Session Pure Mathematics. Prairie Meeting, Saskatoon, April 29 - May 2009.

April 29, 2009

Salma Kuhlmann ${ }^{1}$,
Research Center Algebra, Logic and Computation University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK S7N 5E6, Canada email: skuhlman@math.usask.ca
The slides of this talk are available at:
http://math.usask.ca/~skuhlman/slidespnrms2009.pdf

[^0]
An uncountable family of logarithmic functions of distinct growth rates.

Preliminaries.

Let $G \neq 1$ be an ordered abelian group.

- $\mathbb{R}((G))$ will denote the field of generalized series with real coefficients, of which support is an anti well ordered and countable subset of G.
- $f=\sum_{g \in G} f_{g} g$ with $f_{g} \in \mathbb{R}$ and

$$
\operatorname{supp}(f):=\left\{g \in G ; f_{g} \text { nonzero }\right\}
$$

is countable and anti-wellordered.

- Pointwise addition, convolution formula for multiplication of series, anti-lexicographic order, natural valuation.
Denote by $G^{\succ 1}$ the semigroup of elements greater than 1 .
- $\mathbb{R}\left(\left(G^{\succ 1}\right)\right)$ consists of "purely infinite" series with countable support in $G^{\succ 1}$.
- $\mathbb{R}\left(\left(G^{\preceq 1}\right)\right)$ and $\mathbb{R}\left(\left(G^{\prec 1}\right)\right)$ denote respectively the valuation ring of bounded elements, and the valuation ideal of infinitesimal elements of $\mathbb{R}((G))$.
- If G is divisible, $\mathbb{R}((G))$ is a (non-archimedean) real closed field, i.e. by Tarski's Tranfer Principle, $\mathbb{R}((G))$ is elementarily equivalent to the ordered field of real numbers $(\mathbb{R},<)$.
- A. Wilkie's o-minimality of (\mathbb{R}, \log).
- How to construct nonarchimedean logarithmic fields using fields of generalized series?
- Use Taylor expansion of the logarithm to define the logarithm of a generalized series?

Summable families of series: Given a family

$$
\left\{s_{i} ; i \in I\right\} \subset \mathbb{R}((G))
$$

make sense of $\Sigma_{1 \in I} s_{i}$ as an element of $\mathbb{R}((G))$.

Defining the logarithm.

- B.H.Neumann: For $\epsilon \in \mathbb{R}\left(\left(G^{\prec 1}\right)\right)$,

$$
\sum_{i=1}^{+\infty}(-1)^{(i-1)} \frac{\epsilon^{i}}{i}
$$

makes sense.
A logarithmic section is an embedding of ordered groups

$$
l:(G, \cdot, \prec) \rightarrow\left(\mathbb{R}\left(\left(G^{\succ 1}\right)\right),+\right) .
$$

- Given $f \in \mathbb{R}((G)), f>0$ and $g:=\max \operatorname{supp} f$, write

$$
f=g \cdot c \cdot(1+\epsilon)
$$

with $c \in \mathbb{R}, c>0, \epsilon \in \mathbb{R}\left(\left(G^{\prec 1}\right)\right)$.

- We extend l as follows:

$$
l(f)=l(g \cdot c \cdot(1+\epsilon))=l(g)+\log c+\sum_{i=1}^{+\infty}(-1)^{(i-1)} \frac{\epsilon^{i}}{i}
$$

- $l:\left(\mathbb{R}((G))^{>0}, \cdot\right) \rightarrow(\mathbb{R}((G)),+)$ is an order preserving embedding of groups, extending the logarithmic section l (the logarithm associated to the logarithmic section l).

Logarithmic sections from Hahn groups

Let us now consider a totally ordered set Γ, we now explain how this data determines a logarithmic section:

- Consider the multiplicative group G which consists of finite products of germs $f^{r}, f \in \Gamma, r \in \mathbb{R}$.
- Consider $l: G \rightarrow \mathbb{R}((G))$ defined by

$$
l\left(\prod_{i=1}^{s} f_{i}^{r_{i}}\right):=\sum_{i=1}^{s} r_{i} f_{i}
$$

defines indeed a logarithmic section on $\mathbb{R}((G))$.

- But this logarithmic section violates the growth axiom. We need more.
- We assume that Γ admits an order preserving automorphism which is a leftward shift:

$$
\sigma(f) \prec f \text { for all } f \in \Gamma
$$

- The automorphism σ induces the logarithmic section:

$$
l_{\sigma}\left(\prod_{i=1}^{s} f_{i}^{r_{i}}\right):=\sum_{i=1}^{s} r_{i} \sigma\left(f_{i}\right)
$$

- We extend l_{σ} to a logarithm defined on $\mathbb{R}((G))$ as before.

Rank and logarithmic rank

We see that pairwise distinct left shifts on Γ will induce pairwise distinct logarithms. We do more: we construct logarithms of pairwise distinct growth rates.

The $\mathbf{r a n k}$ of (Γ, σ) is the order type of the quotient Γ / \sim_{σ}, where $a \sim_{\sigma} a^{\prime}$ if and only if there exists $n \in \mathbb{N}$ such that $\sigma^{(n)}(a) \geq a^{\prime}$ and $\sigma^{(n)}\left(a^{\prime}\right) \geq a$.

Similarly the logarithmic rank of $\left(K^{>0}, l\right)$ is defined via the equivalence relation: $a, a^{\prime} \in K^{>0}$ are log-equivalent if $a \sim_{l} a^{\prime}$, that is, if and only if there exists $n \in \mathbb{N}$ such that $l^{(n)}(a) \leq a^{\prime}$ and $l^{(n)}\left(a^{\prime}\right) \leq a$.

Proposition 0.1 The logarithmic rank of $\left(\mathbb{R}((G)), l_{\sigma}\right)$ is equal to the rank of (Γ, σ).

An asymptotic scale indexed by $\aleph_{1} \times \mathbb{Z}^{2}$.

We construct a totally ordered set of germs at infinity of real valued functions of a real variable, which admits $2^{\aleph_{1}}$ left shifts.

- For $(p, q) \in \mathbb{Z}^{2}$, we denote by $g_{p, q}$ the germ at $+\infty$ of the infinitely large transmonomial

$$
x \mapsto \exp \left(x^{q} \exp \left(x^{p}\right)\right) .
$$

If we endow \mathbb{Z}^{2} with the lexicographic order, then $(p, q)<$ $\left(p^{\prime}, q^{\prime}\right)$ implies $g_{p, q} \prec g_{p^{\prime}, q^{\prime}}$.

- Now let $\left\{h_{\alpha} ; \alpha \in \aleph_{1}\right\}$ be a sequence of germs at $+\infty$ of infinitely large transmonomials h_{α}, in such a way that $\alpha<\beta$ implies $h_{\alpha} \prec h_{\beta}$.
- One can describe for example the first ϵ_{0} terms of such a sequence. Set $h_{0}(x):=x$. We define h_{α} by transfinite induction for $\alpha<\epsilon_{0}$. If the Cantor normal form of α is $\omega^{\beta_{r}} d_{r}+\cdots+\omega^{\beta_{1}} d_{1}+d_{0}$, with $\beta_{1}<\cdots<\beta_{r}<\alpha$ and $d_{0,}, \ldots, d_{r} \in \mathbb{N}$, set

$$
h_{\alpha}(x):=\exp \left(d_{r} h_{\beta_{r}}(x)+\cdots+d_{1} h_{\beta_{1}}(x)\right) \exp (x)^{d_{0}} .
$$

We can set $h_{\epsilon_{0}}:=t(x)$ where $t(x)$ is a germ of transexponential growth.

- Finally: for all $(\alpha, p, q) \in \aleph_{1} \times \mathbb{Z}^{2}$, we denote $f_{\alpha, p, q}$ the germ at $+\infty$ of the transmonomial $\exp _{3}\left(h_{\alpha}(x)\right) g_{p, q}(x)$.
- These germs are defined in such a way that if $(\alpha, p, q)<$ $\left(\alpha^{\prime}, p^{\prime}, q^{\prime}\right)$ for the lexicographic order, then $f_{\alpha, p, q} \prec f_{\alpha^{\prime}, p^{\prime}, q^{\prime}}$. This set of germs Γ is thus totally ordered.

We construct $2^{\aleph_{1}}$ left-shifts of pairwise distinct ranks on Γ. To this end, we consider the two automorphisms defined on $\Gamma_{1}=\left\{g_{p, q},(p, q) \in \mathbb{Z}^{2}\right\}$ by :

$$
\begin{aligned}
\sigma\left(g_{p, q}\right) & =g_{p-1, q} \\
\rho\left(g_{p, q}\right) & =g_{p, q-1}
\end{aligned}
$$

It follows easily from the definition of $g_{p, q}$ that the rank of $\left(\Gamma_{1}, \sigma\right)$ is 1 and the rank of $\left(\Gamma_{1}, \rho\right)$ is \mathbb{Z}. We define now, for every $S \subset \aleph_{1}$, the decreasing automorphism τ_{S} on Γ by :

$$
\tau_{S}\left(f_{\alpha, p, q}\right)=\left\{\begin{array}{l}
f_{\alpha, p-1, q}=\exp _{3}\left(h_{\alpha}\right) \sigma\left(g_{p, q}\right) \\
f_{\alpha, p, q-1}=\exp _{3}\left(h_{\alpha}\right) \rho\left(g_{p, q}\right)
\end{array} \text { si } \alpha \notin \mathrm{S},\right.
$$

The End

[^0]: ${ }^{1}$ Partially supported by the Natural Sciences and Engineering Research Council of Canada.

