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Exponential - Logarithmic Series
Fields .

Preliminaries.

Reference: Ordered Exponential Fields; The Fields In-
stitute Monograph Series volume 12, AMS 2000.

Let G # 1 be an ordered abelian group.

e R((G)) will denote the field of generalized series
with real coefficients, of which support is an anti well or-

dered and subset of (.
o f=Ycq f,9 with f, € R and

supp (f) ={g € G ; f, nonzero }

1s and anti-wellordered.

e Pointwise addition, convolution formula for multiplica-
tion of series, anti-lexicographic order, natural valuation is
given by “leading monomial”.



e let G! be the semigroup of elements greater than 1.

o R((G™1)) consists of “purely infinite” series with support
in GL.
e R((G=!)) and R((G=1)) denote respectively the valua-

tion ring of bounded elements, and the valuation ideal of
infinitesimal elements of R((G)).

We have the following direct sum (respectively, multiplica-
tive direct sum) decompositions:

R((G)) =R(G™)) @ RBR((G™)), (1)
R((G))" =G -R™"- (L+R((G™))). (2)
Indeed given f € R((G)) write
e f=f"+r+ f*and
e for f > 0 and g := max supp f, write

f=g-c(1+¢
with c € R, ¢ > 0, e € R((G™)).



o If G is divisible, R((G)) is a (non-archimedean) real
closed field, i.e. by Tarski’s Tranfer Principle,
R((G)) is elementarily equivalent to the ordered field of
real numbers (R, <).

e What about (R, <, exp)?

e How to construct nonarchimedean logarithmic fields
using fields of generalized series?

e The additive and multiplicative decompositions will be
exploited.



e Use Taylor expansion of the logarithm to define the log-
arithm of a generalized series?

Summable families of series: Given a family
{si;1€ 1} CR((G))
how to make sense of ¥¢r s; as an element of R((G))?

e This is the case if (i) the support of the family, i.e.
Uier support s; is anti wellordered, and (ii) for every =
in the support of the family, the set of ¢ € I for which
v € support s; is finite.

e B.H.Neumann: For ¢ € R((G™})),

1

+00 . €
=1 =

makes sense.

e The condition on € is necessary!



Defining the logarithm.

e We have seen: the Taylor expansion defines a surjective
logarithm from R™? - (1 4+ R((G="))) onto R & R((G=1)).

e A logarithmic section is an embedding of ordered
groups

LG <) = (R((GT), +)

[f we have a logarithmic section, we can define now a log-
arithm.



e Given f € R((G)), f > 0 and g := max supp f, write

f=g-c(1+¢
with c € R, ¢ > 0, e € R((G™)).

e We extend [ as follows:

(-1)6n €

00
=1 1

L(f)=1lg-c-(1+4¢€)) :l(g)Jrlogc—i—E

?

o L: (R((G)Y,:) — (R((GQ)),+) is an order preserving
embedding of groups, extending the logarithmic section [
(the logarithm associated to the logarithmic section ).



Logarithmic sections from Hahn groups

Let us now consider a totally ordered set I,

e Consider the multiplicative “Hahn group” H(I") which
consists of formal products g =11 f", f € I', r € R, with
support g an anti well ordered subset of I'. Multiplication
is point wise, order is anti lexicographic, 1 is the product
with empty support.

e Hahn Embedding’s Theorem states that every ordered
abelian group G is a subgroup of a Hahn group H(I") (and
[" is uniquely determined by G).



e We shall from now on assume that GG is a Hahn group
H(T'), and explain how this data determines a logarithmic
section:

e Consider [ : G — R((G™1)) defined by
WIS =X rifi
defines indeed a logarithmic section on R((G)).



This logarithmic section has two defects:
(I) It violates the growth axiom.

(IT) Tt does mot map G surjectively onto the ring of
purely infinite series R((G™1)) (so its associated logarithm
will not be surjective).

To construct models we shall fix these two defects as fol-
lows:
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(I) We assume that I admits an order preserving automor-
phism which is a leftward shift:

o(f) < fforall fel.

e The automorphism o induces the logarithmic section:

UILf7) =X rio(fi).

This fixes (I) but is till not surjective. We shall now explain
the core step in constructing exponentials of infinitely large
elements to deal with (II): Since I : G — (R((G™1)), +) is
not surjective, there exists elements of R((G™1)) \ I(G) of
which exponentials are not defined. We shall enlarge our
group of monomials G to a group extension G* to include
the missing exponentials.
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Exponential Extension

We take G* to be a multiplicative copy e[R((G™1))] of
R((G™1)) over I(G).

e More precisely, we construct G# formally as follows:
G = {e(a);a € R(G™Y)), where e(a) ;== ¢ if Ig € G st. o =1(g)}
By its definition, G is a subset of G7.
e We define multiplication on G7 as follows:
e(ay)e(as) == e(ar + ) .
In particular, if g1 = e(ay), g2 = e(az) € G, then
e(ar)e(az) = e(l(g1) + U(g2)) = e(l(g192)) = G192 , 50
G is a subgroup of G7
e We equip G with a total order:
e(a1) < e(aw) if and only if oy < g in R((G™1)) .

Again, if g1 = e(aq), g2 = e(aw) € G, then e(ay) < e(a?)
if and only if I(g1) < I(go) in R((G1)) if and only if
g1 < goin G, so

G is an ordered subgroup of G7 .
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Since G C G as ordered abelian multiplicative groups,
we view R((G)) as an ordered subfield of R((G#)) (by

identifying R((G)) with the elements of R((G*)) having
support in G).

e One verifies that the map
"GP ) = R(GT ), +)

defined by:
I#(e(a)) =

for « € R((G™1)) is a prelogarithmic section with:
IH(G7) =R((G™))
and [ extends [ on G.

e By construction of the logarithms L and L* on R((G))>°
and R((G7))” respectively, L is an extension of L.

We define the exponential extension of (R((G)), L)
to be (R((G*)), L*).

13



The Exponential Closure

We now close under exponentiation by induction on n.
o If n =0set (R(G))*", L#") := (R((G)), L) .

For n € N, define inductively the n-th exponential ex-

tension of (R((G)), L):
(R((G))#", L#") := the exponential extension of (R((G#"~1)), L#1~1),
e Set R((G))*L := U R((@))#" and Log := U L#".

We call (R((G))EL , Log) is El-series field over (I", o).

14



Rank and logarithmic rank

We see that pairwise distinct left shifts on I' will in-
duce pairwise distinct logarithms. We do more: we
construct logarithms of patrwise distinct growth rates.

The rank of (I', o) is the order type of the quotient I'/ ~,,
where a ~, a' if and only if there exists n € N such that
o™ (a) > a’ and c™(a’) > a.

Similarly the logarithmic rank of (K=, 1) is defined via
the equivalence relation: a, a’ € K~ are log-equivalent if
a ~; @', that is, if and only if there exists

n € N such that {"(a) < @’ and I"(d') < a .

Proposition 0.1 The logarithmic rank of (R((G)),l,)
is equal to the rank of (I', o).
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An asymptotic scale indexed by
Nl X ZQ.

We construct a totally ordered set of germs at infinity
of real valued functions of a real variable, which admits

M left shifts.

e For (p,q) € Z?, we denote by gpq the germ at 400 of
the infinitely large transmonomial

x +— exp (x?exp (7)) .

If we endow Z? with the lexicographic order, then (p, ¢) <
(p',¢') implies g, 4 < gy 4.
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e Now let {h,;a € N1} be a sequence of germs at +o00
of infinitely large transmonomials h,, in such a way that
a < 3 implies hy < hg .

e One can describe for example the first €¢; terms of such
a sequence. Set ho(x) := x. We define h, by transfinite
induction for a < €y. If the Cantor normal form of « is
whd, + -+ whdy + dp, with 8, < -+ < 3, < o and
dy ...,d, € N, set

he (z) = exp (d hg, (z) + - - 4+ dihg, () exp(z)™ .

We can set he, := t(x) where t(x) is a germ of transexpo-
nential growth.
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e Finally: for all (o, p,q) € 8; x Z*, we denote Japq the
germ at +o00 of the transmonomial exps (hq (7)) gp 4 ().

e These germs are defined in such a way that if (o, p, q) <
(o', p', ¢) for the lexicographic order, then fy 4 < fo' .-
This set of germs I' is thus totally ordered.
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We construct 28 left-shifts of pairwise distinct ranks on I,
To this end, we consider the two automorphisms defined

on 1—wl - {gp,Q7 <p7 Q> S ZQ} by :

0 (Gpg) = Gp-14
p(gp,q) = Opg—1

It follows easily from the definition of g, , that the rank of
(I'1,0) is 1 and the rank of (I'y, p) is Z. We define now,
for every S C Ny, the decreasing automorphism 7g on I'

by :

Tg (f ) _ { f&,p—lyq = €XP3 (ha) g (gp,q) st €5
. fOGP,CI—l = C€XP3 (ha> P (gp,q> sta & S

The End
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