Workshop in honor of Professor Bill Helton UCSD, San Diego, USA, October 2-4 2010.

October 3, 2010

Salma Kuhlmann
Schwerpunkt Reelle Geometrie und Algebra,
Fachbereich Mathematik und Statistik,
Universität Konstanz,
78457 Konstanz, Germany
Email: salma.kuhlmann@uni-konstanz.de
The slides of this talk are available at:
http://math.usask.ca/^skuhlman/slideshelton2010.pdf

The General Moment Problem.

The Multidimensional Moment Problem.

- Let $V:=\mathbb{R}[x]:=\mathbb{R}\left[x_{1}, \cdots, x_{n}\right]$ be the real vector space of polynomials in n variables and real coefficients.

In analogy to the classical Riesz Representation Theorem, Haviland considered the problem of representing linear functionals on V by measures. The question of when, given a closed subset $K \subseteq \mathbb{R}^{n}$, a linear map $\ell: \mathbb{R}[x] \rightarrow \mathbb{R}$ corresponds to a finite positive Borel measure μ on K is known as the Multidimensional Moment Problem.

- Define the cone of nonnegative polynomials on K by

$$
\operatorname{Psd}(K)=\{f \in \mathbb{R}[x]: \forall x \in K f(x) \geq 0\} .
$$

In 1935, he proved the following :

Theorem (Haviland)

Let $K \subset \mathbb{R}^{n}$ closed, and $\ell: V \rightarrow \mathbb{R}$ a nonzero linear functional. The following are equivalent:
(i) $\ell(f) \geq 0$ for all $f \in \operatorname{Psd}(K)$
(ii) \exists a positive Borel measure μ on K such that

$$
\ell(f)=\int_{K} f d \mu, \forall f \in V
$$

The main challenge in applying Haviland's Theorem is verifying its condition (i). Schmüdgen analysed this problem for a special class of closed subsets:

- $K \subseteq \mathbb{R}^{n}$ is a basic closed semialgebraic set if there exist a finite set of polynomials $S=\left\{g_{1}, \ldots, g_{s}\right\}$ such that

$$
K=K_{S}:=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, i=1, \ldots, s\right\} .
$$

- Consider the cone $T_{S} \subseteq \operatorname{Psd}(K)$:

$$
T_{S}:=\left\{\sum_{e \in\{0,1\}^{s}} \sigma_{e} \underline{g}^{e}: \sigma_{e} \text { is a sos for all } e \in\{0,1\}^{s}\right\},
$$

where $e=\left(e_{1}, \cdots, e_{s}\right) \in\{0,1\}^{s}$, and $\underline{g}^{e}:=g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}$.

In 1991 Schmüdgen improved condition (i) of Haviland's Theorem and proved the following:

Theorem (Schmüdgen)

Assume that $K=K_{S}$ is a compact basic closed semialgebraic set, and $\ell: V \rightarrow \mathbb{R}$ a nonzero linear functional. The following are equivalent:
(i) $\ell\left(h^{2} \underline{g}^{e}\right) \geq 0 \quad \forall h \in \mathbb{R}[x]$ and $e \in\{0,1\}^{s}$
(ii) \exists a positive Borel measure μ on K such that

$$
\ell(f)=\int_{K} f d \mu, \forall f \in V
$$

Thus condition (i) reduces to verifying 2^{s} schemes, or equivalently the psd-ness of 2^{s} infinite Hankel matrices.

Putinar reduces further to just $s+2$.

Various results improving this number by considering special properties of the defining polynomials or of the semi-algebraic set, such as exploiting symmetry, sparsity, convexity, etc...

Here, we take a natural step in a different direction by exploiting special properties of the linear functionals under consideration.

- Given ℓ we consider the sequence of evaluations on the monomial basis:

$$
s(\alpha):=\ell\left(x^{\alpha}\right) ; \alpha \in \mathbb{N}^{n}
$$

We shall read off this sequence properties of ℓ such as continuity.

Closures of Cones in Locally Convex Topologies.

- Fix τ a locally convex topological vector space topology on V. Denote V_{τ} the corresponding topological space.

Let $C \subseteq V$ be a cone (i.e. closed under addition and scalar multiplication by positive reals). Define

- The dual of C :

$$
C^{\vee}:=\left\{\ell \mid \ell: V_{\tau} \rightarrow \mathbb{R} ; \text { cts linear functional; } \ell(C) \geq 0\right\}
$$

- The double dual of C :

$$
C^{\vee \vee}:=\left\{f \in V \mid \ell(f) \geq 0 \forall \ell \in C^{\vee}\right\}
$$

- Since $C \subset V$ is a (convex) cone, we have

$$
C^{\vee \vee}=\bar{C}
$$

in V_{τ} (Hahn-Banach).

We use Haviland's theorem and the properties of duality and closures to deduce the following:

Corollary 1 Let τ be a locally convex topology on V , $C \subseteq V$ a cone, $K \subseteq \mathbb{R}^{n}$ a closed subset. The following are equivalent:
(1) $\bar{C}=\operatorname{Psd}(K)$ in V_{τ}
(2) for a continuous linear functional ℓ; $\ell(C) \geq 0$ if and only if $\exists \mu$ on K such that:

$$
\ell(f)=\int_{K} f d \mu, \forall f \in V
$$

Example: For $\tau=\varphi:=$ the finest locally convex topology, all linear functionals are continuous. Schmüdgen's result can be reformulated as:
Let $K=K_{S}$ be a compact basic closed semi-algebraic set. Then

$$
\overline{T_{S}}=\operatorname{Psd}(K) \text { in } V_{\varphi} .
$$

Are there other interesting examples?

The Moment Problem for Continuous Positive Semidefinite Linear Functionals.

In the following, we shall study situations where the 2^{s} conditions (i) in Schmüdgen can be replaced by the single condition

$$
\ell\left(h^{2}\right) \geq 0 \text { for all } h \in \mathbb{R}[x] .
$$

Call a linear functional ℓ positive semi definite if this condition holds.

Below, for $1 \leq p \leq \infty$:
$V_{p}:=V$ endowed with the ℓ_{p}-norm topology (on the coefficients of polynomials).

Theorem (Berg et al.):

$$
\overline{\sum V^{2}}=\operatorname{Pos}[-1,1]^{n} \text { in } V_{1} .
$$

Corollary Let ℓ be a continuous linear functional on V_{1} (i.e. the sequence $\left(\ell\left(x^{\alpha}\right)\right)_{\alpha \in \mathbb{N}^{n}}$ is bounded).

Assume that ℓ is positive semi-definite. Then $\exists \mu$ on $[-1,1]^{n}$ such that $\ell(f)=\int f d \mu \forall f \in V$.

Remark Compare to Schmüdgen: We can describe the compact basic closed semi-algebraic unit hypercube by $2 n$ linear inequalities. for an arbitrary linear functional, we would a priori check $2^{2 n}$ Hankel matrices.

Weighted ℓ_{p} Topologies.

Let $r=\left(r_{1}, \ldots, r_{n}\right)$ be a n-tuple of positive real numbers.

- For $1 \leq p<\infty$,

$$
\ell_{p, r}\left(\mathbb{N}^{n}\right):=\left\{s \in \mathbb{R}^{\mathbb{N}^{n}}: \sum_{\alpha \in \mathbb{N}^{n}}|s(\alpha)|^{p} r_{1}^{\alpha_{1}} \ldots r_{n}^{\alpha_{n}}<\infty\right\}
$$

is a Banach space with respect to the norm

$$
\|s\|_{p, r}=\left(\sum_{\alpha \in \mathbb{N}^{n}}|s(\alpha)|^{p} r_{1}^{\alpha_{1}} \ldots r_{n}^{\alpha_{n}}\right)^{\frac{1}{p}} .
$$

- For $p=\infty$

$$
\ell_{\infty, r}\left(\mathbb{N}^{n}\right):=\left\{s \in \mathbb{R}^{\mathbb{N}^{n}}: \sup _{\alpha \in \mathbb{N}^{n}}|s(\alpha)| r_{1}^{\alpha_{1}} \ldots r_{n}^{\alpha_{n}}<\infty\right\}
$$

is a Banach space with respect to the norm

$$
\|s\|_{\infty, r}=\sup _{\alpha \in \mathbb{N}^{n}}|s(\alpha)| r_{1}^{\alpha_{1}} \ldots r_{n}^{\alpha_{n}} .
$$

Let us describe the continuous linear functionals on $\ell_{p, r}\left(\mathbb{N}^{n}\right)$. Below, we let q be the conjugate of p.

Proposition. Let $1 \leq p<\infty$.
If $p>1$, then $\ell_{p, r}\left(\mathbb{N}^{n}\right)^{*}=\ell_{q, r^{-\frac{q}{p}}}\left(\mathbb{N}^{n}\right)$.
If $p=1$, then $\ell_{1, r}\left(\mathbb{N}^{n}\right)^{*}=\ell_{\infty, r^{-1}}\left(\mathbb{N}^{n}\right)$.
Here $r^{-\frac{q}{p}}:=\left(r_{1}^{-\frac{q}{p}}, \cdots, r_{n}^{-\frac{q}{p}}\right)$, similarly for r^{-1}.

Now let $f \in V$. Assume that

$$
f \geq 0 \text { on } \prod_{i=1}^{n}\left[-r_{i}, r_{i}\right]
$$

Then the polynomial $\tilde{f}(\underline{X})=f\left(r_{1} X_{1}, \cdots, r_{n} X_{n}\right)$ is a nonnegative polynomial on $[-1,1]^{n}$.

Combining this observation with Berg's result we get:

Fix $r=\left(r_{1}, \cdots, r_{n}\right)$ with $r_{i}>0$ for $i=1, \cdots, n$.
Theorem 1 Let $p=1$. Then

$$
\overline{\sum V^{2}}=\operatorname{Psd}\left(\prod_{i=1}^{n}\left[-r_{i}, r_{i}\right]\right) \text { in } V_{1, r} .
$$

We further generalize:
Theorem 2 Let $1<p<\infty$. Then

$$
\overline{\sum V^{2}}=\operatorname{Psd}\left(\prod_{i=1}^{n}\left[-r_{i}^{\frac{q}{p}}, r_{i}^{\frac{q}{p}}\right]\right) \text { in } V_{p, r} .
$$

Here, for $1 \leq p \leq \infty$:
$V_{p, r}:=V$ endowed with the $\ell_{p, r}$-norm topology (on the coefficients of polynomials).

Corollary 1 Let $\ell: \mathbb{R}[x] \rightarrow \mathbb{R}$ be a linear functional such that the sequence $s(\alpha)=\ell\left(x^{\alpha}\right)$ satisfies

$$
\sup _{\alpha \in \mathbb{N}^{n}}|s(\alpha)| r_{1}^{-\alpha_{1}} \cdots r_{n}^{-\alpha_{n}}<\infty .
$$

Then ℓ is positive semidefinite if and only if there exists a positive Borel measure μ on $K=\Pi_{i=1}^{n}\left[-r_{i}, r_{i}\right]$ such that

$$
\ell(f)=\int_{K} f d \mu \quad \forall f \in \mathbb{R}[x] .
$$

Corollary 2 Let $1<p<\infty$.

Let $\ell: \mathbb{R}[x] \rightarrow \mathbb{R}$ be a linear functional such that the sequence $s(\alpha)=\ell\left(x^{\alpha}\right)$ satisfies

$$
\sum_{\alpha \in \mathbb{N}^{n}}|s(\alpha)|^{q} r_{1}^{-\frac{q}{p} \alpha_{1}} \cdots r_{n}^{-\frac{q}{p} \alpha_{n}}<\infty
$$

Then ℓ is positive semidefinite if and only if there exists a positive Borel measure μ on $K=\Pi_{i=1}^{n}\left[-r_{i}^{-\frac{q}{p}}, r_{i}^{-\frac{q}{p}}\right]$ such that

$$
\ell(f)=\int_{K} f d \mu \quad \forall f \in \mathbb{R}[x] .
$$

In the particular case where $r_{1}=\cdots=r_{n}$, we deduce the result of Berg and Maserick on "exponentially bounded" positive semidefinite moment sequences. In fact, in this case, the condition in Corollary 1 implies the existence of a positive real number R such that

$$
|s(\alpha)| \leq R r_{1}^{\alpha_{1}+\cdots+\alpha_{n}} .
$$

Hence implies that ℓ can be represented as an integral with respect to a measure on $\left[-r_{1}, r_{1}\right]^{n}$.

Furture Work: Let K be a (compact? convex? polyhedral?) basic closed semi algebraic subset of \mathbb{R}^{n}, and ℓ a positive semidefinite linear functional on V. Find a (checkable!) necessary and sufficient condition on the sequence $s(\alpha)$ so that ℓ is represented by a positive Borel measure on K.

Procedure: Given the defining inequalities of K, try to construct a locally convex toplogy τ such that

$$
\overline{\sum V^{2}}=\operatorname{Psd}(K) \text { in } V_{\tau} .
$$

The End

