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An uncountable family of logarithmic
functions of distinct growth rates.

Preliminaries.

Let G 6= 1 be an ordered abelian group.

• R((G)) will denote the field of generalized series

with real coefficients, of which support is an anti well or-

dered and countable subset of G.

• f =
∑

g∈G fg g with fg ∈ R and

supp (f ) := {g ∈ G ; fg nonzero }
is countable and anti-wellordered.

• Pointwise addition, convolution formula for multiplica-

tion of series, anti-lexicographic order, natural valuation.

Denote by GÂ1 the semigroup of elements greater than 1.

• R((GÂ1)) consists of “purely infinite” series with count-

able support in GÂ1.

• R((G¹1)) and R((G≺1)) denote respectively the valua-

tion ring of bounded elements, and the valuation ideal of

infinitesimal elements of R((G)).
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• If G is divisible, R((G)) is a (non-archimedean) real

closed field, i.e. by Tarski’s Tranfer Principle,

R((G)) is elementarily equivalent to the ordered field of

real numbers (R, <).

• A. Wilkie’s o-minimality of (R, log).

• How to construct nonarchimedean logarithmic fields

using fields of generalized series?

• Use Taylor expansion of the logarithm to define the log-

arithm of a generalized series?

Summable families of series: Given a family

{si ; i ∈ I} ⊂ R((G))

make sense of
∑

ı∈I si as an element of R((G)).
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Defining the logarithm.

• B.H.Neumann: For ε ∈ R((G≺1)),

+∞∑
i=1

(−1)(i−1) εi

i

makes sense.

A logarithmic section is an embedding of ordered groups

l : (G , ·,≺) → (R((GÂ1)), +) .

• Given f ∈ R((G)), f > 0 and g := max supp f ,

write

f = g · c · (1 + ε)

with c ∈ R, c > 0, ε ∈ R((G≺1)).

• We extend l as follows:

l(f ) = l(g · c · (1 + ε)) = l(g) + log c +
+∞∑
i=1

(−1)(i−1) εi

i

• l : (R((G))>0, ·) → (R((G)), +) is an order preserving

embedding of groups, extending the logarithmic section l

(the logarithm associated to the logarithmic section l).
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Logarithmic sections from Hahn groups

Let us now consider a totally ordered set Γ, we now explain

how this data determines a logarithmic section:

• Consider the multiplicative group G which consists of

finite products of germs f r, f ∈ Γ, r ∈ R.

• Consider l : G → R((G)) defined by

l(
s∏

i=1
f ri

i ) :=
s∑

i=1
rifi ,

defines indeed a logarithmic section on R((G)).

• But this logarithmic section violates the growth ax-

iom. We need more.

• We assume that Γ admits an order preserving automor-

phism which is a leftward shift:

σ(f ) ≺ f for all f ∈ Γ .

• The automorphism σ induces the logarithmic section:

lσ(
s∏

i=1
f ri

i ) :=
s∑

i=1
riσ(fi) .

•We extend lσ to a logarithm defined on R((G)) as before.
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Rank and logarithmic rank

We see that pairwise distinct left shifts on Γ will in-

duce pairwise distinct logarithms. We do more: we

construct logarithms of pairwise distinct growth rates.

The rank of (Γ, σ) is the order type of the quotient Γ/ ∼σ,

where a ∼σ a′ if and only if there exists n ∈ N such that

σ(n)(a) ≥ a′ and σ(n)(a′) ≥ a.

Similarly the logarithmic rank of (K>0, l) is defined via

the equivalence relation: a, a′ ∈ K>0 are log-equivalent if

a ∼l a′, that is, if and only if there exists

n ∈ N such that l(n)(a) ≤ a′ and l(n)(a′) ≤ a .

Proposition 0.1 The logarithmic rank of (R((G)), lσ)

is equal to the rank of (Γ, σ).
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An asymptotic scale indexed by
ℵ1 × Z2.

We construct a totally ordered set of germs at infinity

of real valued functions of a real variable, which admits

2ℵ1 left shifts.

• For (p, q) ∈ Z2, we denote by gp,q the germ at +∞ of

the infinitely large transmonomial

x 7→ exp (xq exp (xp)) .

If we endow Z2 with the lexicographic order, then (p, q) <

(p′, q′) implies gp,q ≺ gp′,q′.
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• Now let {hα ; α ∈ ℵ1} be a sequence of germs at +∞
of infinitely large transmonomials hα, in such a way that

α < β implies hα ≺ hβ .

• One can describe for example the first ε0 terms of such

a sequence. Set h0(x) := x. We define hα by transfinite

induction for α < ε0. If the Cantor normal form of α is

ωβrdr + · · · + ωβ1d1 + d0, with β1 < · · · < βr < α and

d0, . . . , dr ∈ N, set

hα (x) := exp (drhβr (x) + · · · + d1hβ1 (x)) exp(x)d0 .

We can set hε0 := t(x) where t(x) is a germ of transexpo-

nential growth.
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• Finally: for all (α, p, q) ∈ ℵ1 × Z2, we denote fα,p,q the

germ at +∞ of the transmonomial exp3 (hα (x)) gp,q (x).

• These germs are defined in such a way that if (α, p, q) <

(α′, p′, q′) for the lexicographic order, then fα,p,q ≺ fα′,p′,q′.

This set of germs Γ is thus totally ordered.
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We construct 2ℵ1 left-shifts of pairwise distinct ranks on Γ.

To this end, we consider the two automorphisms defined

on Γ1 =
{
gp,q , (p, q) ∈ Z2

}
by :

σ (gp,q) = gp−1,q

ρ (gp,q) = gp,q−1

It follows easily from the definition of gp,q that the rank of

(Γ1, σ) is 1 and the rank of (Γ1, ρ) is Z. We define now,

for every S ⊂ ℵ1, the decreasing automorphism τS on Γ

by :

τS (fα,p,q) =





fα,p−1,q = exp3 (hα) σ (gp,q) si α ∈ S

fα,p,q−1 = exp3 (hα) ρ (gp,q) si α 6∈ S

The End
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