Workshop Optimization and Control.

IMA Minneapolis, January 16-20 2007.

January 13, 2007

Salma Kuhlmann ${ }^{1}$,
Research Center Algebra, Logic and Computation
University of Saskatchewan,
McLean Hall, 106 Wiggins Road,
Saskatoon, SK S7N 5E6, Canada
email: skuhlman@math.usask.ca
The slides of this talk are available at:
http://math.usask.ca/~skuhlman/slidesim.pdf

[^0]
Approximation of positive polynomials by sums of squares.

Introduction.

In algebraic geometry, we consider ideals of the polynomial ring and algebraic varieties in affine space. In semi-algebraic geometry, we consider preorderings of the polynomial ring and semialgebraic sets in affine space.

- Let $\mathbb{R}[X]:=\mathbb{R}\left[X_{1}, \cdots, X_{n}\right]$ be the ring of polynomials in n variables and real coefficients.
- A subset $M \subseteq \mathbb{R}[X]$ is a quadratic module if $1 \in M$, M is closed under addition and multiplication by squares (i.e. $a^{2} f \in M, \forall a \in \mathbb{R}[X]$ and $f \in M$).
- A quadratic preordering is a quadratic module which is also closed under multiplication.
- The smallest preordering of $\mathbb{R}[X]$ is the set of sums of squares of $\mathbb{R}[X]$, denoted by $\Sigma \mathbb{R}[X]^{2}$.
- Given a finite subset $S=\left\{f_{1}, \ldots, f_{s}\right\}$ of $\mathbb{R}[X]$, the smallest preordering containing S (preordering finitely generated by S) is:

$$
T_{S}=\left\{\sum_{e \in\{0,1\}^{s}} \sigma_{e} f^{e}: \sigma_{e} \in \sum \mathbb{R}[X]^{2}, f_{1}, \cdots, f_{s} \in S\right\}
$$

where $f^{e}:=f_{1}^{e_{1}} \cdots f_{r}^{e_{s}}$, if $e=\left(e_{1}, \cdots, e_{s}\right)$.

- The smallest module containing S (module finitely generated by S) is:

$$
M_{S}=\left\{\sigma_{0}+\sigma_{1} f_{1}+\ldots+\sigma_{s} f_{s} ; \sigma_{e} \in \sum \mathbb{R}[X]^{2} .\right\}
$$

- Let $S=\left\{f_{1}, \cdots, f_{s}\right\} \subset \mathbb{R}[X], S$ defines a basic closed semialgebraic subset of \mathbb{R}^{n} :

$$
K=K_{S}=\left\{x \in \mathbb{R}^{n}: f_{1}(x) \geq 0, \ldots, f_{s}(x) \geq 0\right\}
$$

- Consider polynomials positive semi-definite on K_{S} :
$\operatorname{Psd}\left(K_{S}\right):=\left\{f \in \mathbb{R}[X]: f(x) \geq 0\right.$ for all $\left.x \in K_{S}\right\}$
- $\operatorname{Psd}\left(K_{S}\right)$ is a preordering in $\mathbb{R}[X]$ and $T_{S} \subseteq \operatorname{Psd}\left(K_{S}\right)$.

Hilbert's 17th Problem and Stengle's Positivstellensatz are concerned with the issue of representation of positive semi-definite polynomials; motivated by the question: when it true that $\operatorname{Psd}\left(K_{S}\right)=T_{S}$?

More generally, we are concerned with the issue of approximating $\operatorname{Psd}\left(K_{S}\right)$ by "smaller" preorderings (modules):

$$
T_{S}^{\dagger}=\left\{f: \forall \text { real } \epsilon>0, f+\epsilon \in T_{S}\right\} .
$$

$T_{S}^{\ddagger}=\left\{f: \exists q \in \mathbb{R}[X]\right.$ such that \forall real $\left.\epsilon>0, f+\epsilon q \in T_{S}\right\}$.
$\overline{T_{S}}:=\left\{f: L(f) \geq 0, \forall\right.$ lin. funct. $L \neq 0$ on $\mathbb{R}[X]$ s. t. $\left.L\left(T_{S}\right) \geq 0\right\}$.

We have:

$$
T_{S} \subseteq T_{S}^{\dagger} \subseteq T_{S}^{\ddagger} \subseteq \overline{T_{S}} \subseteq \operatorname{Psd}\left(K_{S}\right) .
$$

We say:

- T_{S} is saturated if $\operatorname{Psd}\left(K_{S}\right)=T_{S}$.
- $(\dagger)_{S}$ holds if $T_{S}^{\dagger}=\operatorname{Psd}\left(K_{S}\right)$
- $(\ddagger)_{S}$ holds if $T_{S}^{\ddagger}=\operatorname{Psd}\left(K_{S}\right)$
- S solves the K_{S} - moment problem if $\overline{T_{S}}=\operatorname{Psd}\left(K_{S}\right)$.

Note that this is equivalent to saying that T_{S} is dense in $\operatorname{Psd}\left(K_{S}\right)$.

Remark 0.1 (i) $\overline{T_{S}}$ is the closure of T_{S} in $\mathbb{R}[X]$ (for the finest locally convex topology on $\mathbb{R}[X])$.

Denote by P_{d} the (finite dimensional) vector space consisting of all polynomials in $\mathbb{R}[X]$ of degree $\leq 2 d$, and by $T_{d}=T_{S} \cap P_{d}$. The set T_{d} is obviously a bf cone in P_{d}, i.e., $T_{d}+T_{d} \subseteq T_{d}$ and $\mathbb{R}^{+} T_{d} \subseteq T_{d}$. Denote by \bar{T}_{d} the closure (in the Euclidean topology) of T_{d} in P_{d}. Then:
(ii) $T_{S}^{\ddagger}=\cup_{d \geq 0} \bar{T}_{d}$.
(iii) The containments (end of page 4) may be strict. The conjecture that $T_{S}^{\ddagger} \neq \overline{T_{S}}$ was given in $[\mathrm{K}-\mathrm{M}]$ and recently proved in [N].
(iv) All the above, except for $\operatorname{Psd}\left(K_{S}\right)$ depend in general on the choice of the description S of $K=K_{S}$.

PLAN OF THE TALK

In this talk I will give an Atlas of what is known about the various approximations of Psd $\left(K_{S}\right)$ by those preorderings (or the corresponding module versions) depending on the description S, the dimension of the semi-algebraic set K_{S}, intrinsic geometric properties of K_{S} (e.g. compact or unbounded), and special properties of K_{S} (symmetry, sparse representation):
(I) Saturation.
(II) The dagger condition.
(III) The double-dagger condition.
(IV) The density condition.
(V) Special situations.

Saturation

In [S1] Scheiderer showed:
Theorem 0.2 If $\operatorname{dim}\left(K_{S}\right) \geq 3$, then there exists a polynomial $p(X) \in \mathbb{R}[X]$ such that $p(x) \geq 0$ for all $x \in \mathbb{R}^{n}$ but $p \notin T_{S}$ (so T_{S} cannot be saturated).

Scheiderer's result is intrinsic; under this hypothesis on $K=K_{S}$, independently of the chosen description S, and whether K_{S} is compact or unbounded, the preordering T_{S} cannot be saturated.

In the same paper, he also shows another intrinsic result:
Theorem 0.3 If $n=2$ and K_{S} contains a cone of dimension 2, then there exists a polynomial $p(X) \in$ $\mathbb{R}[X]$ such that $p(x) \geq 0$ for all $x \in \mathbb{R}^{n}$ but $p \notin T_{S}$ (so T_{S} cannot be saturated).

Low dimensional sets:

This left open the question formulated in $[\mathrm{K}-\mathrm{M}]$: what if $K_{S} \subseteq \mathbb{R}^{2}$ does not contain a cone of dimension 2? Are there compact/noncompact examples of such K_{S} for which T_{S} is saturated?

Recently, Scheiderer developed in a series of papers [S2], [S3], [S4] several local global principles to determine when a polynomial $f \geq 0$ on K_{S} belongs to the quadratic module M_{S}. His results generalize both Schmüdgen's and Putinar's Striktpositivstellensätze. With these tools, he was able to produce the example that we were looking for:

Example 0.4 The modules generated by:
$S_{1}=\{1+x, 1-x, 1+y, 1-y\}\left(\right.$ compact $\left.K_{S}\right)$ and $S_{2}=\{x, 1-x, y, 1-x y\}$ (noncompact K_{S})
are saturated.

In [K-M-S], we studied saturated preorderings (modules) for subsets of the real line. We discuss the case $n=1$ in the next slides.

To state [K-M-S; Theorem 2.2]. We need to define some notions.

If $K \subseteq \mathbb{R}$ is a non-empty closed semi-algebraic set. Then K is a finite union of intervals. It is easily verified that $K=K_{\mathcal{N}}$, for \mathcal{N} the set of polynomials defined as follows:

- If $a \in K$ and $(-\infty, a) \cap K=\emptyset$, then $X-a \in \mathcal{N}$.
- If $a \in K$ and $(a, \infty) \cap K=\emptyset$, then $a-X \in \mathcal{N}$.
-If $a, b \in K,(a, b) \cap K=\emptyset$, then $(X-a)(X-b) \in \mathcal{N}$.
- \mathcal{N} has no other elements except these.

We call \mathcal{N} the natural set of generators for K.

We first consider the non-compact case:
Theorem 0.5 Assume that $K=K_{S} \subseteq \mathbb{R}$ is not compact. Then T_{S} is saturated if and only S contains the natural set of generators of K (up to scalings by positive reals).

For the compact case, we also have a criterion. Assume that K_{S} has no isolated points :

Theorem 0.6 Let K_{S} be compact, $S=\left\{g_{1}, \cdots, g_{s}\right\}$. Then T_{S} is saturated if and only if, for each endpoint $a \in K_{S}$, there exists $i \in\{1, \cdots, s\}$ such that $x-a$ divides g_{i} but $(x-a)^{2}$ does not.

What about the module version?
In [K-M-S] we asked whether $M_{S}=T_{S}$ if $K_{S} \subseteq \mathbb{R}$ is compact. Scheiderer provided a positive answer using his local-global criteria. In $[F]$ another elementary proof of this fact is given. Thus the above theorem is a criterion for the quadratic module M_{S} to be saturated.

The dagger condition

In [Sc1] Schmüdgen proved the following intrinsic result:
Theorem 0.7 If K_{S} is compact, then $(\dagger)_{S}$ holds for T_{S}.

A quadratic module M is archimedean if for all $f \in$ $\mathbb{R}[X]$, there exists an integer $n \geq 1$ such that $n-f$ and $n+f \in M$. Putinar proved the following result:
Theorem 0.8 If M_{S} is archimedean, then $(\dagger)_{S}$ holds for M_{S}.

Remark 0.9 (i) If T_{S} (or M_{S}) is archimedean then K_{S} is compact.
(ii) Wörman showed that if K_{S} is compact then T_{S} is archimedean (providing a proof of Schmüdgen's Theorem via the Kadison-Dubois Theorem).
(iii) If K_{S} is compact, M_{S} need not be archimedean.

What if K_{S} is not compact?
Apart from the non-compact examples of dimension ≤ 2 presented in the previous section, no non-compact examples in dimension ≥ 3 are known. This motivated considering (\ddagger) instead, as we shall see in the next section.

The doubledagger condition

Non-compact examples by dimension extension.

In $[\mathrm{K}-\mathrm{M}]$ we construct a large number of non-compact examples where (\ddagger) holds.

Let $S \subseteq \mathbb{R}[X]$ finite and set $p=1+\sum_{i=1}^{n} X_{i}^{2}$.

Denote by $\mathbb{R}[X, Y]$ the polynomial ring in $n+1$ variables $X=X_{1}, \ldots, X_{n}, Y$ and consider the finite set

$$
S^{\prime}=S \cup\{1-p Y,-(1-p Y)\} \text { in } \mathbb{R}[X, Y] .
$$

Then $K_{S^{\prime}}$ consists of those points on the hypersurface

$$
H=\left\{(x, y) \in \mathbb{R}^{n+1} \mid p(x) y=1\right\}
$$

in \mathbb{R}^{n+1} which map to K_{S} under the projection $(x, y) \mapsto x$.

Theorem $0.10(\ddagger)_{S}^{\prime}$ holds.

Cylinders with compact base.

We continue to denote by $\mathbb{R}[X, Y]$ the polynomial ring in $n+1$ variables X_{1}, \ldots, X_{n}, Y.

Consider a subset $S=\left\{g_{1}, \ldots, g_{s}\right\}$ of $\mathbb{R}[X, Y]$ where the polynomials g_{1}, \ldots, g_{s} involve only the variables X_{1}, \ldots, X_{n}.

So K_{S} has the form $K \times \mathbb{R}, K \subseteq \mathbb{R}^{n}$. We further assume that K is compact.

We describe this situation by saying that K_{S} is a cylinder with compact cross-section. In $[\mathrm{K}-\mathrm{M}]$ we prove:

Theorem 0.11 If K_{S} is a cylinder with compact crosssection, then $(\ddagger)_{S}$ holds.

More precisely, let $f \in \mathbb{R}[X, Y]$ is such that $f \geq 0$ on K_{S}. Let $d \geq 1$ so that the degree of f as a polynomial in Y is $\leq 2 d$. Set

$$
q(Y):=3+Y+3 Y^{2}+Y^{3}+\ldots+3 Y^{2 d}
$$

Then for all $\epsilon>0, f+\epsilon q(Y) \in T_{S}$.

Closed Polyhedra.

In [K-M-S] we develop a " fiber criterion" for (\ddagger) to hold on subsets of cylinders. In particular, we get an application to generalized polyhedra.

Assume that K_{S} is the basic closed semi-algebraic set in $\mathbb{R}^{m}, m \geq 1$, defined by $S=\left\{\ell_{1}, \ldots, \ell_{s}\right\}$, where $\ell_{1}, \ldots, \ell_{s}$ are linear, so K_{S} is a closed polyhedron. If K_{S} is compact then, by [J-P], (\dagger) holds for M_{S}.

What if K_{S} is not compact?
If K_{S} contains a cone of dimension 2 then, by $[\mathrm{K}-\mathrm{M}]$
(\ddagger) fails for T_{S}.
In $[\mathrm{K}-\mathrm{M}]$ we asked whether (\ddagger) holds in the remaining case, i.e., when K_{S} is not compact and does not contain a cone of dimension 2 .

In $[\mathrm{K}-\mathrm{M}-\mathrm{S}]$ we settle this question completely:
Theorem 0.12 Let P be a closed polyhedron in \mathbb{R}^{m} defined by a finite set S of linear polynomials.
(i) If P is compact then (\dagger) holds for M_{S}.
(ii) If P is not compact but does not contain a 2dimensional cone then (\ddagger) holds for M_{S}.
(iii) If P contains a 2-dimensional cone then (\ddagger) fails for T_{S}.

The density condition.

All the previous examples, compact or not, satisfying one of the previous conditions considered, satisfy the density condition. In [Sc2], Schmüdgen gives other methods to produce examples where the density condition holds. In [K-M] we gave an intrinsic condition for the density condition to fail:

Theorem 0.13 The density condition fails whenever $n \geq 2$ and K_{S} contains a cone of dimension 2.

In $[\mathrm{P}-\mathrm{S}]$ a stronger intrinsic condition is given (if K_{S} contains a "nasty curve" then the density condition fails). The following example is particularly interesting:

Example 0.14 Consider

$$
K:=\left\{(x, y) \in \mathbb{R}^{2}:-1 \leq\left(x^{2}-1\right)\left(y^{2}-1\right) \leq 0\right\}
$$

in the plane $\mathbb{R}^{2}=V(\mathbb{R})$ (see figure 1).
Arguing using the Powers-Scheiderer condition, one shows now that K-moment problem is not finitely solvable.

Note however that the given set is very special; it displays interesting symmetries. This motivates the next section.

Special Situations.

Invariant Sets.

We can extend the results of the previous sections in another direction.

The idea is to fix a distinguished subset $B \subset \mathbb{R}[X]$ and to attempt the various approximations only for polynomials in B. That is, we want to study the inclusions

$$
T_{S} \cap B \subseteq \overline{T_{S}} \cap B \subseteq \operatorname{Psd}\left(K_{S}\right) \cap B .
$$

In [C-K-S], we investigated the particularly privileged situation when B is the subring of invariant polynomials with respect to some action of a group on the polynomial ring $\mathbb{R}[X]$.

Let us revisit the last example of the last section:

Example $0.15 K$ is G-invariant, where $G=D_{4}$ the dihedral group of order eight acting on \mathbb{R}^{2} in the natural way (as the symmetry group of a square centered at the origin).

The ring of invariants is $\mathbb{R}[x, y]^{G}=\mathbb{R}[u, v]$ with

$$
u=x^{2}+y^{2}, \quad v=x^{2} y^{2}
$$

and the orbit variety $W=\mathbb{R}^{2} / / G$ is itself an affine plane.
The image of $\pi: V(\mathbb{R}) \rightarrow W(\mathbb{R})$ is

$$
Z=\pi\left(\mathbb{R}^{2}\right)=\left\{(u, v) \in \mathbb{R}^{2}: u \geq 0, v \geq 0, u^{2} \geq 4 v\right\} .
$$

Since $\left(x^{2}-1\right)\left(y^{2}-1\right)=v-u+1$, we have

$$
\pi(K)=\left\{(u, v) \in \mathbb{R}^{2}: v \geq 0,1 \leq u-v \leq 2\right\} .
$$

This is a (half-) strip in the (u, v)-plane (see figure 2):
The moment problem for $\pi(K)$ is solved by the preordering N in $\mathbb{R}[u, v]=W(\mathbb{R})$ generated by $v, u-v-1$ and $2-u+v$ (by $[\mathrm{K}-\mathrm{M}-\mathrm{S}])$. This means that the G-invariant K-moment problem is solvable (i.e. invariant linear functional non-negative on the finitely generated preordering is represented by an invariant measure).

Positive polynomials on fibre products.

Throughout this section, a real algebraic, affine variety $V \subseteq \mathbb{R}^{d}$ is the common zero set of a finite set of polynomials.

The algebra of regular functions on V (the coordinate ring of $V)$ is $\mathbb{R}[V]=\mathbb{R}[X] / I(V)$, where $I(V)$ is the radical ideal associated to V.

The non-negativity set of a subset $S \subset \mathbb{R}[V]$ is

$$
K(S)=\{x \in V ; f(x) \geq 0, \quad f \in S\} .
$$

Let I be a non-empty set, endowed with a partial order relation $i \leq j$. A projective system of algebraic varieties indexed over I consists of a family of varieties (affine in our case) $V_{i}, i \in I$, and morphisms $f_{i j}: V_{j} \longrightarrow V_{i}$ defined whenever $i \leq j$, and satisfying the compatibility condition

$$
f_{i k}=f_{i j} f_{j k} \text { if } i \leq j \leq k
$$

The topological projective limit $V=\operatorname{proj} \cdot \lim \left(V_{i}, f_{i j}\right)$ is the universal object endowed with morphisms

$$
f_{i}: V \longrightarrow V_{i}
$$

satisfying the compatibility conditions

$$
f_{i}=f_{i j} f_{j}, \quad i \leq j .
$$

A directed projective system carries the additional assumption on the index set that for every pair $i, j \in I$ there exists $k \in I$ satisfying $i \leq k$ and $j \leq k$.

A finite partially ordered set $I=\left\{i_{0}, \ldots, i_{n}\right\}$ is a rooted tree if the order structure is generated by the inequalities
$i_{1} \geq i_{0}$ and for every $k>1, i_{k} \geq i_{j(k)}$ with $j(k)<k$.

In $[\mathrm{K}-\mathrm{P}]$ We are concerned with finite projective systems of algebraic varieties. The main result is the following:

Theorem 0.16 Let $\left(V_{i}, f_{i j}\right)$ be a finite projective system of real affine varieties, indexed over a rooted tree. Let $Q_{i} \subset \mathbb{R}\left[V_{i}\right]$ be archimedean quadratic modules, subject to the coherence condition $f_{i j}^{*} Q_{i} \subseteq Q_{j}$. Let $p \in$ $\Sigma_{i} f_{i}^{*} \mathbb{R}\left[V_{i}\right]$ be an element which is positive on the set $\cap_{i \in I} f_{i}^{-1} K\left(Q_{i}\right)$. Then $p \in \Sigma_{i} f_{i}^{*} Q_{i}$.

We also consider fibre products of affine real varieties: Let $Z=X_{1} \times_{Y} X_{2}$ be the fibre product of affine real varieties. Specifically

$$
f_{i} ; X_{i} \longrightarrow Y, \quad i=1,2,
$$

are given morphisms and

$$
Z=\left\{\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2} ; \quad f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)\right\}
$$

This is still an algebraic variety, with the ring of regular functions

$$
\mathbb{R}\left[X_{1} \times_{Y} X_{2}\right]=\mathbb{R}\left[X_{1}\right] \otimes_{\mathbb{R}[Y]} \mathbb{R}\left[X_{2}\right]
$$

Denote by $u_{i}: Z \longrightarrow X_{i}, i=1,2$, the projection maps, so that: $f_{1} u_{1}=f_{2} u_{2}$.

Proposition 0.17 With the above notation, let $Q_{i} \subseteq$ $\mathbb{R}\left[X_{i}\right], i=1,2$, be archimedean quadratic modules. If an element $p \in u_{1}^{*} \mathbb{R}\left[X_{1}\right]+u_{2}^{*} \mathbb{R}\left[X_{2}\right]$ is strictly positive on the set $u_{1}^{-1} K\left(Q_{1}\right) \cap u_{2}^{-1} K\left(Q_{2}\right)$, then $p \in u_{1}^{*} Q_{1}+u_{2}^{*} Q_{2}$.

The proposition applies to the case of fibre products of affine spaces to recover a result of $[\mathrm{L}]$.
Specifically, let $X_{1}=\mathbb{R}^{n_{1}} \times \mathbb{R}^{m}, X_{2}=\mathbb{R}^{m} \times R^{n_{2}}$ and $Y=\mathbb{R}^{m}$, while f_{1}, f_{2} are the corresponding projection maps onto Y. Denote by x_{1}, y, x_{2} the corresponding tuples of variables. Then one immediately identifies

$$
Z=\mathbb{R}^{n_{1}} \times \mathbb{R}^{m} \times \mathbb{R}^{n_{2}}
$$

and the proposition yields:
Corollary 0.18 Let $Q_{x_{1}, y}, Q_{y, x_{2}}$ be archimedean quadratic modules in the respective sets of variables. Let $\Pi:=\left(K\left(Q_{x_{1}, y}\right) \times \mathbb{R}^{n_{2}}\right) \cap\left(\mathbb{R}^{n_{1}} \times K\left(Q_{y, x_{2}}\right)\right) \subseteq Z$. If a polynomial $p\left(x_{1}, y, x_{2}\right)=p_{1}\left(x_{1}, y\right)+p_{2}\left(y, x_{2}\right)$ is positive on Π, then $p \in Q_{x_{1}, y}+Q_{y, x_{2}}$.

The End

References

[C-K-M] J. Cimpric, S. Kuhlmann and C. Scheiderer: Sums of squares and moment problems in equivariant situations, submitted (2006).
[F] W. Fan: Non-negative polynomials on compact semi-algebraic sets in one variable case M.Sc. Thesis, Saskatoon (December 2006).
[J-P] T. Jacobi, A. Prestel: Distinguished representations of strictly positive polynomials, J. reine angew. Math. 532, 223-235 (2001).
[K-M-S] S. Kuhlmann, M. Marshall, N. Schwartz: Positivity, sums of squares and the multi-dimensional moment problem II, Adv. Geom. 5, 583-607, (2005).
[K-P] S. Kuhlmann - M. Putinar: Positive Polynomials on Fibre Products, submitted (2006).
[L] J.B. Lasserre: Convergent semidefinite relaxations in polynomial optimization with sparsity, SIAM J. Optim. 17, 796-817, (2006).
[N] T. Netzer: Doublegagger not equivalent to moment problem, unpublished note (2006)
[P-S] V. Powers, C. Scheiderer: The moment problem for non-compact semialgebraic sets, Adv. Geom. 1, 71-88 (2001).
[P] M. Putinar: Positive polynomials on compact sets, Ind. Univ. Math. J. 42 (1993), 969-984
C. Scheiderer: Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc. 352, 1030-1069 (1999)
[S2] C. Scheiderer: Sums of squares on real algebraic curves, Math. Zeit. 245 (2003), 725-760
[S3] C. Scheiderer: Distinguished representations of non-negative polynomials, J. Algebra 289 (2005), 558-573
C. Scheiderer: Sums of squares on real algebraic surfaces, Manuskripta Math. 119 (2006), 395-410
[Sc1] K. Schmüdgen: The K-moment problem for compact semi-algebraic sets, Math. Ann. 289, 203206 (1991)
[Sc2] K. Schmüdgen: On the moment problem for closed semi-algebraic sets, J. reine angew. Math. 558, 225-234 (2003)

[^0]: ${ }^{1}$ Partially supported by the Natural Sciences and Engineering Research Council of Canada.

