POSITIVITY, SUMS OF SQUARES AND THE MOMENT PROBLEM

1. Two Representation Problems

(I) Positive Semidefinite Polynomials and Sums of Squares.

Let $\mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ denote the polynomial \mathbb{R} -algebra.

Let $f \in \mathbb{R}[\underline{X}]$ be positive semidefinite (Psd), i.e. f is non-negative on \mathbb{R}^n .

• Is $f \in \sum \mathbb{R}[\underline{X}]^2$ (SOS)?

For $d, n \ge 1$ let $P_{d,n}$: = positive semidefinite forms of degree d in n variables, and $\sum_{d,n} \subseteq P_{d,n}$ the subset consisting of sums of squares.

• Hilbert (1888) proved: For d even, $P_{d,n} = \sum_{d,n} if$ and only if $n \leq 2$ or d = 2 or (n = 3 and d = 4).

• Hilbert's 17th Problem: Let $f \in \mathbb{R}[\underline{X}]$ be Psd, is f SOS of rational functions?

- Artin-Schreier (1927) give a positive solution.
- Tarski (1930) publishes his Transfer Principle.

• Tarski-Seidenberg: The projection of a semi-algebraic set is semi-algebraic.

• Krivine (1964) and Stengle (1974) Positivstellensatz: use Tarski-Transfer to give a more precise representation of positive polynomials on semialgebraic sets.

Let $K \subseteq \mathbb{R}^n$ and let Psd(K) denote the set of nonnegative polynomials on K.

 $K \subseteq \mathbb{R}^n$ is basic closed semialgebraic if there exists a finite set of polynomials $S = \{g_1, \ldots, g_s\}$ such that

 $K = K_S := \{x \in \mathbb{R}^n : g_i(x) \ge 0, i = 1, \dots, s\}.$

Such a finite S is a *description* of K.

A subset $C \subseteq \mathbb{R}[\underline{X}]$ is *convex* if for every $x, y \in C$ and $\lambda \in [0, 1], \lambda x + (1 - \lambda)y \in C$.

A subset $C \subseteq \mathbb{R}[\underline{X}]$ is a *cone* if $C + C \subseteq C$ and $\mathbb{R}^+C \subseteq C$. A cone is convex.

A cone M of $\mathbb{R}[\underline{X}]$ is a quadratic module if $1 \in M$, and for each $h \in \mathbb{R}[\underline{X}], h^2 M \subseteq M$.

For
$$S = \{g_1, \dots, g_s\}$$
, let
 $M_S := \{\sum_{i=0}^s \sigma_i g_i : \sigma_i \in \sum \mathbb{R}[\underline{X}]^2 \text{ for } i = 0, \dots, s \text{ and } g_0 = 1\}.$

 M_S is the smallest (here, finitely generated) quadratic module of $\mathbb{R}[\underline{X}]$ containing S. Clearly $M_S \subseteq Psd(K_S)$. • Positivstellensatz: Let $S \subset \mathbb{R}[\underline{X}]$ finite, K_S and M_S as above, $f \in \mathbb{R}[\underline{X}]$. Then: f > 0 on K if and only if there exist $p, q \in M_S$ such that pf = 1 + q.

• Putinar's Archimedean Positivstellensatz: (1993) Let K be a *compact* basic closed semialgebraic set. Let S be a description of K containing the inequality $N - \sum x_i^2 \ge 0$ expressing that $K := K_S$ is bounded, for some $N \in \mathbb{N}$. In this case: f > 0 on K_S implies $f \in M_S$.

• Jacobi-Prestel (2001) generalize the Archimedean Positivstellensatz: $\sum \mathbb{R}[\underline{X}]^2$ is replaced by the (proper) cone of sums of 2*d*-powers, $\sum \mathbb{R}[\underline{X}]^{2d}$, for any integer $d \geq 1$, and quadratic modules by $\sum \mathbb{R}[\underline{X}]^{2d}$ -modules.

The above results have direct applications to the **multidimensional moment problem** for semialgebraic sets.

(II) Positive Semidefinite Linear Functionals and Positive Borel Measures.

• Given a closed set $K \subseteq \mathbb{R}^n$, the K-moment problem is the question of when a linear functional $\ell : \mathbb{R}[\underline{X}] \to \mathbb{R}$ is representable as integration with respect to a positive Borel measure on K.

A necessary condition is that $\ell(f) \ge 0$, for $f \in Psd(K)$.

• Haviland (1935) proved this is also sufficient:

For a linear function $\ell : \mathbb{R}[\underline{X}] \to \mathbb{R}$ and a closed set $K \subseteq \mathbb{R}^n$, the following are equivalent:

(i) There exists a positive regular Borel measure μ on K such that,

$$\forall f \in \mathbb{R}[\underline{X}] \quad \ell(f) = \int_{K} f \ d\mu.$$

(ii) $\forall f \in Psd(K) \ \ell(f) \ge 0.$

4

• The main challenge in applying Haviland's Theorem is verifying its condition (ii), indeed in general Psd(K) is not finitely generated, so Haviland's result may be impractical.

• If K is compact, it follows from Archimedean PSS that nonnegativity of ℓ on $Psd(K_S)$ is ensured once nonnegativity of ℓ on M_S . Thus one is reduced to checking s+2 many systems of inequalities:

(1)
$$\ell(h^2 g_i) \ge 0 \text{ for } h \in \mathbb{R}[\underline{X}], \ i = 0, \dots, s+1, \\ g_0 := 1, \qquad g_{s+1} := (N - \sum x_i^2).$$

• Thus the K_S - moment problem is "solvable by finitely many SDP-problems". This can be summarized in a **single topological statement**.

2. LOCALLY CONVEX TOPOLOGIES.

Biduals are closures.

Set $V := \mathbb{R}[\underline{X}]$. A *locally convex* topology τ on V is a vector space topology which admits a neighbourhood basis of convex open sets at each point.

For a topological vector space (V, τ) denote the set of all τ -continuous linear functionals $\ell : V \to \mathbb{R}$ by V^* .

For $C \subseteq V$, let

$$C_{\tau}^{\vee} = \{\ell \in V^* : \ell \ge 0 \text{ on } C\}$$

be the *first dual* of C and define the *bidual* of C by

 $C_{\tau}^{\vee\vee} = \{ a \in V : \forall \ell \in C_{\tau}^{\vee}, \ \ell(a) \ge 0 \}.$

Separation for Cones: Suppose that A and B are disjoint nonempty convex sets in V. If A is open, then there exists $\ell \in V^*$ and $\gamma \in \mathbb{R}$ such that $\ell(x) < \gamma \leq \ell(y)$ for every $x \in A$ and $y \in B$. Moreover, if B is a cone, then γ can be taken to be 0.

Duality: For any nonempty cone C in (V, τ) , $\overline{C}^{\tau} = C_{\tau}^{\vee \vee}$.

Finest locally convex topology: V is of countable infinite dimension. We define the (direct limit) topology φ on V as follows: $U \subseteq V$ is open if and only if $U \cap W$ is open in W for each finite dimensional subspace W of V.

• Then φ is the finest lc topology on V and all linear functionals are φ -continuous.

Back to Putinar:

$$\operatorname{Psd}(K_S) \subseteq \overline{M_S}^{\varphi}$$

so every linear functional nonnegative on M_S is integration w.r.t. a measure on K_S .

Generalizing to arbitrary locally convex topologies on $\mathbb{R}[\underline{X}]$:

6

The setting is now a threefold statement about a locally convex topology τ , a closed subset K of \mathbb{R}^n , and a cone Cin $\mathbb{R}[\underline{X}]$: If

$$\operatorname{Psd}(K) \subseteq \overline{C}$$

then any τ -continuous functional, nonnegative on C, is integration with respect to a positive Borel measure on K.

Berg et Al (1976) for example considered the ℓ_1 -norm (in terms of coefficients) on $\mathbb{R}[\underline{X}]$ and showed

$$\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_1} = \operatorname{Psd}([-1,1]^n).$$

Thus every ℓ_1 - continuous linear functional, which is *positive semidefinite* (i.e. $\ell(h^2) \ge 0$ for every $h \in \mathbb{R}[\underline{X}]$) is representable as integration with respect to a positive Borel measure on $Psd([-1, 1]^n)$.

This generalizes to ℓ_p -norms.

Theorem 2.1. For
$$1 \le p \le \infty$$
, $\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_p} = Psd([-1,1]^n)$

Corollary 2.2. Let $1 \leq p \leq \infty$, and let $\ell : \mathbb{R}[\underline{X}] \to \mathbb{R}$ be a linear functional on $\mathbb{R}[\underline{X}]$ such that $\|(\ell(\underline{X}^{\alpha}))_{\alpha\in\mathbb{N}^n}\|_q < \infty$ where q is the conjugate of p. If ℓ is positive semidefinite, then there exists a positive Borel measure μ on $[-1, 1]^n$ such that $\forall f \in \mathbb{R}[\underline{X}] \quad \ell(f) = \int_{[-1,1]^n} f \ d\mu$.

• And more generally to weighted $\ell_{p,r}$ -norm (in terms of coefficients) on $\mathbb{R}[\underline{X}]$:

Let $r = (r_1, \ldots, r_n)$ be a *n*-tuple of positive real numbers.

For $1 \leq p < \infty$, define

$$\|s\|_{p,r} = \left(\sum_{\alpha \in \mathbb{N}^n} |s(\alpha)|^p r_1^{\alpha_1} \dots r_n^{\alpha_n}\right)^{\frac{1}{p}}$$

For $p = \infty$ define

.

$$||s||_{\infty,r} = \sup_{\alpha \in \mathbb{N}^n} |s(\alpha)| r_1^{\alpha_1} \dots r_n^{\alpha_n}$$

Theorem 2.3. Let $1 \le p \le \infty$. Then: (1) For $1 \le p < \infty$, $\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_{p,r}} = Psd(\prod_{i=1}^n [-r_i^{\frac{1}{p}}, r_i^{\frac{1}{p}}]).$ (2) $\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_{\infty,r}} = Psd(\prod_{i=1}^n [-r_i, r_i]).$

Compare to Putinar....

Generalization to Cone of Sums of 2*d*-Powers:

Using Jacobi-Prestel Archimedean PSS, we generalize the above Theorem 2.3 with the $\sum \mathbb{R}[\underline{X}]^2$ cone replaced by the cone of sums of 2*d*-powers, $\sum \mathbb{R}[\underline{X}]^{2d}$. So the nonnegativity of the linear functional ought to be checked on the strictly smaller cone $\sum \mathbb{R}[\underline{X}]^{2d}$.

Lasserre's Topology:

The above setting has been recently exploited. Lasserre defines the following norm $\|\cdot\|_w$:

$$\|\sum_{s\in\mathbb{N}^n} f_s \underline{X}^s\|_w = \sum_{s\in\mathbb{N}^n} |f_s|w(s),$$

where

8

$$w(s) = (2\lceil |s|/2\rceil)!$$

and

$$|s| = |(s_1, \dots, s_n)| = s_1 + \dots + s_n$$

He proves that for any finite
$$S$$
,

$$\overline{M_S}^{\|\cdot\|_w} = \operatorname{Psd}(K_S)$$

always holds.

Closure of the cone of sums of 2d-powers in real topological algebras.

We consider the above in a more abstract general setting.

Let R be a commutative \mathbb{R} -algebra with 1 and

$$K \subseteq \operatorname{Hom}(R,\mathbb{R})$$

closed with respect to the product topology. We consider R endowed with the topology T_K , induced by the family of seminorms $\rho_{\alpha}(a) := |\alpha(a)|$, for $\alpha \in K$ and $a \in R$. In case K is compact, we also consider the topology induced by $||a||_K := \sup_{\alpha \in K} |\alpha(\alpha)|$ for $a \in R$. If K is Zariski dense, then those topologies are Hausdorff.

We prove that the closure of the cone of sums of 2*d*-powers, with respect to those two topologies is equal to $\operatorname{Psd} K := \{a \in R : \alpha(a) \geq 0, \text{ for all } \alpha \in K\}$. In particular, any continuous linear functional *L* on the polynomial ring $R = \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \ldots, X_n]$ with $L(h^{2d}) \geq 0$ for each $h \in \mathbb{R}[\underline{X}]$ is integration with respect to a positive Borel measure supported on *K*. Finally we give necessary and sufficient conditions to ensure the continuity of a linear functional with respect to those two topologies.