Special Session on Operator Theory with Algebraic
 Connections. IWOTA 2010, Berlin, Germany, July 12-16 2010.

July 13, 2010

[^0]
Closures of Quadratic Modules in Locally Convex Topologies.

Positivity and Duality.

- Let $V:=\mathbb{R}[X]:=\mathbb{R}\left[X_{1}, \cdots, X_{n}\right]$ be the real vector space of polynomials in n variables and real coefficients.
- Fix τ a locally convex topological vector space topology on V. Denote V_{τ} the corresponding topological space.
- Let $K \subset \mathbb{R}^{n}$. Consider polynomials positive semidefinite on K :

$$
\operatorname{Pos}(K):=\{f \in V \mid f(x) \geq 0 \text { for all } x \in K\}
$$

- Let $C \subset V$. Define

$$
K_{C}:=\left\{x \in \mathbb{R}^{n} \mid g(x) \geq 0 \forall g \in C\right\}
$$

- Let $C \subset V$. Define the dual of C :
$C^{\vee}:=\left\{L \mid L: V_{\tau} \rightarrow \mathbb{R} ;\right.$ cts linear functional; $\left.L(C) \geq 0\right\}$ and the double dual of C :

$$
C^{\vee \vee}:=\left\{f \in V \mid L(f) \geq 0 \forall L \in C^{\vee}\right\}
$$

Straightforward properties are:
(i) Contravariance
(ii) $C \subset C^{\vee \vee}$
(iii) $C^{\vee \vee \vee}=C^{\vee}$
etc...

The Moment Property and the Strong Moment Property.

Haviland's representation theorem for multidimensional moment sequences:

Let $K \subset \mathbb{R}^{n}$ closed, and $L: V \rightarrow \mathbb{R}$ a linear functional $\neq 0$. The following are equivalent:
(i) $L(f) \geq 0$ for all $f \in \operatorname{Pos}(K)$
(ii) \exists a positive Borel measure μ on K such that

$$
L(f)=\int_{K} f d \mu, \forall f \in V
$$

We use Haviland's theorem and the properties of duality to deduce the following:

Theorem 1: Let V_{τ} as above, $C \subset V, K \subset \mathbb{R}^{n}, K$ closed. The following are equivalent:
(1) $C^{\vee} \subset \operatorname{Pos}(K)^{\vee}$
(2) $C^{\vee \vee} \supset \operatorname{Pos}(K)$
(3) $\forall L \in C^{\vee} \exists \mu$ on K such that:

$$
L(f)=\int_{K} f d \mu, \forall f \in V
$$

Definitions: C satisfies (or solves) K MP if any of the equivalent conditions of the above theorem hold. C satisfies (or solves) the strong K MP if C satifies K MP with $K=K_{C}$.

Remark: These notions were introduced and studied by Schmüdgen for $\tau=\varphi:=$ the finest locally convex topology, thus studying representation of arbitrary linear functionals. Here we consider representation of τ continuous linear functionals. We shall return to this issue later.

Double duals and closures.

If $C \subset V$ is a (convex) cone (closed under addition and scalar multiplication by positive reals), then

$$
C^{\vee \vee}=\bar{C}
$$

in V_{τ} (Hahn-Banach). We obtain the following:
Corollary 1 Let $C \subset V$ be a cone, $K \subset \mathbb{R}^{n}$ closed. The following are equivalent:
(2) $\bar{C} \supset \operatorname{Pos}(K)$
(3) $\forall L \in C^{\vee} \exists \mu$ on K such that:

$$
L(f)=\int_{K} f d \mu, \forall f \in V
$$

These results are particularly interesting in the special case when C is a finitely generated quadratic module as we shall explain now.

Finite solvability of the K Moment Problem for continuous linear functionals.

Let $S:=\left\{g_{1}, \cdots, g_{s}\right\} \subset V$. We define the (finitely generated) quadratic module:

$$
M_{S}:=\left\{\sigma_{0}+\sigma_{1} g_{1}+\cdots+\sigma_{s} g_{s} \mid \sigma_{i} \in \sum V^{2}\right\} .
$$

For S, M_{S}, K as above we obtain the following:
Corollary 2: The following are equivalent:
(2) $\overline{M_{S}} \supset \operatorname{Pos}(K)$
(3) If L is a continuous linear functional s.t.

$$
L\left(h^{2}\right) \geq 0, L\left(h^{2} g_{1}\right) \geq 0, \cdots, L\left(h^{2} g_{s}\right) \geq 0
$$

(for all $h \in V$), then there $\exists \mu$ on K such that:

$$
L(f)=\int_{K} f d \mu, \forall f \in V
$$

Thus existence of representation via measures amounts to checking psd-ness of finitely many Hankel matrices.

Definition: The K MP is finitely solvable if S finite

 exists such that any of the quivalent conditions of Corollary 2 holds.Remark: If $n \geq 2$ and K contains a 2-dimensional affine cone, the K MP is never finitely solvable for the finest topology φ (K-Marshall). The hope with this approach is to get finite solvability for representation of linear functionals continuous in a coarser topology τ. We discuss this now.

Closures of the cone of Sums of Squares

Theorem 2:

(1)

$$
\overline{\sum V^{2}}=\sum V^{2} \text { in } V_{\varphi} .
$$

(2)

$$
\overline{\sum V^{2}}=\operatorname{Pos}[-1,1]^{n} \text { in } V_{p} .
$$

Here, for $1 \leq p \leq \infty$:
$V_{P}:=V$ endowed with the ℓ_{p}-norm topology (on the coefficients of polynomials).

Two aspects: a. Approximating nonnegative polynomials on the closed hypercube by sums of squares, and b. applications to solvability of MP:

Corollary 2 and this theorem, say for $p=1$, establish the following:

Corollary 3: Let L be a continuous linear functional on V_{1}, i.e. L is a linear functional on V with a bounded sequence of moments $\left(L\left(x^{\alpha}\right)\right)_{\alpha \in \mathbb{N}^{n}}$.

Assume that

$$
L\left(h^{2}\right) \geq 0 \forall h \in V .
$$

Then

$$
\exists \mu \text { on }[-1,1]^{n} \text { such that } L(f)=\int f d \mu \forall f \in V .
$$

Closures in Weighted ℓ_{p} Topologies.

Let $1 \leq p<\infty, r=\left(r_{1}, \cdots, r_{n}\right)$ be a n-tuple of positive real numbers.

- Set

$$
\ell_{p}\left(r, \mathbb{N}^{n}\right)=\left\{s \in \mathbb{R}^{\mathbb{N}^{n}}: \sum_{\alpha \in \mathbb{N}^{n}}|s(\alpha)|^{p} r^{\alpha}<\infty\right\}
$$

endowed with the norm defined by

$$
\|(s)\|_{p, r}=\left(\sum_{\alpha \in \mathbb{N}^{n}}|s(\alpha)|^{p} r^{\alpha}\right)^{\frac{1}{p}}
$$

- Denote by $V_{p, r}$ the topological vector space V endowed with the $\|\cdot\|_{p, r}$ norm.
- We compute the closure of the cone of sums of squares in these norm topologies.

Let $f \in V$. Assume that

$$
f \geq 0 \text { on } \prod_{i=1}^{n}\left[-r_{i}, r_{i}\right]
$$

Then the polynomial $\tilde{f}(\underline{X})=f\left(r_{1} X_{1}, \cdots, r_{n} X_{n}\right)$ is a nonnegative polynomial on $[-1,1]^{n}$.

Combining this observation with Berg's result we get:
Theorem 3

$$
\overline{\sum V^{2}}=\operatorname{Pos}\left(\prod_{i=1}^{n}\left[-r_{i}, r_{i}\right]\right)
$$

in $V_{1, r}$.

Theorem 4 For $1<p<\infty$,

$$
\overline{\sum V^{2}}=\operatorname{Pos}\left(\prod_{i=1}^{n}\left[-r_{i}^{\frac{q}{p}}, r_{i}^{\frac{q}{p}}\right]\right)
$$

in $V_{p, r}$.
Here, q is the conjugate of p.

The End

[^0]: Salma Kuhlmann
 Schwerpunkt Reelle Geometrie und Algebra, Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany

 Email: salma.kuhlmann@uni-konstanz.de
 The slides of this talk are available at:
 http://math.usask.ca/~skuhlman/slidesiwota2010.pdf

