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Fields of generalized power
series.

I. Lexicographic powers of ordered sets.

Let ∆ and Φ be (linearly i.e. totally) ordered
sets. Fix an distinguished element 0 ∈ ∆. The
lexicographic power ∆Φ is the following set:

∆Φ := {s : Φ→ ∆ ; support s is well-ordered}
= {s ∈

∏
φ∈Φ

∆ ; support s is well-ordered} ,

ordered lexicographically from the left,

that is “order by first differences”.

Here support s := {φ ∈ Φ ; sφ 6= 0}.
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F. Hausdorff and others studied their order
types, generalizing Cantor’s ordinal arithmetic
and construction of saturated and universal
models (the so-called ηα−sets) for the theory
of dense linear ordering without endpoints.

3



• If α are β ordinals, then the lexicographic
power αβ

∗
has order type the ordinal αβ.

• Hausdorff’s ηα−set is constructed with the lex-
icographic power 2ℵα.

• Other Examples: ZN has the order type of the
set of irrationals, NN that of the set non-negative
real R+, 2N that of the Cantor set.
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Many fascinating problems (studied with W.C.
Holland and S. McCleary) such as: depen-
dence on the choice of the distinguished el-
ement 0, isomorphism of powers with same
base but different exponents or vice-versa, etc....
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II. Lexicographically ordered abelian goups.

If ∆ is an ordered abelian group, e.g. ∆ = R
for simplicity, we can endow the lexicographic
power RΦ, which we then denote by HΦR, with
an ordered abelian group structure.

Indeed, using now for s ∈ RΦ the notation

s =
∑
φ

sφ1φ

define pointwise addition:

s+ r =
∑
φ

sφ1φ +
∑
φ

rφ1φ :=
∑
φ

(sφ+ rφ)1φ .

Obviously, the support of s+r is still well-ordered,
so s + r is well-defined.
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H. Hahn and others introduced and studied
these so-called Hahn-groups. They are used
for constructing saturated and universal mod-
els for the theory of divisible ordered abelian
groups:
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Theorem [Hahn Embedding’s Theorem]:

Every ordered abelian group Γ is isomorphic to
a subgroup of a Hahn group HΦR for a suitable
Φ.

More precisely, Φ is uniquely determined by Γ,
it is the so-called archimedean “rank” of Γ. So
Hahn’s theorem generalizes O.L. Hölder’s Theo-
rem to the non-archimedean case.

Theorem [N.L. Alling - S.K.]:

Let Φ be an ηα−set, then the Hahn group HΦR is
an ℵα−saturated divisible ordered abelian group.

Let us continue enriching our lexicographic
powers...
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III. Lexicographically ordered fields.

If ∆ is an ordered field, e.g. ∆ = R for simplic-
ity, and Φ ordered abelian group call it Γ, we
can endow the lexicographic power RΓ, which we
then denote by R((Γ)), with a field structure.

Indeed, using now for s ∈ RΓ the notation

s =
∑
γ

sγt
γ

define multiplication via convolution:

s.r =
∑
γ

(
∑

γ′+γ′′=γ

(sγ′rγ′′) )tγ .

Is s.r well-defined? That is, is it true that (i)
for every γ ∈ Γ, ∑

γ′+γ′′=γ

(sγ′rγ′′)

is a finite sum? and (ii) s.r has well-ordered
support? The answer is yes. Why?
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IV. Summability

We need the following key notion. Let I be an
infinite index set, F := {si ∈ R((Γ)) ; i ∈ I} a
family of series, set

SupportF :=
⋃
i∈I

support si .

F is said to be summable if:

(i) For any γ ∈ SupportF , the set

Sγ := {i ∈ I | γ ∈ support si} ⊆ I

is finite.

(ii) SupportF is well-ordered.
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Write si =
∑
γ

(si)γt
γ for each si ∈ F . If F is

summable. Then∑
i∈I

si :=
∑

γ∈Support F

(
∑
i∈Sγ

(si)γ)t
γ

is a well-defined element of R((Γ)) that we call
the sum of F .

Returning to multiplication: s.r is well-defined
because one can verify that the family

{tγ′.r ; γ′ ∈ support s }

is summable.
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W.Krull, I. Kaplansky and others studied the
field R((Γ)) while developing valuation theory,
again we have universality and saturation:
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V. Non-archimedean Real Closed Fields

In what follows, we assume always Γ is non-
trivial, i.e. Γ 6= 0.

If Γ is divisible, then R((Γ)) is a non-standard
model of Th(R, 0, 1,+,×, <).

Theorem [Kaplansky Embedding’s Theorem]:

Every real closed field R is isomorphic to a sub-
field of a field of generalized series R((Γ)) for a
suitable Γ.

More precisely, Γ is uniquely determined by R,
it is the so-called value group of R.

Theorem [N.L. Alling - S.K.]:

Let Γ be an ℵα−saturated divisible ordered abelian
group. Then the field of generalized series R((Γ))
is an ℵα−saturated real closed field.
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We have studied dense linear orderings with-
out endpoints, divisible ordered abelian groups,
real closed fields, all are so-called o-minimal
structures. Let us continue enriching our fields
of power series with further o-minimal struc-
ture....
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VI. Exponentiation

The subring R((Γ≥0)) of R((Γ)) (consisting of se-
ries with support contained in the non-negative
cone Γ≥0 of the Γ) is a valuation ring, with a
unique maximal ideal R((Γ+)) consisting of in-
finitesimal series, i.e. series with strictly positive
support.

Theorem [Neumann’s Lemma]

Let ε ∈ R((Γ+)) and ci ∈ R, i ∈ N. Then
{ciεi ; i ∈ N} is summable. In particular one
can define f (ε) for any real analytic function.

We define an exponential function on R((Γ+)):

exp(ε) :=
∑ εi

i!

and its inverse map on the multiplicative group
of 1- units 1 + R((Γ+)) :

log(1 + ε) :=
∑

(−1)i−1 εi

i
.
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How to define a total surjective exponential
function on R((Γ)), i.e. an ordering preserv-
ing isomorphism from the ordered additive group
(R((Γ)),+) onto the ordered multiplicative group
(R((Γ))>0 , × )?
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VII. Lexicographic Decomposition

Theorem [S.K.]

We have the following direct sum (respectively,
multiplicative direct sum) decompositions:

R((Γ)) = R((Γ−)) ⊕ R ⊕ R((Γ+)),
R((Γ))>0 = tΓ × R+ × ( 1 + R((Γ+)) ).

Indeed given s ∈ R((Γ)) write

• s = s<0 + s0 + s>0 and

• for s > 0 and γ := min support s, write

s = tγ · c · (1 + ε)

with c ∈ R, c > 0, ε ∈ R((Γ+)).
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VIII. Consequences of the Lexicographic
Decomposition

1. Left Exponentiation? We see that it is
necessary and sufficient to construct a left log-
arithm, that is, an ordering preserving isomor-
phism from the ordered multiplicative group tΓ

onto the ordered additive group R((Γ−)).

Theorem [Kuhlmann-Kuhlmann-Shelah]

There exists a canonical ordering preserving em-
bedding from the ordered multiplicative group tΓ

into the ordered additive group R((Γ−)), i.e. a
non-surjective left logarithm. This embedding
cannot be surjective, unless Γ is a proper class.
In other words, a field of generalized power series
does not admit left-exponentiation.
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2. Conway’s “Field” of surreal numbers

The “field” No of surreal numbers was in-
vented by J. Conway, studied by H. Gonshor,
D. Knuth, M. Kruskal, N.L. Alling, P. Ehrlich
and others. It admits left-exponentiation, how-
ever it is not a “field” since it is a proper
class!
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3. Construction of non-archimedean mod-
els of real exponentiation

Consider Texp := Th (R, 0, 1,+,×, exp, <).

A. Tarski asked whether Texp is decidable. A.
Wilkie proved that is is model-complete and
o-minimal.

We constructed non-standard models of Texp, the
exponential-logarithmic series fields, as
increasing countable union of fields of generalized
power series. Indeed since the left-logarithm is
not surjective, there are “missing exponentials”
in K0 := R((Γ0)). We enlarge Γ0 to a Γ1 so that
K1 := R((Γ1)) contains the “missing exponen-
tials” of K0. Iterating this procedure, that is,
constructing the exponential closure of K0

results in a field ∪ı∈NKi which is now closed un-
der exponentiation.

20



4. On the decidability of Texp.

A. Macintyre and A. Wilkie showed that Texp

is decidable if the real Schanuel conjecture
has a positive solution.

S. Schanuel conectured that if y1, · · · , yn ∈
R are linearly independent over Q, then the
transcendence degree over Q of the field

Q(y1, · · · , yn ; exp(y1), · · · , exp(yn))

is at least n.
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J. Ax proved Schanuel’s conjecture for formal
Laurent series without constant term.

Theorem[J. Ax]

Let yi ∈ R[[t]] such that yi−yi(0) are Q-linearly
independent, i = 1, · · · , n. Then

tdRR(y1, · · · , yn, exp(y1), · · · , exp(yn)) ≥ n+ 1

.

With M. Matusinski and A. Shkop we show that
this result holds for exponential-logarithmic se-
ries.
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5. Integer Parts and Models of Arith-
metic.

An integer part for an ordered field R is a
discretely ordered subring Z such that for each
r ∈ R, there exists some z ∈ Z with z ≤ r <
z + 1.

Shepherdson shows that the class of integer
parts of real closed fields coincides with the
class of models of open induction. He con-
structs an integer part of the field of Puiseux
series, in which primes are not cofinal. Many
open questions about integer parts of real closed
fields, and their primes and irreducibles arise
naturally.
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Theorem [J.-P. Ressayre and M.-H. Mourgues]

Z := R((Γ−)) ⊕ Z is an integer part of the real
closed field R((Γ)).

Proof: Clearly, Z is a discrete subring. Let s ∈
R((Γ)). Let bs0c ∈ Z be the integer part of s0 ∈
R. Define

zs =

{
s<0 + s0 − 1 if s0 ∈ Z and s>0 < 0,
s<0 + bs0c otherwise.

Clearly, zs ≤ s < zs + 1.

•M. Kotchetov we studies primes and irreducibles
in integer parts of real closed fields, we showed
that this integer part has a cofinal set of primes.

• With M. Carl, P. D’Aquino, L. Gregory, we
consider other fragments of Peano Arithmetic:

Does R((Γ)) admit an integer part which is a
model of normal open induction, of full Peano
Arithmetic?
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We have discussed above Kaplansky’s embed-
ding theorem: Fields of generalized series are
universal domains for ordered fields. In par-
ticular, real closed fields of generalized series
provide suitable domains for the study of real
algebra. The material presented in the next
slides is motivated by the following query: are
fields of generalized series suitable domains
for the study of real differential algebra? We
therefore investigate how to endow a field of
generalized series with a “series-derivation”.
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IX. Defining Derivations.

1. Hahn groups written multiplicatively
Let (Φ,�) be a totally ordered set, that we call
the set of fundamental monomials.

Consider the set Γ of formal products γ ∈ Γ of
the form

γ =
∏
φ∈Φ

φγφ

where γφ ∈ R, and the support of γ

support γ := {φ ∈ Φ | γφ 6= 0}

is an anti-well-ordered subset of Φ.

Multiplication of formal products is defined point-
wise: for α, β ∈ Γ

αβ =
∏
φ∈Φ

φ αφ+βφ

Γ is an abelian group with identity 1 (the product
with empty support).
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We endow Γ with the anti lexicographic ordering
� which extends � of Φ:

γ � 1 if and only if γφ > 0, for φ := max(support γ).

The leading fundamental monomial of 1 6=
γ ∈ Γ is LF(γ) := max(support γ) .

Γ is a totally ordered abelian group, the Hahn
group of generalised monic monomials.
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2. Differentiating term by term?.

We want to differentiate

a =
∑
α∈Γ

aαα

term by term.

There are two problems:

(i) we first have to know how to differentiate a
monomial α ∈ Γ,

(ii) then we have to make sense of

a′ =
∑
α∈Γ

aαα
′

a possibly infinite sum of field elements.

In other words, we have summability issues...
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3. Series derivations.

Let

dΦ : Φ → K\{0}
φ 7→ φ′

be a map.

We say dΦ extends to a series derivation
on Γ if the following property holds:

(SD1) For any anti-well-ordered subset E ⊂ Φ,

the family

(
φ′

φ

)
φ∈E

is summable.
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Then the series derivation dΓ on Γ (extending
dΦ) is defined to be the map

dΓ : Γ→ K

obtained through the following axioms:

•[(D0)] 1′ = 0

• [(D1) Strong Leibniz rule:]

If α =
∏

φ∈support α

φαφ then (α)′ = α
∑

φ∈supportα

αφ
φ′

φ
.
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We say that a series derivation dΓ on Γ extends
to a series derivation on K if the following
property holds:

(SD2) For any anti-well-ordered subset E ⊂ Γ,

the family (α′)α∈E is summable.

Then the series derivation d onK (extending
dΓ) is defined to be the map

d : K → K

obtained through the following axiom:

(D2) Strong linearity:

If a =
∑

α∈Support a

aαα, then a′ =
∑

α∈Support a

aαα
′.

We now study necessary and sufficient condi-
tion on the map dΦ so that properties (SD1)
and (SD2) hold.

31



4. Sequential Characterization Summa-
bility.

We use the following two key observations:

(i) F is summable if and only if every countably
infinite subfamily is summable.

(ii) (Infinite Ramsey.) Let Γ be a totally ordered
set. Every sequence (αn)n∈N in Γ has an infinite
subsequence which is either constant, or strictly
increasing, or strictly decreasing.

32



We isolate the following two crucial “bad” hy-
potheses:

(H1) There exists a strictly decreasing sequence
(φn)n∈N in Φ and an increasing sequence (τ (n))n∈N

in Γ such that τ (n) ∈ Support
φ′n
φn

for all

n ∈ N.

(H2) There exist strictly increasing sequences
(φn)n∈N in Φ and (τ (n))n∈N in Γ such that

τ (n) ∈ Support
φ′n
φn

and LF

(
τ (n+1)

τ (n)

)
�

φn+1, for all n ∈ N,

Theorem A: A map dΦ : Φ → K\{0} ex-
tends to a series derivation onK if and only (H1)
and (H2) fail.

The End
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