Workshop Optimization and Control. IMA Minneapolis, January 16–20 2007.

January 13, 2007

Salma Kuhlmann¹, Research Center Algebra, Logic and Computation University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK S7N 5E6, Canada email: skuhlman@math.usask.ca

The slides of this talk are available at: http://math.usask.ca/~skuhlman/slidesim.pdf

 $^{^{1}\}mathrm{Partially}$ supported by the Natural Sciences and Engineering Research Council of Canada.

Approximation of positive polynomials by sums of squares.

Introduction.

In algebraic geometry, we consider ideals of the polynomial ring and algebraic varieties in affine space. In semi-algebraic geometry, we consider preorderings of the polynomial ring and semialgebraic sets in affine space.

• Let $\mathbb{R}[X] := \mathbb{R}[X_1, \cdots, X_n]$ be the ring of polynomials in *n* variables and real coefficients.

• A subset $M \subseteq \mathbb{R}[X]$ is a **quadratic module** if $1 \in M$, M is closed under addition and multiplication by squares (i.e. $a^2 f \in M, \forall a \in \mathbb{R}[X]$ and $f \in M$).

• A quadratic preordering is a quadratic module which is also closed under multiplication.

• The smallest preordering of $\mathbb{R}[X]$ is the set of **sums of** squares of $\mathbb{R}[X]$, denoted by $\Sigma \mathbb{R}[X]^2$.

• Given a finite subset $S = \{f_1, ..., f_s\}$ of $\mathbb{R}[X]$, the smallest preordering containing S (**preordering finitely generated by** S) is:

$$T_S = \left\{ \sum_{e \in \{0,1\}^s} \sigma_e f^e : \sigma_e \in \sum \mathbb{R}[X]^2, f_1, \cdots, f_s \in S \right\}$$

where $f^{e} := f_{1}^{e_{1}} \cdots f_{r}^{e_{s}}$, if $e = (e_{1}, \cdots, e_{s})$.

• The smallest module containing S (module finitely generated by S) is:

$$M_S = \{\sigma_0 + \sigma_1 f_1 + \dots + \sigma_s f_s ; \sigma_e \in \sum \mathbb{R}[X]^2 .\}$$

• Let $S = \{f_1, \dots, f_s\} \subset \mathbb{R}[X], S$ defines a **basic closed** semialgebraic subset of \mathbb{R}^n :

$$K = K_S = \{x \in \mathbb{R}^n : f_1(x) \ge 0, \dots, f_s(x) \ge 0\}$$

- Consider polynomials **positive semi-definite** on K_S : $Psd(K_S) := \{ f \in \mathbb{R}[X] : f(x) \ge 0 \text{ for all } x \in K_S \}$
- $\operatorname{Psd}(K_S)$ is a preordering in $\mathbb{R}[X]$ and $T_S \subseteq \operatorname{Psd}(K_S)$.

Hilbert's 17th Problem and Stengle's Positivstellensatz are concerned with the issue of representation of positive semi-definite polynomials; motivated by the question: when it true that $Psd(K_S) = T_S$?

More generally, we are concerned with the issue of approximating $Psd(K_S)$ by "smaller" preorderings (modules):

 $T_S^{\dagger} = \{f : \forall \text{ real } \epsilon > 0, \ f + \epsilon \in T_S\}.$ $T_S^{\dagger} = \{f : \exists q \in \mathbb{R}[X] \text{ such that } \forall \text{ real } \epsilon > 0, f + \epsilon q \in T_S\}.$ $\overline{T_S} := \{f : L(f) \ge 0, \forall \text{ lin. funct. } L \neq 0 \text{ on } \mathbb{R}[X] \text{ s. t. } L(T_S) \ge 0\}.$

We have:

$$T_S \subseteq T_S^{\dagger} \subseteq T_S^{\ddagger} \subseteq \overline{T_S} \subseteq \operatorname{Psd}(K_S)$$

We say:

- T_S is **saturated** if $Psd(K_S) = T_S$.
- $(\dagger)_S$ holds if $T_S^{\dagger} = \operatorname{Psd}(K_S)$
- $(\ddagger)_S$ holds if $T_S^{\ddagger} = \operatorname{Psd}(K_S)$

• S solves the K_S -moment problem if $\overline{T_S} = Psd(K_S)$. Note that this is equivalent to saying that T_S is *dense* in $Psd(K_S)$.

Remark 0.1 (i) $\overline{T_S}$ is the **closure** of T_S in $\mathbb{R}[X]$ (for the finest locally convex topology on $\mathbb{R}[X]$).

Denote by P_d the (finite dimensional) vector space consisting of all polynomials in $\mathbb{R}[X]$ of degree $\leq 2d$, and by $T_d = T_S \cap P_d$. The set T_d is obviously a bf cone in P_d , i.e., $T_d + T_d \subseteq T_d$ and $\mathbb{R}^+T_d \subseteq T_d$. Denote by \overline{T}_d the closure (in the Euclidean topology) of T_d in P_d . Then:

(ii) $T_S^{\ddagger} = \bigcup_{d \ge 0} \overline{T}_d.$

(iii) The containments (end of page 4) may be strict. The conjecture that $T_S^{\ddagger} \neq \overline{T_S}$ was given in [K–M] and recently proved in [N].

(iv) All the above, except for $Psd(K_S)$ depend in general on the choice of the description S of $K = K_S$.

PLAN OF THE TALK

In this talk I will give an Atlas of what is known about the various approximations of $Psd(K_S)$ by those preorderings (or the corresponding module versions) depending on the description S, the dimension of the semi-algebraic set K_S , intrinsic geometric properties of K_S (e.g. compact or unbounded), and special properties of K_S (symmetry, sparse representation):

- (I) Saturation.
- (II) The dagger condition.
- (III) The double-dagger condition.
- (IV) The density condition.
- (V) Special situations.

Saturation

In [S1] Scheiderer showed:

Theorem 0.2 If $dim(K_S) \geq 3$, then there exists a polynomial $p(X) \in \mathbb{R}[X]$ such that $p(x) \geq 0$ for all $x \in \mathbb{R}^n$ but $p \notin T_S$ (so T_S cannot be saturated).

Scheiderer's result is intrinsic; under this hypothesis on $K = K_S$, independently of the chosen description S, and whether K_S is compact or unbounded, the preordering T_S cannot be saturated.

In the same paper, he also shows another intrinsic result:

Theorem 0.3 If n = 2 and K_S contains a cone of dimension 2, then there exists a polynomial $p(X) \in$ $\mathbb{R}[X]$ such that $p(x) \ge 0$ for all $x \in \mathbb{R}^n$ but $p \notin T_S$ (so T_S cannot be saturated).

Low dimensional sets:

This left open the question formulated in [K-M]: what if $K_S \subseteq \mathbb{R}^2$ does not contain a cone of dimension 2? Are there compact/noncompact examples of such K_S for which T_S is saturated?

Recently, Scheiderer developed in a series of papers [S2], [S3], [S4] several *local global principles* to determine when a polynomial $f \ge 0$ on K_S belongs to the *quadratic module* M_S . His results generalize both Schmüdgen's and Putinar's Striktpositivstellensätze. With these tools, he was able to produce the example that we were looking for:

Example 0.4 The modules generated by: $S_1 = \{1 + x, 1 - x, 1 + y, 1 - y\}$ (compact K_S) and $S_2 = \{x, 1 - x, y, 1 - xy\}$ (noncompact K_S) are saturated.

In [K-M-S], we studied saturated preorderings (modules) for subsets of the real line. We discuss the case n = 1 in the next slides. To state [K-M-S; Theorem 2.2]. We need to define some notions.

If $K \subseteq \mathbb{R}$ is a non-empty closed semi-algebraic set. Then K is a finite union of intervals. It is easily verified that $K = K_{\mathcal{N}}$, for \mathcal{N} the set of polynomials defined as follows: • If $a \in K$ and $(-\infty, a) \cap K = \emptyset$, then $X - a \in \mathcal{N}$. • If $a \in K$ and $(a, \infty) \cap K = \emptyset$, then $a - X \in \mathcal{N}$. • If $a, b \in K$, $(a, b) \cap K = \emptyset$, then $(X - a)(X - b) \in \mathcal{N}$. • \mathcal{N} has no other elements except these.

We call \mathcal{N} the natural set of generators for K.

We first consider the non-compact case:

Theorem 0.5 Assume that $K = K_S \subseteq \mathbb{R}$ is not compact. Then T_S is saturated if and only S contains the natural set of generators of K (up to scalings by positive reals).

For the compact case, we also have a criterion. Assume that K_S has no isolated points :

Theorem 0.6 Let K_S be compact, $S = \{g_1, \dots, g_s\}$. Then T_S is saturated if and only if, for each endpoint $a \in K_S$, there exists $i \in \{1, \dots, s\}$ such that x - a divides g_i but $(x - a)^2$ does not.

What about the module version?

In [K-M-S] we asked whether $M_S = T_S$ if $K_S \subseteq \mathbb{R}$ is compact. Scheiderer provided a positive answer using his local-global criteria. In [F] another elementary proof of this fact is given. Thus the above theorem is a criterion for the quadratic module M_S to be saturated.

The dagger condition

In [Sc1] Schmüdgen proved the following intrinsic result:

Theorem 0.7 If K_S is compact, then $(\dagger)_S$ holds for T_S .

A quadratic module M is **archimedean** if for all $f \in \mathbb{R}[X]$, there exists an integer $n \ge 1$ such that n - f and $n + f \in M$. Putinar proved the following result:

Theorem 0.8 If M_S is archimedean, then $(\dagger)_S$ holds for M_S .

Remark 0.9 (i) If T_S (or M_S) is archimedean then K_S is compact.

(ii) Wörman showed that if K_S is compact then T_S is archimedean (providing a proof of Schmüdgen's Theorem via the Kadison-Dubois Theorem).

(iii) If K_S is compact, M_S need not be archimedean.

What if K_S is not compact?

Apart from the non-compact examples of dimension ≤ 2 presented in the previous section, no non-compact examples in dimension ≥ 3 are known. This motivated considering (‡) instead, as we shall see in the next section.

The doubled agger condition

Non-compact examples by dimension extension.

In [K-M] we construct a large number of non-compact examples where (‡) holds.

Let $S \subseteq \mathbb{R}[X]$ finite and set $p = 1 + \sum_{i=1}^{n} X_i^2$.

Denote by $\mathbb{R}[X, Y]$ the polynomial ring in n + 1 variables $X = X_1, \ldots, X_n, Y$ and consider the finite set

 $S' = S \cup \{1 - pY, -(1 - pY)\} \text{ in } \mathbb{R}[X, Y].$

Then $K_{S'}$ consists of those points on the hypersurface

$$H = \{ (x, y) \in \mathbb{R}^{n+1} \mid p(x)y = 1 \}$$

in \mathbb{R}^{n+1} which map to K_S under the projection $(x, y) \mapsto x$.

Theorem 0.10 $(\ddagger)'_S$ holds.

Cylinders with compact base.

We continue to denote by $\mathbb{R}[X, Y]$ the polynomial ring in n + 1 variables X_1, \ldots, X_n, Y .

Consider a subset $S = \{g_1, \ldots, g_s\}$ of $\mathbb{R}[X, Y]$ where the polynomials g_1, \ldots, g_s involve only the variables X_1, \ldots, X_n .

So K_S has the form $K \times \mathbb{R}$, $K \subseteq \mathbb{R}^n$. We further assume that K is compact.

We describe this situation by saying that K_S is a cylinder with compact cross-section. In [K-M] we prove:

Theorem 0.11 If K_S is a cylinder with compact crosssection, then $(\ddagger)_S$ holds.

More precisely, let $f \in \mathbb{R}[X, Y]$ is such that $f \ge 0$ on K_S . Let $d \ge 1$ so that the degree of f as a polynomial in Y is $\le 2d$. Set

 $q(Y) := 3 + Y + 3Y^2 + Y^3 + \ldots + 3Y^{2d}$.

Then for all $\epsilon > 0$, $f + \epsilon q(Y) \in T_S$.

Closed Polyhedra.

In [K-M-S] we develop a "fiber criterion" for (‡) to hold on *subsets* of cylinders. In particular, we get an application to generalized polyhedra.

Assume that K_S is the basic closed semi-algebraic set in \mathbb{R}^m , $m \geq 1$, defined by $S = \{\ell_1, \ldots, \ell_s\}$, where ℓ_1, \ldots, ℓ_s are linear, so K_S is a **closed polyhedron**. If K_S is compact then, by [J–P], (†) holds for M_S .

What if K_S is not compact?

If K_S contains a cone of dimension 2 then, by [K–M] (‡) fails for T_S .

In [K–M] we asked whether (\ddagger) holds in the remaining case, i.e., when K_S is not compact and does not contain a cone of dimension 2.

In [K–M–S] we settle this question completely:

Theorem 0.12 Let P be a closed polyhedron in \mathbb{R}^m defined by a finite set S of linear polynomials. (i) If P is compact then (\dagger) holds for M_S . (ii) If P is not compact but does not contain a 2dimensional cone then (\ddagger) holds for M_S . (iii) If P contains a 2-dimensional cone then (\ddagger) fails for T_S .

The density condition.

All the previous examples, compact or not, satisfying one of the previous conditions considered, satisfy the density condition. In [Sc2], Schmüdgen gives other methods to produce examples where the density condition holds. In [K-M] we gave an intrinsic condition for the density condition to fail:

Theorem 0.13 The density condition fails whenever $n \ge 2$ and K_S contains a cone of dimension 2.

In [P–S] a stronger intrinsic condition is given (if K_S contains a "nasty curve" then the density condition fails). The following example is particularly interesting:

Example 0.14 Consider

$$K := \{(x,y) \in \mathbb{R}^2 : -1 \le (x^2 - 1)(y^2 - 1) \le 0\}$$

in the plane $\mathbb{R}^2 = V(\mathbb{R})$ (see figure 1).

Arguing using the Powers-Scheiderer condition, one shows now that K-moment problem is not finitely solvable.

Note however that the given set is very special; it displays interesting symmetries. This motivates the next section.

Special Situations.

Invariant Sets.

We can extend the results of the previous sections in another direction.

The idea is to fix a distinguished subset $B \subset \mathbb{R}[X]$ and to attempt the various approximations *only for polynomials in* B. That is, we want to study the inclusions

$$T_S \cap B \subseteq \overline{T_S} \cap B \subseteq \operatorname{Psd}(K_S) \cap B$$
.

In [C–K–S], we investigated the particularly privileged situation when B is the subring of invariant polynomials with respect to some action of a group on the polynomial ring $\mathbb{R}[X]$.

Let us revisit the last example of the last section:

Example 0.15 K is G-invariant, where $G = D_4$ the dihedral group of order eight acting on \mathbb{R}^2 in the natural way (as the symmetry group of a square centered at the origin).

The ring of invariants is $\mathbb{R}[x, y]^G = \mathbb{R}[u, v]$ with $u = x^2 + y^2, \quad v = x^2 y^2,$

and the orbit variety $W = \mathbb{R}^2 / / G$ is itself an affine plane.

The image of
$$\pi: V(\mathbb{R}) \to W(\mathbb{R})$$
 is
 $Z = \pi(\mathbb{R}^2) = \{(u, v) \in \mathbb{R}^2 : u \ge 0, v \ge 0, u^2 \ge 4v\}.$

Since $(x^2 - 1)(y^2 - 1) = v - u + 1$, we have $\pi(K) = \{(u, v) \in \mathbb{R}^2 : v \ge 0, \ 1 \le u - v \le 2\}.$

This is a (half-) strip in the (u, v)-plane (see figure 2):

The moment problem for $\pi(K)$ is solved by the preordering N in $\mathbb{R}[u, v] = W(\mathbb{R})$ generated by v, u - v - 1 and 2 - u + v (by [K-M-S]). This means that the G-invariant K-moment problem is solvable (i.e. *invariant* linear functional non-negative on the finitely generated preordering is represented by an invariant measure).

Positive polynomials on fibre products.

Throughout this section, a real algebraic, affine variety $V \subseteq \mathbb{R}^d$ is the common zero set of a finite set of polynomials.

The algebra of regular functions on V (the coordinate ring of V) is $\mathbb{R}[V] = \mathbb{R}[X]/I(V)$, where I(V) is the radical ideal associated to V.

The non-negativity set of a subset $S \subset \mathbb{R}[V]$ is

$$K(S) = \{ x \in V; f(x) \ge 0, \ f \in S \}.$$

Let I be a non-empty set, endowed with a partial order relation $i \leq j$. A projective system of algebraic varieties indexed over I consists of a family of varieties (affine in our case) V_i , $i \in I$, and morphisms $f_{ij} : V_j \longrightarrow V_i$ defined whenever $i \leq j$, and satisfying the compatibility condition

$$f_{ik} = f_{ij}f_{jk}$$
 if $i \le j \le k$.

The topological projective limit $V = \text{proj.lim}(V_i, f_{ij})$ is the universal object endowed with morphisms

$$f_i: V \longrightarrow V_i$$

satisfying the compatibility conditions

$$f_i = f_{ij}f_j, \quad i \le j.$$

A directed projective system carries the additional assumption on the index set that for every pair $i, j \in I$ there exists $k \in I$ satisfying $i \leq k$ and $j \leq k$.

A finite partially ordered set $I = \{i_0, ..., i_n\}$ is a *rooted* tree if the order structure is generated by the inequalities

 $i_1 \ge i_0$ and for every $k > 1, i_k \ge i_{j(k)}$ with j(k) < k.

In [K–P] We are concerned with finite projective systems of algebraic varieties. The main result is the following:

Theorem 0.16 Let (V_i, f_{ij}) be a finite projective system of real affine varieties, indexed over a rooted tree. Let $Q_i \subset \mathbb{R}[V_i]$ be archimedean quadratic modules, subject to the coherence condition $f_{ij}^*Q_i \subseteq Q_j$. Let $p \in \Sigma_i f_i^*\mathbb{R}[V_i]$ be an element which is positive on the set $\bigcap_{i \in I} f_i^{-1}K(Q_i)$. Then $p \in \Sigma_i f_i^*Q_i$.

We also consider fibre products of affine real varieties: Let $Z = X_1 \times_Y X_2$ be the fibre product of affine real varieties. Specifically

$$f_i; X_i \longrightarrow Y, \quad i = 1, 2,$$

are given morphisms and

$$Z = \{ (x_1, x_2) \in X_1 \times X_2; \ f_1(x_1) = f_2(x_2) \}.$$

This is still an algebraic variety, with the ring of regular functions

$$\mathbb{R}[X_1 \times_Y X_2] = \mathbb{R}[X_1] \otimes_{\mathbb{R}[Y]} \mathbb{R}[X_2].$$

Denote by $u_i : Z \longrightarrow X_i$, i = 1, 2, the projection maps, so that: $f_1 u_1 = f_2 u_2$. **Proposition 0.17** With the above notation, let $Q_i \subseteq \mathbb{R}[X_i]$, i = 1, 2, be archimedean quadratic modules. If an element $p \in u_1^* \mathbb{R}[X_1] + u_2^* \mathbb{R}[X_2]$ is strictly positive on the set $u_1^{-1} K(Q_1) \cap u_2^{-1} K(Q_2)$, then $p \in u_1^* Q_1 + u_2^* Q_2$.

The proposition applies to the case of fibre products of affine spaces to recover a result of [L].

Specifically, let $X_1 = \mathbb{R}^{n_1} \times \mathbb{R}^m$, $X_2 = \mathbb{R}^m \times \mathbb{R}^{n_2}$ and $Y = \mathbb{R}^m$, while f_1, f_2 are the corresponding projection maps onto Y. Denote by x_1, y, x_2 the corresponding tuples of variables. Then one immediately identifies

 $Z = \mathbb{R}^{n_1} \times \mathbb{R}^m \times \mathbb{R}^{n_2}$

and the proposition yields:

Corollary 0.18 Let $Q_{x_1,y}, Q_{y,x_2}$ be archimedean quadratic modules in the respective sets of variables. Let $\Pi := (K(Q_{x_1,y}) \times \mathbb{R}^{n_2}) \cap (\mathbb{R}^{n_1} \times K(Q_{y,x_2})) \subseteq Z.$ If a polynomial $p(x_1, y, x_2) = p_1(x_1, y) + p_2(y, x_2)$ is positive on Π , then $p \in Q_{x_1,y} + Q_{y,x_2}$.

The End

References

[C-K-M]	J. Cimpric, S. Kuhlmann and C. Scheiderer: Sums of squares and moment problems in equivariant situations, submitted (2006).
[F]	W. Fan: Non-negative polynomials on compact semi-algebraic sets in one variable case M.Sc. Thesis, Saskatoon (December 2006).
[J-P]	T. Jacobi, A. Prestel: <i>Distinguished representa-</i> <i>tions of strictly positive polynomials</i> , J. reine angew. Math. 532 , 223–235 (2001).
[K-M-S]	S. Kuhlmann, M. Marshall, N. Schwartz: <i>Positiv-</i> <i>ity, sums of squares and the multi-dimensional</i> <i>moment problem II</i> , Adv. Geom. 5 , 583-607, (2005).
[K-P]	S. Kuhlmann – M. Putinar: <i>Positive Polynomials</i> on <i>Fibre Products</i> , submitted (2006).
[L]	J.B. Lasserre: Convergent semidefinite relaxations in polynomial optimization with sparsity, SIAM J. Optim. 17 , 796-817, (2006).
[N]	T. Netzer: Doublegagger not equivalent to mo- ment problem, unpublished note (2006)
[P–S]	V. Powers, C. Scheiderer: <i>The moment problem</i> for non-compact semialgebraic sets, Adv. Geom. 1 , 71–88 (2001).
[P]	M. Putinar: Positive polynomials on compact sets, Ind. Univ. Math. J. 42 (1993), 969–984

[S1]	C. Scheiderer: Sums of squares of regular func- tions on real algebraic varieties, Trans. Amer. Math. Soc. 352 , 1030–1069 (1999)
[S2]	C. Scheiderer: Sums of squares on real algebraic curves , Math. Zeit. 245 (2003), 725–760
[S3]	C. Scheiderer: Distinguished representations of non-negative polynomials, J. Algebra 289 (2005), 558–573
[S4]	C. Scheiderer: Sums of squares on real algebraic surfaces, Manuskripta Math. 119 (2006), 395–410
[Sc1]	K. Schmüdgen: The K-moment problem for com- pact semi-algebraic sets, Math. Ann. 289 , 203– 206 (1991)
[Sc2]	K. Schmüdgen: On the moment problem for closed semi-algebraic sets, J. reine angew. Math. 558 , 225–234 (2003)