
POSITIVITY, SUMS OF
SQUARES AND THE MOMENT

PROBLEM

1. Two Representation Problems

(I) Positive Semidefinite Polynomials and Sums of
Squares.

Let R[X] := R[X1, . . . , Xn] denote the polynomial R-algebra.

Let f ∈ R[X] be positive semidefinite (Psd), i.e. f is non-
negative on Rn.

• Is f ∈
∑

R[X]2 (SOS)?

For d, n ≥ 1 let Pd,n: = positive semidefinite forms of degree
d in n variables, and

∑
d,n ⊆ Pd,n the subset consisting of

sums of squares.

• Hilbert (1888) proved: For d even, Pd,n =
∑

d,n if and
only if n ≤ 2 or d = 2 or (n = 3 and d = 4).

• Hilbert’s 17th Problem: Let f ∈ R[X] be Psd, is f
SOS of rational functions?

• Artin-Schreier (1927) give a positive solution.

• Tarski (1930) publishes his Transfer Principle.

• Tarski-Seidenberg: The projection of a semi-algebraic
set is semi-algebraic.

•Krivine (1964) and Stengle (1974) Positivstellensatz:
use Tarski-Transfer to give a more precise representation of
positive polynomials on semialgebraic sets.
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Let K ⊆ Rn and let Psd(K) denote the set of nonnegative
polynomials on K.

K ⊆ Rn is basic closed semialgebraic if there exists a finite
set of polynomials S = {g1, . . . , gs} such that

K = KS := {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . , s} .

Such a finite S is a description of K.

A subset C ⊆ R[X] is convex if for every x, y ∈ C and
λ ∈ [0, 1], λx+ (1− λ)y ∈ C.

A subset C ⊆ R[X] is a cone if C +C ⊆ C and R+C ⊆ C.
A cone is convex.

A cone M of R[X] is a quadratic module if 1 ∈M , and for
each h ∈ R[X], h2M ⊆M .

For S = {g1, . . . , gs}, let

MS := {
s∑
i=0

σigi : σi ∈
∑

R[X]2 for i = 0, . . . , s and g0 = 1}.

MS is the smallest (here, finitely generated) quadratic mod-
ule of R[X] containing S. Clearly MS ⊆ Psd(KS).
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• Positivstellensatz: Let S ⊂ R[X] finite, KS and MS as
above, f ∈ R[X]. Then: f > 0 on K if and only if there
exist p, q ∈MS such that pf = 1 + q.

• Putinar’s Archimedean Positivstellensatz: (1993)
Let K be a compact basic closed semialgebraic set. Let S be
a description of K containing the inequality N −

∑
x2
i ≥ 0

expressing that K := KS is bounded, for some N ∈ N. In
this case: f > 0 on KS implies f ∈MS.

• Jacobi-Prestel (2001) generalize the Archimedean Pos-
itivstellensatz:

∑
R[X]2 is replaced by the (proper) cone

of sums of 2d-powers,
∑

R[X]2d, for any integer d ≥ 1, and
quadratic modules by

∑
R[X]2d-modules.

The above results have direct applications to the multi-
dimensional moment problem for semialgebraic sets.
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(II) Positive Semidefinite Linear Functionals and
Positive Borel Measures.

• Given a closed set K ⊆ Rn, the K-moment problem is
the question of when a linear functional ` : R[X] → R is
representable as integration with respect to a positive Borel
measure on K.

A necessary condition is that `(f) ≥ 0, for f ∈ Psd(K).

• Haviland (1935) proved this is also sufficient:

For a linear function ` : R[X] → R and a closed set K ⊆
Rn, the following are equivalent:

(i) There exists a positive regular Borel measure µ on K
such that,

∀f ∈ R[X] `(f) =

∫
K

f dµ.

(ii) ∀f ∈ Psd(K) `(f) ≥ 0.

• The main challenge in applying Haviland’s Theorem is
verifying its condition (ii), indeed in general Psd(K) is not
finitely generated, so Haviland’s result may be impractical.

• If K is compact, it follows from Archimedean PSS that
nonnegativity of ` on Psd(KS) is ensured once nonnegativ-
ity of ` on MS. Thus one is reduced to checking s+2 many
systems of inequalities:

(1)
`(h2gi) ≥ 0 for h ∈ R[X], i = 0, . . . , s+ 1,
g0 := 1, gs+1 := (N −

∑
x2
i ).

• Thus the KS - moment problem is “solvable by finitely
many SDP-probems”. This can be summarized in a single
topological statement.



5

2. Locally Convex Topologies.

Biduals are closures.

Set V := R[X]. A locally convex topology τ on V is a
vector space topology which admits a neighbourhood basis
of convex open sets at each point.

For a topological vector space (V, τ) denote the set of all
τ-continuous linear functionals ` : V → R by V ∗.

For C ⊆ V , let

C∨τ = {` ∈ V ∗ : ` ≥ 0 on C}
be the first dual of C and define the bidual of C by

C∨∨τ = {a ∈ V : ∀` ∈ C∨τ , `(a) ≥ 0}.

Separation for Cones: Suppose that A and B are disjoint
nonempty convex sets in V . If A is open, then there exists
` ∈ V ∗ and γ ∈ R such that `(x) < γ ≤ `(y) for every
x ∈ A and y ∈ B. Moreover, if B is a cone, then γ can be
taken to be 0.

Duality: For any nonempty cone C in (V, τ), C
τ

= C∨∨τ .

Finest locally convex topology: V is of countable infi-
nite dimension. We define the (direct limit) topology ϕ on
V as follows: U ⊆ V is open if and only if U ∩W is open
in W for each finite dimensional subspace W of V .

• Then ϕ is the finest lc topology on V and all linear func-
tionals are ϕ-continuous.

Back to Putinar:

Psd(KS) ⊆MS
ϕ

so every linear functional nonnegative on MS is integration
w.r.t. a measure on KS.
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Generalizing to arbitrary locally convex topologies
on R[X]:

The setting is now a threefold statement about a locally
convex topology τ , a closed subset K of Rn, and a cone C
in R[X]: If

Psd(K) ⊆ C
τ

then any τ -continuous functional, nonnegative on C, is in-
tegration with respect to a positive Borel measure on K.

Berg et Al (1976) for example considered the `1-norm (in
terms of coefficients) on R[X] and showed∑

R[X]2
‖·‖1

= Psd([−1, 1]n).

Thus every `1- continuous linear functional, which is pos-
itive semidefinite (i.e. `(h2) ≥ 0 for every h ∈ R[X]) is rep-
resentable as integration with respect to a positive Borel
measure on Psd([−1, 1]n).
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This generalizes to `p-norms.

Theorem 2.1. For 1 ≤ p ≤ ∞,
∑

R[X]2
‖·‖p

= Psd([−1, 1]n.

Corollary 2.2. Let 1 ≤ p ≤ ∞, and let ` : R[X] → R be
a linear functional on R[X] such that ‖(`(Xα))α∈Nn‖q <∞
where q is the conjugate of p. If ` is positive semidefinite,
then there exists a positive Borel measure µ on [−1, 1]n such
that ∀f ∈ R[X] `(f) =

∫
[−1,1]n f dµ.

• And more generally to weighted `p,r-norm (in terms of
coefficients) on R[X]:

Let r = (r1, . . . , rn) be a n-tuple of positive real numbers.

For 1 ≤ p <∞, define

‖s‖p,r = (
∑
α∈Nn

|s(α)|prα1
1 . . . rαn

n )
1
p

.

For p =∞ define

‖s‖∞,r = sup
α∈Nn

|s(α)|rα1
1 . . . rαn

n

.

Theorem 2.3. Let 1 ≤ p ≤ ∞. Then:

(1) For 1 ≤ p <∞,
∑

R[X]2
‖·‖p,r

= Psd(
∏n

i=1[−r
1
p

i , r
1
p

i ]).

(2)
∑

R[X]2
‖·‖∞,r

= Psd(
∏n

i=1[−ri, ri]).

Compare to Putinar....
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Generalization to Cone of Sums of 2d-Powers:

Using Jacobi-Prestel Archimedean PSS, we generalize the
above Theorem 2.3 with the

∑
R[X]2 cone replaced by the

cone of sums of 2d-powers,
∑

R[X]2d. So the nonnegativity
of the linear functional ought to be checked on the strictly
smaller cone

∑
R[X]2d.

Lasserre’s Topology:

The above setting has been recently exploited. Lasserre
defines the following norm ‖ · ‖w:

‖
∑
s∈Nn

fsX
s‖w =

∑
s∈Nn

|fs|w(s),

where
w(s) = (2d|s|/2e)!

and
|s| = |(s1, . . . , sn)| = s1 + · · ·+ sn

.

He proves that for any finite S,

MS
‖·‖w

= Psd(KS)

always holds.
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Closure of the cone of sums of 2d-powers in real
topological algebras.

We consider the above in a more abstract general setting.

Let R be a commutative R-algebra with 1 and

K ⊆ Hom (R,R)

closed with respect to the product topology. We consider
R endowed with the topology TK , induced by the family
of seminorms ρα(a) := |α(a)|, for α ∈ K and a ∈ R. In
case K is compact, we also consider the topology induced
by ‖a‖K := supα∈K |α(a)| for a ∈ R. If K is Zariski dense,
then those topologies are Hausdorff.

We prove that the closure of the cone of sums of 2d-powers,
with respect to those two topologies is equal to PsdK :=
{a ∈ R : α(a) ≥ 0, for all α ∈ K}. In particular, any
continuous linear functional L on the polynomial ring R =
R[X] := R[X1, . . . , Xn] with L(h2d) ≥ 0 for each h ∈ R[X]
is integration with respect to a positive Borel measure sup-
ported on K. Finally we give necessary and sufficient con-
ditions to ensure the continuity of a linear functional with
respect to those two topologies.
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