Session Surreal Numbers. Joint Mathematics Meetings. San Francisco January 13-16 2010.

January 13, 2010

Salma Kuhlmann Schwerpunkt Reelle Algebra und Geometrie, Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany Email: salma.kuhlmann@uni-konstanz.de

The slides of this talk are available at: http://math.usask.ca/~skuhlman/slidesams2010.pdf

Exponential - Logarithmic Series Fields .

Preliminaries.

Reference: Ordered Exponential Fields; The Fields Institute Monograph Series volume 12, AMS 2000.

Let $G \neq 1$ be an ordered abelian group.

• $\mathbb{R}((G))$ will denote the **field of generalized series** with real coefficients, of which support is an anti well ordered and subset of G.

•
$$f = \sum_{g \in G} f_g g$$
 with $f_g \in \mathbb{R}$ and

 $\operatorname{supp} (f) := \{g \in G ; f_g \text{ nonzero } \}$

is and anti-wellordered.

• Pointwise addition, convolution formula for multiplication of series, anti-lexicographic order, natural valuation is given by "leading monomial". • let $G^{\succ 1}$ be the semigroup of elements greater than 1.

 $\bullet \ \mathbb{R}((G^{\succ 1}))$ consists of "purely infinite" series with support in $G^{\succ 1}.$

• $\mathbb{R}((G^{\leq 1}))$ and $\mathbb{R}((G^{<1}))$ denote respectively the valuation ring of bounded elements, and the valuation ideal of infinitesimal elements of $\mathbb{R}((G))$.

We have the following direct sum (respectively, multiplicative direct sum) decompositions:

$$\mathbb{R}((G)) = \mathbb{R}((G^{\succ 1})) \oplus \mathbb{R} \oplus \mathbb{R}((G^{\prec 1})), \qquad (1)$$

$$\mathbb{R}((G))^{>0} = G \cdot \mathbb{R}^{>0} \cdot (1 + \mathbb{R}((G^{\prec 1}))) .$$
 (2)

Indeed given $f \in \mathbb{R}((G))$ write

- $f = f^{\succ 1} + r + f^{\prec 1}$ and
- for f > 0 and $g := \max \text{ supp } f$, write

$$f = g \cdot c \cdot (1 + \epsilon)$$

with $c \in \mathbb{R}$, c > 0, $\epsilon \in \mathbb{R}((G^{\prec 1}))$.

• If G is divisible, $\mathbb{R}((G))$ is a (non-archimedean) real closed field, i.e. by Tarski's Tranfer Principle, $\mathbb{R}((G))$ is elementarily equivalent to the ordered field of real numbers (\mathbb{R} , <).

• What about $(\mathbb{R}, <, \exp)$?

• How to construct nonarchimedean logarithmic fields using fields of generalized series?

• The additive and multiplicative decompositions will be exploited.

• Use Taylor expansion of the logarithm to define the logarithm of a generalized series?

Summable families of series: Given a family

$$\{s_i ; i \in I\} \subset \mathbb{R}((G))$$

how to make sense of $\sum_{i \in I} s_i$ as an element of $\mathbb{R}((G))$?

• This is the case if (i) the support of the family, i.e. $\bigcup_{i \in I}$ support s_i is anti wellordered, and (ii) for every γ in the support of the family, the set of $i \in I$ for which $\gamma \in$ support s_i is *finite*.

• **B.H.Neumann:** For $\epsilon \in \mathbb{R}((G^{\prec 1}))$,

$$\sum_{i=1}^{+\infty} (-1)^{(i-1)} \frac{\epsilon^i}{i}$$

makes sense.

• The condition on ϵ is necessary!

Defining the logarithm.

• We have seen: the Taylor expansion defines a surjective logarithm from $\mathbb{R}^{>0} \cdot (1 + \mathbb{R}((G^{\prec 1})))$ onto $\mathbb{R} \oplus \mathbb{R}((G^{\prec 1}))$.

• A **logarithmic section** is an embedding of ordered groups

$$l: (G, \cdot, \prec) \to (\mathbb{R}((G^{\succ 1})), +) .$$

If we have a logarithmic section, we can define now a logarithm. • Given $f \in \mathbb{R}((G)), f > 0$ and $g := \max \text{ supp } f$, write

$$f = g \cdot c \cdot (1 + \epsilon)$$

with $c \in \mathbb{R}, c > 0, \epsilon \in \mathbb{R}((G^{\prec 1})).$

• We extend l as follows:

$$L(f) = l(g \cdot c \cdot (1 + \epsilon)) = l(g) + \log c + \sum_{i=1}^{+\infty} (-1)^{(i-1)} \frac{\epsilon^i}{i}$$

• $L : (\mathbb{R}((G))^{>0}, \cdot) \to (\mathbb{R}((G)), +)$ is an order preserving embedding of groups, extending the logarithmic section l(the **logarithm** associated to the logarithmic section l).

Logarithmic sections from Hahn groups

Let us now consider a totally ordered set Γ ,

• Consider the multiplicative "Hahn group" $H(\Gamma)$ which consists of formal products $g = \prod f^r$, $f \in \Gamma$, $r \in \mathbb{R}$, with support g an anti well ordered subset of Γ . Multiplication is point wise, order is anti lexicographic, 1 is the product with empty support.

• Hahn Embedding's Theorem states that every ordered abelian group G is a subgroup of a Hahn group $H(\Gamma)$ (and Γ is uniquely determined by G).

• We shall from now on assume that G is a Hahn group $H(\Gamma)$, and explain how this data determines a logarithmic section:

• Consider
$$l: G \to \mathbb{R}((G^{\succ 1}))$$
 defined by

$$l(\prod f_i^{r_i}) := \sum r_i f_i ,$$

defines indeed a logarithmic section on $\mathbb{R}((G)).$

This logarithmic section has two defects:

(I) It violates the **growth axiom**.

(II) It does *not* map G **surjectively** onto the ring of purely infinite series $\mathbb{R}((G^{\succ 1}))$ (so its associated logarithm will not be surjective).

To construct models we shall fix these two defects as follows:

(I) We assume that Γ admits an order preserving automorphism which is a **leftward shift**:

$$\sigma(f) \prec f$$
 for all $f \in \Gamma$.

• The automorphism σ induces the logarithmic section:

$$l(\prod f_i^{r_i}) := \sum r_i \sigma(f_i)$$
.

This fixes (I) but is till not surjective. We shall now explain the core step in constructing exponentials of infinitely large elements to deal with (II): Since $l: G \to (\mathbb{R}((G^{\succ 1})), +)$ is not surjective, there exists elements of $\mathbb{R}((G^{\succ 1})) \setminus l(G)$ of which exponentials are not defined. We shall enlarge our group of monomials G to a group extension $G^{\#}$ to include the missing exponentials.

Exponential Extension

We take $G^{\#}$ to be a *multiplicative* copy $e[\mathbb{R}((G^{\succ 1}))]$ of $\mathbb{R}((G^{\succ 1}))$ over l(G).

• More precisely, we construct $G^{\#}$ formally as follows:

$$G^{\#} := \{ e(\alpha); \alpha \in \mathbb{R}((G^{\succ 1})), \text{ where } e(\alpha) := g \text{ if } \exists g \in G \text{ s.t. } \alpha = l(g) \}$$

By its definition, G is a subset of $G^{\#}$.

• We define multiplication on $G^{\#}$ as follows:

$$e(\alpha_1)e(\alpha_2) := e(\alpha_1 + \alpha_2) .$$

In particular, if $g_1 = e(\alpha_1)$, $g_2 = e(\alpha_2) \in G$, then $e(\alpha_1)e(\alpha_2) = e(l(g_1) + l(g_2)) = e(l(g_1g_2)) = g_1g_2$, so G is a subgroup of $G^{\#}$.

- We equip $G^{\#}$ with a total order:
- $e(\alpha_1) < e(\alpha_2)$ if and only if $\alpha_1 < \alpha_2$ in $\mathbb{R}((G^{\succ 1}))$.

Again, if $g_1 = e(\alpha_1), g_2 = e(\alpha_2) \in G$, then $e(\alpha_1) < e(\alpha_2)$ if and only if $l(g_1) < l(g_2)$ in $\mathbb{R}((G^{\succ 1}))$ if and only if $g_1 < g_2$ in G, so

G is an ordered subgroup of $G^{\#}$.

Since $G \subseteq G^{\#}$ as ordered abelian multiplicative groups, we view $\mathbb{R}((G))$ as an ordered subfield of $\mathbb{R}((G^{\#}))$ (by identifying $\mathbb{R}((G))$ with the elements of $\mathbb{R}((G^{\#}))$ having support in G).

• One verifies that the map

$$l^{\#}: (G^{\#}, \cdot) \to \mathbb{R}((G^{\# \succ 1})), +)$$

defined by:

$$l^{\#}(e(\alpha)) := \alpha$$

for $\alpha \in \mathbb{R}((G^{\succ 1}))$ is a prelogarithmic section with:

$$l^\#(G^\#) = \mathbb{R}((G^{\succ 1}))$$

and $l^{\#}$ extends l on G.

• By construction of the logarithms L and $L^{\#}$ on $\mathbb{R}((G))^{>0}$ and $\mathbb{R}((G^{\#}))^{>0}$ respectively, $L^{\#}$ is an extension of L.

We define the **exponential extension** of $(\mathbb{R}((G)), L)$ to be $(\mathbb{R}((G^{\#})), L^{\#})$.

The Exponential Closure

We now close under exponentiation by induction on n.

• If
$$n = 0$$
 set $(\mathbb{R}((G))^{\# n}, L^{\# n}) := (\mathbb{R}((G)), L)$.

For $n\in\mathbb{N}$, define inductively the n-th exponential extension of $(\mathbb{R}((G)),L)$:

 $(\mathbb{R}((G))^{\#n}, L^{\#n}) :=$ the exponential extension of $(\mathbb{R}((G^{\#n-1})), L^{\#n-1}).$

• Set $\mathbb{R}((G))^{EL} := \cup \mathbb{R}((G))^{\#n}$ and $\operatorname{Log} := \cup L^{\#n}$.

We call $(\mathbb{R}((G))^{\text{EL}}, Log)$ is EL-series field over (Γ, σ) .

Rank and logarithmic rank

We see that pairwise distinct left shifts on Γ will induce pairwise distinct logarithms. We do more: we construct logarithms of pairwise distinct growth rates.

The **rank** of (Γ, σ) is the order type of the quotient Γ / \sim_{σ} , where $a \sim_{\sigma} a'$ if and only if there exists $n \in \mathbb{N}$ such that $\sigma^{(n)}(a) \geq a'$ and $\sigma^{(n)}(a') \geq a$.

Similarly the **logarithmic rank** of $(K^{>0}, l)$ is defined via the equivalence relation: $a, a' \in K^{>0}$ are *log-equivalent* if $a \sim_l a'$, that is, if and only if there exists

 $n \in \mathbb{N}$ such that $l^{(n)}(a) \leq a'$ and $l^{(n)}(a') \leq a$.

Proposition 0.1 The logarithmic rank of $(\mathbb{R}((G)), l_{\sigma})$ is equal to the rank of (Γ, σ) .

An asymptotic scale indexed by $\aleph_1 \times \mathbb{Z}^2$.

We construct a totally ordered set of germs at infinity of real valued functions of a real variable, which admits 2^{\aleph_1} left shifts.

• For $(p,q) \in \mathbb{Z}^2$, we denote by $g_{p,q}$ the germ at $+\infty$ of the infinitely large *transmonomial*

$$x \mapsto \exp\left(x^q \exp\left(x^p\right)\right)$$
.

If we endow \mathbb{Z}^2 with the lexicographic order, then (p,q) < (p',q') implies $g_{p,q} \prec g_{p',q'}$.

• Now let $\{h_{\alpha} : \alpha \in \aleph_1\}$ be a sequence of germs at $+\infty$ of infinitely large transmonomials h_{α} , in such a way that $\alpha < \beta$ implies $h_{\alpha} \prec h_{\beta}$.

• One can describe for example the first ϵ_0 terms of such a sequence. Set $h_0(x) := x$. We define h_α by transfinite induction for $\alpha < \epsilon_0$. If the Cantor normal form of α is $\omega^{\beta_r} d_r + \cdots + \omega^{\beta_1} d_1 + d_0$, with $\beta_1 < \cdots < \beta_r < \alpha$ and $d_0, \ldots, d_r \in \mathbb{N}$, set

$$h_{\alpha}(x) := \exp(d_r h_{\beta_r}(x) + \dots + d_1 h_{\beta_1}(x)) \exp(x)^{d_0}.$$

We can set $h_{\epsilon_0} := t(x)$ where t(x) is a germ of transexponential growth.

• Finally: for all $(\alpha, p, q) \in \aleph_1 \times \mathbb{Z}^2$, we denote $f_{\alpha, p, q}$ the germ at $+\infty$ of the transmonomial $\exp_3(h_\alpha(x)) g_{p,q}(x)$.

• These germs are defined in such a way that if $(\alpha, p, q) < (\alpha', p', q')$ for the lexicographic order, then $f_{\alpha, p, q} \prec f_{\alpha', p', q'}$. This set of germs Γ is thus totally ordered. We construct 2^{\aleph_1} left-shifts of pairwise distinct ranks on Γ . To this end, we consider the two automorphisms defined on $\Gamma_1 = \{g_{p,q}, (p,q) \in \mathbb{Z}^2\}$ by :

$$egin{array}{lll} \sigma\left(g_{p,q}
ight) &=& g_{p-1,q} \
ho\left(g_{p,q}
ight) &=& g_{p,q-1} \end{array}$$

It follows easily from the definition of $g_{p,q}$ that the rank of (Γ_1, σ) is 1 and the rank of (Γ_1, ρ) is \mathbb{Z} . We define now, for every $S \subset \aleph_1$, the decreasing automorphism τ_S on Γ by :

$$\tau_{S}(f_{\alpha,p,q}) = \begin{cases} f_{\alpha,p-1,q} = \exp_{3}(h_{\alpha}) \sigma(g_{p,q}) & \text{si } \alpha \in S \\ f_{\alpha,p,q-1} = \exp_{3}(h_{\alpha}) \rho(g_{p,q}) & \text{si } \alpha \notin S \end{cases}$$

The End