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Valued Differential Fields.
Joint work with M. Matusinski

I. Motivation

I.1 Ax - Kochen Ershov Principles for Valued

Fields.

Let K be a field and (Γ,¹) a totally ordered abelian group

(written multiplicatively). A surjetive map

v : K× → Γ

is a field valuation if for all a, b ∈ K×:

v(a.b) = v(a).v(b) (homomorphism)

v(a + b) ¹ max{v(a), v(b)} (ultrametric inequality).

Kv := {a ∈ K | v(a) ¹ 1} is the valuation ring of K

Iv := {a ∈ K | v(a) ≺ 1} the maximal ideal of Kv.

v(K) := Γ is the value group (also: monomials group)

Kv/Iv := K is the residue field.

v(K) and K are important invariants of a valued field:
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AKE Transfer Principle:

Let K and L be two valued fields

(plus additional conditions).

Assume that:

K is elementarily equivalent to L

v(K) is elementarily equivalent to v(L).

Then K is elementarily equivalent to L (?)

If in addition L is an extension of K, one can replace:

“elementarily equivalent” by “elementary substructure” or

“ existencially closed” in the above query.
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I.2. Kaplansky Embedding Theorem for Valued

Fields.

Theorem: Let K be a valued field with char (K)=char(K).

Then K is analytically isomorphic to a subfield of a suitable

generalized series field.

Let k be a (coefficients) field and (Γ,¹) a totally ordered

abelian (monomials) group.

K = k ((Γ)) denotes the generalised series field. It is

the set of maps

a : Γ → k

α 7→ aα

such that Supp a = {α ∈ Γ | aα 6= 0} is anti-well-ordered

in Γ.

We write these maps a =
∑

α∈Supp a

aαα.
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This set provided with component-wise sum and the fol-

lowing convolution product

(
∑

α∈Supp a

aαα ) (
∑

β∈Supp b

bββ ) =
∑

γ∈Γ
(

∑

αβ=γ
aαbβ) γ

is a field.

For any series 0 6= a, we define its leading monomial:

LM (a) := max (Supp a) ∈ Γ .

The map

LM : K× → Γ

is the canonical valuation on K.

E.g. Γ = {xz ; z ∈ Z} (respectively Γ = {xz ; z ∈ R} )

gives:

R((Γ)) the Laurent series field (respectively the Levi-Civita

series field).
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• We have classification invariants and universal domains.

•What if the valued fields carry additional structure? Ad-

ditional structure induced on the value group and residue

field. AKE in this framework?

• In particular, generalised series fields are suitable do-

mains for the study of real algebra.

Are they suitable domains for the study of real differ-

ential algebra ?

This work is the first step in this project:

Endow K := R((Γ)) with derivations.
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I.3. Hardy fields. The set of germs at infinity of real

valued functions of a real variable forms a ring under point-

wise addition and multiplication of germs.

A Hardy field is a subfield closed under differentiation

of germs.

A Hardy field H carries a natural valuation:

Hv := {f ∈ H ; lim x→∞ f ∈ R}
.

Hardy fields are prime examples of valued differential fields.

7



II. Defining Derivations.

II.1. Hahn groups as monomial groups. Let

(Φ,¹) be a totally ordered set, that we call the set of

fundamental monomials.

Consider the set Γ of formal products γ ∈ Γ of the form

γ =
∏

φ∈Φ
φγφ

where γφ ∈ R, and the support of γ

supp γ := {φ ∈ Φ | γφ 6= 0}
is an anti-well-ordered subset of Φ.

Multiplication of formal products is defined pointwise: for

α, β ∈ Γ

αβ =
∏

φ∈Φ
φ αφ+βφ

Γ is an abelian group with identity 1 (the product with

empty support).
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We endow Γ with the anti lexicographic ordering ¹ which

extends ¹ of Φ:

γ Â 1 if and only if γφ > 0 , for φ := max(supp γ) .

The leading fundamental monomial of 1 6= γ ∈ Γ

is LF(γ) := max(supp γ) .

Γ is a totally ordered abelian group, the Hahn group of

generalised monic monomials.

Hahn’s Embedding Theorem: Hahn groups are universal

domains.
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II.2. Summable Families of Series.

We want to differentiate

a =
∑

α∈Γ
aαα

term by term.

There are two problems:

(i) we first have to know how to differentiate a monomial

α ∈ Γ,

(ii) then we have to make sense of

a′ =
∑

α∈Γ
aαα

′

a possibly infinite sum of field elements.

sometimes it is possible, but it can go wrong. Easy

examples.
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Let I be an infinite index set and F = {ai ; i ∈ I} be

a family of series in K. F is said to be summable if:

(SF1) Supp F :=
⋃

i∈I
Supp ai (the support of the family)

is an anti-well-ordered subset of Γ.

(SF2) For any α ∈ Supp F , the set

Sα := {i ∈ I | α ∈ Supp ai} ⊆ I

is finite.

Write ai =
∑

α∈Γ
ai,αα, and assume thatF=(ai)i∈I is summable.

Then
∑

i∈I
ai :=

∑

α∈Supp F
(

∑

i∈Sα

ai,α )α

is a well defined element of K that we call the sum of F .
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II.3 Series derivations.

Let
dΦ : Φ → K\{0}

φ 7→ φ′

be a map.

We say dΦ extends to a series derivation on Γ if

the following property holds:

(SD1) For any anti-well-ordered subset E ⊂ Φ,

the family



φ′

φ




φ∈E

is summable.

Then the series derivation dΓ on Γ (extending dΦ) is

defined to be the map

dΓ : Γ → K

obtained through the following axioms:

•[(D0)] 1′ = 0

• [(D1) Strong Leibniz rule:]

If α =
∏

φ∈supp α
φαφ then (α)′ = α

∑

φ∈suppα
αφ

φ′

φ
.
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We say that a series derivation dΓ on Γ extends to a

series derivation on K if the following property holds:

(SD2) For any anti-well-ordered subset E ⊂ Γ,

the family (α′)α∈E is summable.

Then the series derivation d on K (extending dΓ) is

defined to be the map

d : K → K

obtained through the following axiom:

(D2) Strong linearity:

If a =
∑

α∈Supp a

aαα, then a′ =
∑

α∈Supp a

aαα
′.

We now study necessary and sufficient condition on

the map dΦ so that properties (SD1) and (SD2) hold.
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II.4 Sequential Characterization Summability.

We use the following two key observations:

(i) F is summable if and only if every countably infinite

subfamily is summable.

(ii) (Infinite Ramsey.) Let Γ be a totally ordered set.

Every sequence (αn)n∈N in Γ has an infinite subsequence

which is either constant, or strictly increasing, or strictly

decreasing.
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We isolate the following two crucial “bad” hypotheses:

(H1) There exists a strictly decreasing sequence (φn)n∈N
in Φ and an increasing sequence (τ (n))n∈N in Γ such

that τ (n) ∈ Supp
φ′n
φn

for all n ∈ N.

(H2) There exist strictly increasing sequences (φn)n∈N in

Φ and (τ (n))n∈N in Γ such that τ (n) ∈ Supp
φ′n
φn

and LF



τ (n+1)

τ (n)


 º φn+1, for all n ∈ N,

Theorem A: A map dΦ : Φ → K\{0} extends to a

series derivation on K if and only (H1) and (H2) fail.

15



III. Hardy Type Derivations.

Let K be a valued field.

Notation: For a, b ∈ K set

a ¹ b if and only if v(a) ≤ v(b)

and

a ³ b if and only if v(a) = v(b) .

Assume that K contains a sub-field C isomorphic to its

residue field K.

Let d be a derivation on K.
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d : K → K is a Hardy type derivation if :

• The sub-field of constants of K is C :

∀a ∈ K, a′ = 0 ⇔ a ∈ C .

• d verifies l’Hospital’s rule:

∀a, b ∈ K\{0} with a, b not aymptotic to 1, we have

a ¹ b ⇔ a′ ¹ b′ .

• The logarithmic derivative is compatible with the

valuation:

∀a, b ∈ K with |a| Â |b| Â 1, we have
a′

a
º b′

b
.

Set θ(φ) := LM (φ′/φ).

Theorem B: A series derivation d on K verifies l’Hospital

rule and is compatible with the logarithmic derivative if

and only if the following condition holds:

(H3’) : ∀φ ≺ ψ ∈ Φ, θ(φ) ≺ θ(ψ) and LF



θ(φ)

θ(ψ)


 ≺ ψ.
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IV. Example.

Take the following chain of infinitely increasing real germs

at infinity (applying the usual comparison relations of germs):

Φ := {expn(x) ; n ∈ Z}
where expn denotes for positive n, the n’th iteration of the

real exponential function, for negative n, the |n|’s iteration

of the logarithmic function, and for n = 0 the identity

map.

Applying the usual derivation on real germs, we obtain:




(expn(x))′

expn(x)
= Πn−1

k=1 expk(x) if n ≥ 2

(exp(x))′

exp(x)
= 1

(expn(x))′

expn(x)
= Πn

k=0

1

expk(x)
if n ≤ 0
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So for any integers m < n, we have:

• expm(x) ≺ expn(x)

• (expm(x))′

expm(x)
≺ (expn(x))′

expn(x)

• expn−1(x) = LF (
(expm(x))′/ expm(x)

(expn(x))′/ expn(x)
) ≺ expn(x).

The map expn(x) 7→ (expn(x))′ extends to a series deriva-

tion of Hardy type on K.

The End
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