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Approximation of positive
polynomials by sums of squares.

Introduction.

In algebraic geometry, we consider ideals of the poly-

nomial ring and algebraic varieties in affine space. In

semi-algebraic geometry, we consider preorderings of

the polynomial ring and semialgebraic sets in affine

space.

• Let R[X ] := R[X1, · · · , Xn] be the ring of polynomials

in n variables and real coefficients.

• A subset M ⊆ R[X ] is a quadratic module if 1 ∈ M ,

M is closed under addition and multiplication by squares

(i.e. a2f ∈ M , ∀a ∈ R[X ] and f ∈ M).

•A quadratic preordering is a quadratic module which

is also closed under multiplication.
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• The smallest preordering of R[X ] is the set of sums of

squares of R[X ], denoted by
∑R[X ]2.

• Given a finite subset S = {f1, ..., fs} of R[X ], the small-

est preordering containing S (preordering finitely gen-

erated by S) is:

TS = { ∑

e∈{0,1}s
σef

e : σe ∈ ∑R[X ]2, f1, · · · , fs ∈ S}

where f e := f e1
1 · · · f es

r , if e = (e1, · · · , es).

• The smallest module containing S (module finitely

generated by S) is:

MS = {σ0 + σ1f1 + ... + σsfs ; σe ∈ ∑R[X ]2 .}

• Let S = {f1, · · · , fs} ⊂ R[X ], S defines a basic closed

semialgebraic subset of Rn:

K = KS = {x ∈ Rn : f1(x) ≥ 0, . . . , fs(x) ≥ 0}
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• Consider polynomials positive semi-definite on KS:

Psd(KS) := {f ∈ R[X ] : f (x) ≥ 0 for all x ∈ KS}

• Psd(KS) is a preordering in R[X ] and TS ⊆ Psd(KS).

Hilbert’s 17th Problem and Stengle’s Positivstellensatz

are concerned with the issue of representation of posi-

tive semi-definite polynomials; motivated by the ques-

tion: when it true that Psd(KS) = TS ?

More generally, we are concerned with the issue of approx-

imating Psd(KS) by “smaller” preorderings (modules):

T †
S = {f : ∀ real ε > 0 , f + ε ∈ TS}.

T ‡
S = {f : ∃q ∈ R[X ] such that ∀ real ε > 0, f+εq ∈ TS}.

TS := {f : L(f ) ≥ 0, ∀ lin. funct. L 6= 0 on R[X ] s. t. L(TS) ≥ 0}.

We have:

TS ⊆ T †
S ⊆ T ‡

S ⊆ TS ⊆ Psd(KS) .
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We say:

• TS is saturated if Psd(KS) = TS.

• (†)S holds if T †
S = Psd(KS)

• (‡)S holds if T ‡
S = Psd(KS)

• S solves the KS– moment problem if TS = Psd(KS).

Note that this is equivalent to saying that TS is dense in

Psd(KS).

Remark 0.1 (i) TS is the closure of TS in R[X ] (for

the finest locally convex topology on R[X ]).

Denote by Pd the (finite dimensional) vector space con-

sisting of all polynomials in R[X ] of degree ≤ 2d, and by

Td = TS∩Pd. The set Td is obviously a bf cone in Pd, i.e.,

Td + Td ⊆ Td and R+Td ⊆ Td. Denote by T d the closure

(in the Euclidean topology) of Td in Pd. Then:

(ii) T ‡
S = ∪d≥0T d.

(iii) The containments (end of page 4) may be strict. The

conjecture that T ‡
S 6= TS was given in [K–M] and recently

proved in [N].

(iv) All the above, except for Psd(KS) depend in general

on the choice of the description S of K = KS.
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PLAN OF THE TALK

In this talk I will give an Atlas of what is known about

the various approximations of Psd(KS) by those pre-

orderings (or the corresponding module versions) de-

pending on the description S, the dimension of the

semi-algebraic set KS, intrinsic geometric properties

of KS (e.g. compact or unbounded), and special prop-

erties of KS (symmetry, sparse representation):

(I) Saturation.

(II) The dagger condition.

(III) The double-dagger condition.

(IV) The density condition.

(V) Special situations.
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Saturation

In [S1] Scheiderer showed:

Theorem 0.2 If dim(KS) ≥ 3, then there exists a

polynomial p(X) ∈ R[X ] such that p(x) ≥ 0 for all

x ∈ Rn but p /∈ TS (so TS cannot be saturated).

Scheiderer’s result is intrinsic; under this hypothesis on

K = KS, independently of the chosen description S, and

whether KS is compact or unbounded, the preordering TS

cannot be saturated.

In the same paper, he also shows another intrinsic result:

Theorem 0.3 If n = 2 and KS contains a cone of

dimension 2, then there exists a polynomial p(X) ∈
R[X ] such that p(x) ≥ 0 for all x ∈ Rn but p /∈ TS (so

TS cannot be saturated).

Low dimensional sets:

This left open the question formulated in [K-M]: what if

KS ⊆ R2 does not contain a cone of dimension 2? Are

there compact/noncompact examples of such KS for which

TS is saturated?
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Recently, Scheiderer developed in a series of papers [S2],

[S3], [S4] several local global principles to determine when

a polynomial f ≥ 0 on KS belongs to the quadratic mod-

ule MS. His results generalize both Schmüdgen’s and Puti-

nar’s Striktpositivstellensätze. With these tools, he was

able to produce the example that we were looking for:

Example 0.4 The modules generated by:

S1 = {1 + x, 1− x, 1 + y, 1− y} (compact KS) and

S2 = {x, 1− x, y, 1− xy} (noncompact KS)

are saturated.

In [K-M-S], we studied saturated preorderings (mod-

ules) for subsets of the real line. We discuss the case

n = 1 in the next slides.
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To state [K-M-S; Theorem 2.2]. We need to define some

notions.

If K ⊆ R is a non-empty closed semi-algebraic set. Then

K is a finite union of intervals. It is easily verified that

K = KN , for N the set of polynomials defined as follows:

•If a ∈ K and (−∞, a) ∩K = ∅, then X − a ∈ N .

•If a ∈ K and (a,∞) ∩K = ∅, then a−X ∈ N .

•If a, b ∈ K, (a, b) ∩K = ∅, then (X − a)(X − b) ∈ N .

• N has no other elements except these.

We call N the natural set of generators for K.

We first consider the non-compact case:

Theorem 0.5 Assume that K = KS ⊆ R is not com-

pact. Then TS is saturated if and only S contains the

natural set of generators of K (up to scalings by posi-

tive reals).
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For the compact case, we also have a criterion. Assume

that KS has no isolated points :

Theorem 0.6 Let KS be compact, S = {g1, · · · , gs}.
Then TS is saturated if and only if, for each endpoint

a ∈ KS, there exists i ∈ {1, · · · , s} such that x − a

divides gi but (x− a)2 does not.

What about the module version?

In [K-M-S] we asked whether MS = TS if KS ⊆ R is

compact. Scheiderer provided a positive answer using his

local-global criteria. In [F] another elementary proof of

this fact is given. Thus the above theorem is a criterion

for the quadratic module MS to be saturated.
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The dagger condition

In [Sc1] Schmüdgen proved the following intrinsic result:

Theorem 0.7 If KS is compact, then (†)S holds for

TS.

A quadratic module M is archimedean if for all f ∈
R[X ], there exists an integer n ≥ 1 such that n − f and

n + f ∈ M . Putinar proved the following result:

Theorem 0.8 If MS is archimedean, then (†)S holds

for MS.

Remark 0.9 (i) If TS (or MS) is archimedean then KS

is compact.

(ii) Wörman showed that if KS is compact then TS is

archimedean (providing a proof of Schmüdgen’s Theorem

via the Kadison-Dubois Theorem).

(iii) If KS is compact, MS need not be archimedean.

What if KS is not compact?

Apart from the non-compact examples of dimension ≤ 2

presented in the previous section, no non-compact exam-

ples in dimension ≥ 3 are known. This motivated consid-

ering (‡) instead, as we shall see in the next section.
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The doubledagger condition

Non-compact examples by dimension extension.

In [K-M] we construct a large number of non-compact ex-

amples where (‡) holds.

Let S ⊆ R[X ] finite and set p = 1 +
∑n

i=1 X2
i .

Denote by R[X,Y ] the polynomial ring in n + 1 variables

X = X1, . . . , Xn, Y and consider the finite set

S ′ = S ∪ {1− pY,−(1− pY )} in R[X, Y ].

Then KS′ consists of those points on the hypersurface

H = {(x, y) ∈ Rn+1 | p(x)y = 1}
inRn+1 which map to KS under the projection (x, y) 7→ x.

Theorem 0.10 (‡)′S holds.

12



Cylinders with compact base.

We continue to denote by R[X,Y ] the polynomial ring in

n + 1 variables X1, . . . , Xn, Y .

Consider a subset S = {g1, . . . , gs} of R[X, Y ] where the

polynomials g1, . . . , gs involve only the variables X1, . . . , Xn.

So KS has the form K ×R, K ⊆ Rn. We further assume

that K is compact.

We describe this situation by saying that KS is a cylinder

with compact cross-section. In [K-M] we prove:

Theorem 0.11 If KS is a cylinder with compact cross-

section, then (‡)S holds.

More precisely, let f ∈ R[X,Y ] is such that f ≥ 0 on

KS. Let d ≥ 1 so that the degree of f as a polynomial

in Y is ≤ 2d. Set

q(Y ) := 3 + Y + 3Y 2 + Y 3 + . . . + 3Y 2d .

Then for all ε > 0, f + εq(Y ) ∈ TS.
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Closed Polyhedra.

In [K-M-S] we develop a ”fiber criterion” for (‡) to hold on

subsets of cylinders. In particular, we get an application

to generalized polyhedra.

Assume that KS is the basic closed semi-algebraic set in

Rm, m ≥ 1, defined by S = {`1, . . . , `s}, where `1, . . . , `s

are linear, so KS is a closed polyhedron. If KS is

compact then, by [J–P], (†) holds for MS.

What if KS is not compact?

If KS contains a cone of dimension 2 then, by [K–M]

(‡) fails for TS.

In [K–M] we asked whether (‡) holds in the remaining case,

i.e., when KS is not compact and does not contain a cone

of dimension 2.

In [K–M–S] we settle this question completely:

Theorem 0.12 Let P be a closed polyhedron in Rm

defined by a finite set S of linear polynomials.

(i) If P is compact then (†) holds for MS.

(ii) If P is not compact but does not contain a 2-

dimensional cone then (‡) holds for MS.

(iii) If P contains a 2-dimensional cone then (‡) fails

for TS.
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The density condition.

All the previous examples, compact or not, satisfying one

of the previous conditions considered, satisfy the density

condition. In [Sc2], Schmüdgen gives other methods to

produce examples where the density condition holds. In

[K-M] we gave an intrinsic condition for the density con-

dition to fail:

Theorem 0.13 The density condition fails whenever

n ≥ 2 and KS contains a cone of dimension 2.

In [P–S] a stronger intrinsic condition is given (if KS con-

tains a “nasty curve”then the density condition fails). The

following example is particularly interesting:

Example 0.14 Consider

K := {(x, y) ∈ R2:−1 ≤ (x2 − 1)(y2 − 1) ≤ 0}
in the plane R2 = V (R) (see figure 1).

Arguing using the Powers-Scheiderer condition, one shows

now that K-moment problem is not finitely solvable.

Note however that the given set is very special; it dis-

plays interesting symmetries. This motivates the next

section.
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Special Situations.

Invariant Sets.

We can extend the results of the previous sections in an-

other direction.

The idea is to fix a distinguished subset B ⊂ R[X ] and to

attempt the various approximations only for polynomials

in B. That is, we want to study the inclusions

TS ∩B ⊆ TS ∩B ⊆ Psd(KS) ∩B .

In [C–K–S], we investigated the particularly privileged sit-

uation when B is the subring of invariant poly-

nomials with respect to some action of a group on the

polynomial ring R[X ].

Let us revisit the last example of the last section:
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Example 0.15 K is G-invariant, where G = D4 the

dihedral group of order eight acting on R2 in the natural

way (as the symmetry group of a square centered at the

origin).

The ring of invariants is R[x, y]G = R[u, v] with

u = x2 + y2, v = x2y2,

and the orbit variety W = R2//G is itself an affine plane.

The image of π: V (R) → W (R) is

Z = π(R2) = {(u, v) ∈ R2: u ≥ 0, v ≥ 0, u2 ≥ 4v}.

Since (x2 − 1)(y2 − 1) = v − u + 1, we have

π(K) = {(u, v) ∈ R2: v ≥ 0, 1 ≤ u− v ≤ 2}.
This is a (half-) strip in the (u, v)-plane (see figure 2):

The moment problem for π(K) is solved by the preorder-

ing N in R[u, v] = W (R) generated by v, u − v − 1 and

2− u + v (by [K-M-S]). This means that the G-invariant

K-moment problem is solvable (i.e. invariant linear func-

tional non-negative on the finitely generated preordering

is represented by an invariant measure).
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Positive polynomials on fibre products.

Throughout this section, a real algebraic, affine variety

V ⊆ Rd is the common zero set of a finite set of polyno-

mials.

The algebra of regular functions on V (the coordinate ring

of V ) is R[V ] = R[X ]/I(V ), where I(V ) is the radical

ideal associated to V .

The non-negativity set of a subset S ⊂ R[V ] is

K(S) = {x ∈ V ; f (x) ≥ 0, f ∈ S}.

Let I be a non-empty set, endowed with a partial order

relation i ≤ j. A projective system of algebraic varieties

indexed over I consists of a family of varieties (affine in our

case) Vi, i ∈ I , and morphisms fij : Vj −→ Vi defined

whenever i ≤ j, and satisfying the compatibility condition

fik = fijfjk if i ≤ j ≤ k.
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The topological projective limit V = proj.lim(Vi, fij) is

the universal object endowed with morphisms

fi : V −→ Vi

satisfying the compatibility conditions

fi = fijfj, i ≤ j.

A directed projective system carries the additional as-

sumption on the index set that for every pair i, j ∈ I

there exists k ∈ I satisfying i ≤ k and j ≤ k.

A finite partially ordered set I = {i0, ..., in} is a rooted

tree if the order structure is generated by the inequalities

i1 ≥ i0 and for every k > 1, ik ≥ ij(k) with j(k) < k.
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In [K–P] We are concerned with finite projective systems

of algebraic varieties. The main result is the following:

Theorem 0.16 Let (Vi, fij) be a finite projective sys-

tem of real affine varieties, indexed over a rooted tree.

Let Qi ⊂ R[Vi] be archimedean quadratic modules, sub-

ject to the coherence condition f ∗ijQi ⊆ Qj. Let p ∈
∑

i f
∗
i R[Vi] be an element which is positive on the set

∩i∈If
−1
i K(Qi). Then p ∈ ∑

i f
∗
i Qi.

We also consider fibre products of affine real varieties: Let

Z = X1×Y X2 be the fibre product of affine real varieties.

Specifically

fi; Xi −→ Y, i = 1, 2,

are given morphisms and

Z = {(x1, x2) ∈ X1 ×X2; f1(x1) = f2(x2)}.
This is still an algebraic variety, with the ring of regular

functions

R[X1 ×Y X2] = R[X1]⊗R[Y ] R[X2].

Denote by ui : Z −→ Xi, i = 1, 2, the projection maps,

so that: f1u1 = f2u2.
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Proposition 0.17 With the above notation, let Qi ⊆
R[Xi], i = 1, 2, be archimedean quadratic modules.

If an element p ∈ u∗1R[X1]+u∗2R[X2] is strictly positive

on the set u−1
1 K(Q1)∩u−1

2 K(Q2), then p ∈ u∗1Q1+u∗2Q2.

The proposition applies to the case of fibre products of

affine spaces to recover a result of [L].

Specifically, let X1 = Rn1 × Rm, X2 = Rm × Rn2 and

Y = Rm, while f1, f2 are the corresponding projection

maps onto Y . Denote by x1, y, x2 the corresponding tuples

of variables. Then one immediately identifies

Z = Rn1 × Rm × Rn2

and the proposition yields:

Corollary 0.18 Let Qx1,y, Qy,x2 be archimedean quadratic

modules in the respective sets of variables. Let

Π := (K(Qx1,y)× Rn2) ∩ (Rn1 ×K(Qy,x2)) ⊆ Z.

If a polynomial p(x1, y, x2) = p1(x1, y)+p2(y, x2) is pos-

itive on Π, then p ∈ Qx1,y + Qy,x2.

*******

The End
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