, d = 1, (n,2d) = (n,4)_{n \ge 3}, (3,8)$.

4.2. Answer to $Q(S^e)$: for what (n, 2d) $S\mathcal{P}_{n,2d}^e \subseteq S\Sigma_{n,2d}^e$?

- ▶ Proposition (Reduction to Basic Cases:) If we can find psd not sos even symmetric *n*—ary 2*d*—ic forms for the following pairs:
 - 1. (n, 2d) = (n, 8) for $n \ge 5$, and
 - 2. (n, 2d) for $n \ge 4, d = 5, 6$.

then the complete answer to $Q(S^e)$ will be:

$$SP_{n,2d}^e \subseteq S\Sigma_{n,2d}^e$$
 if and only if $n = 2, d = 1, (n,2d) = (n,4)_{n \ge 3}, (3,8)$.

- ▶ Psd not sos even symmetric n—ary octics for $n \ge 5$
 - ► Theorem (G.): The form

$$B(x_1,\ldots,x_5) := L_5(x_1^2,\ldots,x_5^2) \in S\mathcal{P}_{5,8}^e \setminus S\Sigma_{5,8}^e,$$

(recall that
$$L_{2m+1} = m(m+1) \sum_{i < j} (x_i - x_j)^4 - \left(\sum_{i < j} (x_i - x_j)^2\right)^2$$
 is a symmetric psd not sos $(2m+1)$ —ary quartic form).

4.2.1. Psd not sos even symmetric n-ary octics for $n \ge 6$

- ▶ Theorem (G.): For $m \ge 3$,
 - 1. $M_{2m+1}:=L_{2m+1}(x_1^2,\ldots,x_{2m+1}^2)\in S\mathcal{P}_{2m+1,8}^e\setminus S\Sigma_{2m+1,8}^e,$ and
 - 2. $D_{2m} := C_{2m}(x_1^2, \dots, x_{2m}^2) \in S\mathcal{P}_{2m,8}^e \setminus S\Sigma_{2m,8}^e$,

Theorem (G.): 1. $SP_{n,2d}^e = S\Sigma_{n,2d}^e$ for $n = 2, d = 1, (n,2d) = (n,4)_{n \ge 3}, (3,8)$.

2. $SP_{n,2d}^e \supseteq S\Sigma_{n,2d}^e$ for $(n,2d) = (n,6)_{n\geq 3}, (3,2d)_{d\geq 5}, (n,8)_{n\geq 4}$ and $(n,2d)_{n\geq 4,d\geq 7}.$

i.e.

deg \ var	2	3	4	5	6	
2	√	√	√	√	√	
4	√	√	√	√	√	
6	√	×	×	×	×	
8	√	√	×	×	×	
10	√	×	?	?	?	?
12	√	×	?	?	?	?
14	√	×	×	×	×	
:	:	:	:	:	:	*