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The General Moment Problem.

The Multidimensional Moment
Problem.

• Let V := R[x] := R[x1, · · · , xn] be the real vector space

of polynomials in n variables and real coefficients.

In analogy to the classical Riesz Representation The-

orem, Haviland considered the problem of representing

linear functionals on V by measures. The question of

when, given a closed subset K ⊆ Rn, a linear map

` : R[x] → R corresponds to a finite positive Borel

measure µ on K is known as the Multidimensional Mo-

ment Problem.
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• Define the cone of nonnegative polynomials on K by

Psd(K) = {f ∈ R[x] : ∀x ∈ K f (x) ≥ 0}.

In 1935, he proved the following :

Theorem (Haviland)

Let K ⊂ Rn closed, and ` : V → R a nonzero linear

functional. The following are equivalent:

(i) `(f ) ≥ 0 for all f ∈ Psd(K)

(ii) ∃ a positive Borel measure µ on K such that

`(f ) =
∫
K
fdµ , ∀ f ∈ V

The main challenge in applying Haviland’s Theorem

is verifying its condition (i). Schmüdgen analysed this

problem for a special class of closed subsets:
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• K ⊆ Rn is a basic closed semialgebraic set if there

exist a finite set of polynomials S = {g1, . . . , gs} such that

K = KS := {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . , s}.

• Consider the cone TS ⊆ Psd(K):

TS := { ∑
e∈{0,1}s

σeg
e : σe is a sos for all e ∈ {0, 1}s},

where e = (e1, · · · , es) ∈ {0, 1}s, and

ge : = ge11 . . . gess .

In 1991 Schmüdgen improved condition (i) of Havi-

land’s Theorem and proved the following:
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Theorem (Schmüdgen)

Assume that K = KS is a compact basic closed semi-

algebraic set, and ` : V → R a nonzero linear functional.

The following are equivalent:

(i) `(h2ge) ≥ 0 ∀h ∈ R[x] and e ∈ {0, 1}s

(ii) ∃ a positive Borel measure µ on K such that

`(f ) =
∫
K
fdµ , ∀ f ∈ V

Thus condition (i) reduces to verifying 2s schemes, or equiv-

alently the psd-ness of 2s infinite Hankel matrices.

Putinar reduces further to just s + 2.
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Various results improving this number by considering

special properties of the defining polynomials or of the

semi-algebraic set, such as exploiting symmetry, spar-

sity, convexity, etc....

Here, we take a natural step in a different direction by

exploiting special properties of the linear functionals under

consideration.

• Given ` we consider the sequence of evaluations on the

monomial basis:

s(α) := `(xα) ;α ∈ Nn

We shall read off this sequence properties of ` such as

continuity.
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Closures of Cones in Locally Convex
Topologies.

• Fix τ a locally convex topological vector space topology

on V . Denote Vτ the corresponding topological space.

Let C ⊆ V be a cone (i.e. closed under addition and scalar

multiplication by positive reals). Define

• The dual of C:

C∨ := {` | ` : Vτ → R ; cts linear functional; `(C) ≥ 0}

• The double dual of C:

C∨∨ := {f ∈ V | `(f ) ≥ 0 ∀ ` ∈ C∨}

• Since C ⊂ V is a (convex) cone, we have

C∨∨ = C

in Vτ (Hahn–Banach).
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We use Haviland’s theorem and the properties of duality

and closures to deduce the following:

Corollary 1 Let τ be a locally convex topology on V,

C ⊆ V a cone, K ⊆ Rn a closed subset. The following

are equivalent:

(1) C = Psd(K) in Vτ

(2) for a continuous linear functional ` ; `(C) ≥ 0 if and

only if ∃ µ on K such that:

`(f ) =
∫
K
fdµ , ∀ f ∈ V

Example: For τ = ϕ := the finest locally convex topol-

ogy, all linear functionals are continuous. Schmüdgen’s

result can be reformulated as:

Let K = KS be a compact basic closed semi-algebraic set.

Then

TS = Psd(K) in Vϕ .

Are there other interesting examples?
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The Moment Problem for Continuous
Positive Semidefinite Linear

Functionals.

In the following, we shall study situations where the 2s

conditions (i) in Schmüdgen can be replaced by the single

condition

`(h2) ≥ 0 for all h ∈ R[x] .

Call a linear functional ` positive semi definite if this

condition holds.

Below, for 1 ≤ p ≤ ∞:

Vp : = V endowed with the `p–norm topology (on the co-

efficients of polynomials).
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Theorem (Berg et al.):

∑
V 2 = Pos [−1, 1]n in V1 .

Corollary Let ` be a continuous linear functional on V1

(i.e. the sequence (`(xα))α∈Nn is bounded).

Assume that ` is positive semi-definite. Then

∃µ on [−1, 1]n such that `(f ) =
∫
fdµ ∀ f ∈ V .

Remark Compare to Schmüdgen: We can describe the

compact basic closed semi-algebraic unit hypercube by 2n

linear inequalities. for an arbitrary linear functional, we

would a priori check 22n Hankel matrices.
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Weighted `p Topologies.

Let r = (r1, . . . , rn) be a n-tuple of positive real numbers.

• For 1 ≤ p <∞,

`p,r(Nn) := {s ∈ RNn
:

∑
α∈Nn
|s(α)|prα1

1 . . . rαn
n <∞}

is a Banach space with respect to the norm

‖s‖p,r = (
∑

α∈Nn
|s(α)|prα1

1 . . . rαn
n )

1
p .

• For p =∞

`∞,r(Nn) := {s ∈ RNn
: sup
α∈Nn
|s(α)|rα1

1 . . . rαn
n <∞}

is a Banach space with respect to the norm

‖s‖∞,r = sup
α∈Nn
|s(α)|rα1

1 . . . rαn
n .

Let us describe the continuous linear functionals on `p,r(Nn).

Below, we let q be the conjugate of p.
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Proposition. Let 1 ≤ p <∞.

If p > 1 , then `p,r(Nn)∗ = `
q,r
−q

p
(Nn).

If p = 1 , then `1,r(Nn)∗ = `∞,r−1(Nn).

Here r−
q
p := (r

−q
p

1 , · · · , r
−q

p
n ), similarly for r−1.

Now let f ∈ V . Assume that

f ≥ 0 on
n∏
i=1

[−ri, ri] .

Then the polynomial f̃ (X) = f (r1X1, · · · , rnXn) is a non-

negative polynomial on [−1, 1]n.

Combining this observation with Berg’s result we get:
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Fix r = (r1, · · · , rn) with ri > 0 for i = 1, · · · , n.

Theorem 1 Let p = 1. Then

∑
V 2 = Psd (

n∏
i=1

[−ri, ri]) in V1,r .

We further generalize:

Theorem 2 Let 1 < p <∞. Then

∑
V 2 = Psd (

n∏
i=1

[−r
q
p
i , r

q
p
i ]) in Vp,r .

Here, for 1 ≤ p ≤ ∞:

Vp,r : = V endowed with the `p,r–norm topology (on the

coefficients of polynomials).
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Corollary 1 Let ` : R[x] → R be a linear functional

such that the sequence s(α) = `(xα) satisfies

sup α∈Nn|s(α)|r−α1
1 · · · r−αn

n <∞ .

Then ` is positive semidefinite if and only if there exists a

positive Borel measure µ on K =
∏n
i=1[−ri, ri] such that

`(f ) =
∫
K
f dµ ∀f ∈ R[x] .

Corollary 2 Let 1 < p <∞.

Let ` : R[x] → R be a linear functional such that the

sequence s(α) = `(xα) satisfies

∑
α∈Nn
|s(α)|qr

−q
pα1

1 · · · r
−q

pαn
n <∞. .

Then ` is positive semidefinite if and only if there exists

a positive Borel measure µ on K =
∏n
i=1[−r

−q
p

i , r
−q

p
i ] such

that

`(f ) =
∫
K
f dµ ∀f ∈ R[x] .
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In the particular case where r1 = · · · = rn, we deduce the

result of Berg and Maserick on “exponentially bounded”

positive semidefinite moment sequences. In fact, in this

case, the condition in Corollary 1 implies the existence of

a positive real number R such that

|s(α)| ≤ Rrα1+···+αn
1 .

Hence implies that ` can be represented as an integral with

respect to a measure on [−r1, r1]n.

Furture Work: Let K be a (compact? convex? poly-

hedral?) basic closed semi algebraic subset of Rn, and ` a

positive semidefinite linear functional on V . Find a (check-

able!) necessary and sufficient condition on the sequence

s(α) so that ` is represented by a positive Borel measure

on K.

Procedure: Given the defining inequalities of K, try to

construct a locally convex toplogy τ such that
∑
V 2 = Psd (K) in Vτ .

The End
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