Mal'tsev Meeting 2010 In honour of Y.L. Ershov, May 2-6 2010.

May 5, 2010

Salma Kuhlmann Schwerpunkt Reelle Algebra und Geometrie, Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany

Email: salma.kuhlmann@uni-konstanz.de

The slides of this talk are available at:

http://math.usask.ca/~skuhlman/slidesmaltsev2010.pdf

Valued Differential Fields.

Joint work with M. Matusinski

I. Motivation

I.1 Ax - Kochen Ershov Principles for Valued Fields.

Let K be a field and (Γ, \preceq) a totally ordered abelian group (written multiplicatively). A surjetive map

$$v : K^{\times} \to \Gamma$$

is a **field valuation** if for all $a, b \in K^{\times}$:

v(a.b) = v(a).v(b) (homomorphism)

 $v(a+b) \preceq \max\{v(a), v(b)\}$ (ultrametric inequality).

 $K_v := \{a \in K \mid v(a) \leq 1\}$ is the valuation ring of K $I_v := \{a \in K \mid v(a) \prec 1\}$ the maximal ideal of K_v . $v(K) := \Gamma$ is the value group (also: monomials group) $K_v/I_v := \overline{K}$ is the residue field.

v(K) and \overline{K} are important invariants of a valued field:

AKE Transfer Principle:

Let K and L be two valued fields (*plus additional conditions*). Assume that:

 \overline{K} is elementarily equivalent to \overline{L}

v(K) is elementarily equivalent to v(L).

Then K is elementarily equivalent to L (?)

If in addition L is an extension of K, one can replace: "elementarily equivalent" by "elementary substructure" or " existencially closed" in the above query.

I.2. Kaplansky Embedding Theorem for Valued Fields.

Theorem: Let K be a valued field with char (K)=char (\overline{K}) . Then K is analytically isomorphic to a subfield of a suitable generalized series field.

Let k be a (coefficients) field and (Γ, \preceq) a totally ordered abelian (monomials) group.

 $K = k((\Gamma))$ denotes the **generalised series field**. It is the set of maps

$$\begin{array}{rccc} a & \colon & \Gamma & \to & k \\ & \alpha & \mapsto & a_{\alpha} \end{array}$$

such that Supp $a = \{ \alpha \in \Gamma \mid a_{\alpha} \neq 0 \}$ is anti-well-ordered in Γ .

We write these maps $a = \sum_{\alpha \in \text{Supp } a} a_{\alpha} \alpha$.

This set provided with component-wise sum and the following convolution product

$$\left(\sum_{\alpha \in \text{Supp } a} a_{\alpha} \alpha \right) \left(\sum_{\beta \in \text{Supp } b} b_{\beta} \beta \right) = \sum_{\gamma \in \Gamma} \left(\sum_{\alpha \beta = \gamma} a_{\alpha} b_{\beta} \right) \gamma$$

is a field.

For any series $0 \neq a$, we define its **leading monomial**:

LM $(a) := \max(\text{Supp } a) \in \Gamma$.

The map

$$LM : K^{\times} \to \Gamma$$

is the canonical valuation on K.

E.g. $\Gamma = \{x^z \; ; \; z \in \mathbb{Z}\}$ (respectively $\Gamma = \{x^z \; ; \; z \in \mathbb{R}\}$) gives:

 $\mathbb{R}((\Gamma))$ the Laurent series field (respectively the Levi-Civita series field).

• We have classification invariants and universal domains.

• What if the valued fields carry additional structure? Additional structure induced on the value group and residue field. AKE in this framework?

• In particular, generalised series fields are suitable domains for the study of real algebra.

Are they suitable domains for the study of real differential algebra ?

This work is the first step in this project:

Endow $K := \mathbb{R}((\Gamma))$ with derivations.

I.3. Hardy fields. The set of germs at infinity of real valued functions of a real variable forms a ring under pointwise addition and multiplication of germs.

A **Hardy field** is a subfield closed under differentiation of germs.

A Hardy field H carries a natural valuation:

$$H_v := \{ f \in H ; \lim_{x \to \infty} f \in \mathbb{R} \}$$

Hardy fields are prime examples of valued differential fields.

II. Defining Derivations.

II.1. Hahn groups as monomial groups. Let (Φ, \preceq) be a totally ordered set, that we call the set of **fundamental monomials**.

Consider the set Γ of formal products $\gamma \in \Gamma$ of the form

$$\gamma = \prod_{\phi \in \Phi} \phi^{\gamma_{\phi}}$$

where $\gamma_{\phi} \in \mathbb{R}$, and the support of γ

$$\operatorname{supp} \gamma := \{ \phi \in \Phi \mid \gamma_{\phi} \neq 0 \}$$

is an anti-well-ordered subset of Φ .

Multiplication of formal products is defined pointwise: for $\alpha,\beta\in\Gamma$

$$\alpha\beta = \prod_{\phi \in \Phi} \phi^{\alpha_{\phi} + \beta_{\phi}}$$

 Γ is an abelian group with identity 1 (the product with empty support).

We endow Γ with the anti lexicographic ordering \preceq which extends \preceq of Φ :

 $\gamma \succ 1$ if and only if $\gamma_{\phi} > 0$, for $\phi := \max(\text{supp } \gamma)$.

The **leading fundamental monomial** of $1 \neq \gamma \in \Gamma$ is $LF(\gamma) := \max(\text{supp } \gamma)$.

 Γ is a totally ordered abelian group, the **Hahn group of** generalised monic monomials.

Hahn's Embedding Theorem: Hahn groups are universal domains.

II.2. Summable Families of Series.

We want to differentiate

$$a = \sum_{\alpha \in \Gamma} a_{\alpha} \alpha$$

term by term.

There are two problems:

(i) we first have to know how to differentiate a monomial $\alpha \in \Gamma$,

(ii) then we have to make sense of

$$a' = \sum_{\alpha \in \Gamma} a_{\alpha} \alpha'$$

a possibly infinite sum of field elements.

sometimes it is possible, but it can go wrong. Easy examples.

Let I be an infinite index set and $\mathcal{F} = \{a_i ; i \in I\}$ be a family of series in K. \mathcal{F} is said to be **summable** if:

(SF1) Supp $\mathcal{F}:=\bigcup_{i\in I}$ Supp a_i (the support of the family) is an anti-well-ordered subset of Γ .

(SF2) For any $\alpha \in \text{Supp } \mathcal{F}$, the set

$$S_{\alpha} := \{ i \in I \mid \alpha \in \text{Supp } a_i \} \subseteq I$$

is finite.

Write $a_i = \sum_{\alpha \in \Gamma} a_{i,\alpha} \alpha$, and assume that $\mathcal{F}=(a_i)_{i \in I}$ is summable. Then

$$\sum_{i \in I} a_i := \sum_{\alpha \in \text{Supp } \mathcal{F}} \left(\sum_{i \in S_\alpha} a_{i,\alpha} \right) \alpha$$

is a well defined element of K that we call the sum of \mathcal{F} .

II.3 Series derivations.

Let

$$d_{\Phi} : \Phi \to K \setminus \{0\}$$
$$\phi \mapsto \phi'$$

be a map.

We say d_{Φ} extends to a series derivation on Γ if the following property holds:

(SD1) For any anti-well-ordered subset $E \subset \Phi$,

the family
$$\left(\frac{\phi'}{\phi}\right)_{\phi\in E}$$
 is summable.

Then the **series derivation** d_{Γ} on Γ (extending d_{Φ}) is defined to be the map

$$d_{\Gamma}: \ \Gamma \to K$$

obtained through the following axioms:

- •[(D0)] 1' = 0
- [(D1) Strong Leibniz rule:]

If
$$\alpha = \prod_{\phi \in \text{supp } \alpha} \phi^{\alpha_{\phi}}$$
 then $(\alpha)' = \alpha \sum_{\phi \in \text{supp} \alpha} \alpha_{\phi} \frac{\phi'}{\phi}$.

We say that a series derivation d_{Γ} on Γ extends to a series derivation on K if the following property holds:

(SD2) For any anti-well-ordered subset $E \subset \Gamma$,

the family $(\alpha')_{\alpha \in E}$ is summable.

Then the **series derivation** d on K (extending d_{Γ}) is defined to be the map

$$d : K \to K$$

obtained through the following axiom:

(D2) Strong linearity:

If
$$a = \sum_{\alpha \in \text{Supp } a} a_{\alpha} \alpha$$
, then $a' = \sum_{\alpha \in \text{Supp } a} a_{\alpha} \alpha'$.

We now study necessary and sufficient condition on the map d_{Φ} so that properties (SD1) and (SD2) hold.

II.4 Sequential Characterization Summability.

We use the following two key observations:

(i) \mathcal{F} is summable if and only if every countably infinite subfamily is summable.

(ii) (Infinite Ramsey.) Let Γ be a totally ordered set. Every sequence $(\alpha_n)_{n \in \mathbb{N}}$ in Γ has an infinite subsequence which is either constant, or strictly increasing, or strictly decreasing. We isolate the following two crucial "bad" hypotheses:

- (H1) There exists a strictly decreasing sequence $(\phi_n)_{n \in \mathbb{N}}$ in Φ and an increasing sequence $(\tau^{(n)})_{n \in \mathbb{N}}$ in Γ such that $\tau^{(n)} \in \text{Supp } \frac{\phi'_n}{\phi_n}$ for all $n \in \mathbb{N}$.
- (H2) There exist strictly increasing sequences $(\phi_n)_{n \in \mathbb{N}}$ in Φ and $(\tau^{(n)})_{n \in \mathbb{N}}$ in Γ such that $\tau^{(n)} \in \text{Supp } \frac{\phi'_n}{\phi_n}$ and LF $\left(\frac{\tau^{(n+1)}}{\tau^{(n)}}\right) \succeq \phi_{n+1}$, for all $n \in \mathbb{N}$,

Theorem A: A map $d_{\Phi} : \Phi \to K \setminus \{0\}$ extends to a series derivation on K if and only (H1) and (H2) fail.

III. Hardy Type Derivations.

Let K be a valued field.

Notation: For $a, b \in K$ set

 $a \preceq b$ if and only if $v(a) \leq v(b)$

and

$$a \asymp b$$
 if and only if $v(a) = v(b)$.

Assume that K contains a sub-field \mathcal{C} isomorphic to its residue field \overline{K} .

Let d be a derivation on K.

- $d : K \to K$ is a **Hardy type derivation** if :
- The sub-field of constants of K is C:

$$\forall a \in K, \ a' = 0 \Leftrightarrow a \in \mathcal{C} .$$

• *d* verifies **l'Hospital's rule**:

 $\forall a, b \in K \setminus \{0\}$ with a, b not aymptotic to 1, we have

$$a \preceq b \Leftrightarrow a' \preceq b'$$
.

• The logarithmic derivative is **compatible with the valuation**:

$$\forall a, b \in K \ with \ |a| \succ |b| \succ 1, we \ have \frac{a'}{a} \succeq \frac{b'}{b}$$

Set $\theta^{(\phi)} := \operatorname{LM} (\phi'/\phi).$

Theorem B: A series derivation d on K verifies l'Hospital rule and is compatible with the logarithmic derivative if and only if the following condition holds:

(H3') :
$$\forall \phi \prec \psi \in \Phi, \ \theta^{(\phi)} \prec \theta^{(\psi)} \text{ and } LF \left(\frac{\theta^{(\phi)}}{\theta^{(\psi)}}\right) \prec \psi.$$

IV. Example.

Take the following chain of infinitely increasing real germs at infinity (applying the usual comparison relations of germs):

$$\Phi := \{ \exp_n(x) ; n \in \mathbb{Z} \}$$

where \exp_n denotes for positive n, the n'th iteration of the real exponential function, for negative n, the |n|'s iteration of the logarithmic function, and for n = 0 the identity map.

Applying the usual derivation on real germs, we obtain:

Applying the usual derivation on real germs, we
$$\begin{cases} \frac{(\exp_n(x))'}{\exp_n(x)} &= \Pi_{k=1}^{n-1} \exp_k(x) & \text{if } n \ge 2\\ \frac{(\exp(x))'}{\exp(x)} &= 1\\ \frac{(\exp_n(x))'}{\exp_n(x)} &= \Pi_{k=0}^n \frac{1}{\exp_k(x)} & \text{if } n \le 0 \end{cases}$$

So for any integers m < n, we have:

• $\exp_m(x) \prec \exp_n(x)$

•
$$\frac{(\exp_m(x))'}{\exp_m(x)} \prec \frac{(\exp_n(x))'}{\exp_n(x)}$$

• $\exp_{n-1}(x) = LF\left(\frac{(\exp_m(x))'/\exp_m(x)}{(\exp_n(x))'/\exp_n(x)}\right) \prec \exp_n(x).$

The map $\exp_n(x) \mapsto (\exp_n(x))'$ extends to a series derivation of Hardy type on K.

The End