Session Pure Mathematics. Prairie Meeting, Saskatoon, April 29 - May 2 2009.

April 29, 2009

Salma Kuhlmann¹,
Research Center Algebra, Logic and Computation
University of Saskatchewan,
McLean Hall, 106 Wiggins Road,
Saskatoon, SK S7N 5E6, Canada

email: skuhlman@math.usask.ca

The slides of this talk are available at:

http://math.usask.ca/~skuhlman/slidespnrms2009.pdf

¹Partially supported by the Natural Sciences and Engineering Research Council of Canada.

An uncountable family of logarithmic functions of distinct growth rates.

Preliminaries.

Let $G \neq 1$ be an ordered abelian group.

• $\mathbb{R}((G))$ will denote the **field of generalized series** with real coefficients, of which support is an anti well ordered and countable subset of G.

•
$$f = \sum_{g \in G} f_g g$$
 with $f_g \in \mathbb{R}$ and

 $\operatorname{supp} (f) := \{g \in G ; f_g \text{ nonzero } \}$

is countable and anti-wellordered.

• Pointwise addition, convolution formula for multiplication of series, anti-lexicographic order, natural valuation.

Denote by $G^{\succ 1}$ the semigroup of elements greater than 1.

• $\mathbb{R}((G^{\succ 1}))$ consists of "purely infinite" series with countable support in $G^{\succ 1}$.

• $\mathbb{R}((G^{\leq 1}))$ and $\mathbb{R}((G^{<1}))$ denote respectively the valuation ring of bounded elements, and the valuation ideal of infinitesimal elements of $\mathbb{R}((G))$.

• If G is divisible, $\mathbb{R}((G))$ is a (non-archimedean) real closed field, i.e. by Tarski's Tranfer Principle, $\mathbb{R}((G))$ is elementarily equivalent to the ordered field of real numbers $(\mathbb{R}, <)$.

- A. Wilkie's o-minimality of (\mathbb{R}, \log) .
- How to construct nonarchimedean logarithmic fields using fields of generalized series?
- Use Taylor expansion of the logarithm to define the logarithm of a generalized series?

Summable families of series: Given a family

 $\{s_i\,;i\in I\}\subset \mathbb{R}((G))$

make sense of $\sum_{i \in I} s_i$ as an element of $\mathbb{R}((G))$.

Defining the logarithm.

• **B.H.Neumann:** For
$$\epsilon \in \mathbb{R}((G^{\prec 1}))$$
,

$$\sum_{i=1}^{+\infty} (-1)^{(i-1)} \frac{\epsilon^i}{i}$$

makes sense.

A logarithmic section is an embedding of ordered groups

$$l: (G, \cdot, \prec) \to (\mathbb{R}((G^{\succ 1})), +).$$

 \bullet Given $f \in \mathbb{R}((G)), \, f > 0$ and $g := \max \ \mathrm{supp} \ f,$ write

$$f = g \cdot c \cdot (1 + \epsilon)$$

with $c \in \mathbb{R}$, c > 0, $\epsilon \in \mathbb{R}((G^{\prec 1}))$.

• We extend l as follows:

$$l(f) = l(g \cdot c \cdot (1 + \epsilon)) = l(g) + \log c + \sum_{i=1}^{+\infty} (-1)^{(i-1)} \frac{\epsilon^i}{i}$$

• $l : (\mathbb{R}((G))^{>0}, \cdot) \to (\mathbb{R}((G)), +)$ is an order preserving embedding of groups, extending the logarithmic section l(the **logarithm** associated to the logarithmic section l).

Logarithmic sections from Hahn groups

Let us now consider a totally ordered set Γ , we now explain how this data determines a logarithmic section:

- Consider the multiplicative group G which consists of finite products of germs f^r , $f \in \Gamma$, $r \in \mathbb{R}$.
- Consider $l: G \to \mathbb{R}((G))$ defined by

$$l(\prod_{i=1}^s f_i^{r_i}) := \sum_{i=1}^s r_i f_i ,$$

defines indeed a logarithmic section on $\mathbb{R}((G))$.

• But this logarithmic section violates the **growth axiom**. We need more.

• We assume that Γ admits an order preserving automorphism which is a **leftward shift**:

$$\sigma(f) \prec f$$
 for all $f \in \Gamma$.

• The automorphism σ induces the logarithmic section:

$$l_{\sigma}(\prod_{i=1}^{s} f_i^{r_i}) := \sum_{i=1}^{s} r_i \sigma(f_i) .$$

• We extend l_{σ} to a logarithm defined on $\mathbb{R}((G))$ as before.

Rank and logarithmic rank

We see that pairwise distinct left shifts on Γ will induce pairwise distinct logarithms. We do more: we construct logarithms of pairwise distinct growth rates.

The **rank** of (Γ, σ) is the order type of the quotient Γ / \sim_{σ} , where $a \sim_{\sigma} a'$ if and only if there exists $n \in \mathbb{N}$ such that $\sigma^{(n)}(a) \geq a'$ and $\sigma^{(n)}(a') \geq a$.

Similarly the **logarithmic rank** of $(K^{>0}, l)$ is defined via the equivalence relation: $a, a' \in K^{>0}$ are *log-equivalent* if $a \sim_l a'$, that is, if and only if there exists

 $n \in \mathbb{N}$ such that $l^{(n)}(a) \leq a'$ and $l^{(n)}(a') \leq a$.

Proposition 0.1 The logarithmic rank of $(\mathbb{R}((G)), l_{\sigma})$ is equal to the rank of (Γ, σ) .

An asymptotic scale indexed by $\aleph_1 \times \mathbb{Z}^2$.

We construct a totally ordered set of germs at infinity of real valued functions of a real variable, which admits 2^{\aleph_1} left shifts.

• For $(p,q) \in \mathbb{Z}^2$, we denote by $g_{p,q}$ the germ at $+\infty$ of the infinitely large *transmonomial*

$$x \mapsto \exp\left(x^q \exp\left(x^p\right)\right)$$
.

If we endow \mathbb{Z}^2 with the lexicographic order, then (p,q) < (p',q') implies $g_{p,q} \prec g_{p',q'}$.

• Now let $\{h_{\alpha} : \alpha \in \aleph_1\}$ be a sequence of germs at $+\infty$ of infinitely large transmonomials h_{α} , in such a way that $\alpha < \beta$ implies $h_{\alpha} \prec h_{\beta}$.

• One can describe for example the first ϵ_0 terms of such a sequence. Set $h_0(x) := x$. We define h_α by transfinite induction for $\alpha < \epsilon_0$. If the Cantor normal form of α is $\omega^{\beta_r} d_r + \cdots + \omega^{\beta_1} d_1 + d_0$, with $\beta_1 < \cdots < \beta_r < \alpha$ and $d_0, \ldots, d_r \in \mathbb{N}$, set

$$h_{\alpha}(x) := \exp\left(d_r h_{\beta_r}(x) + \dots + d_1 h_{\beta_1}(x)\right) \exp(x)^{d_0}.$$

We can set $h_{\epsilon_0} := t(x)$ where t(x) is a germ of transexponential growth.

• Finally: for all $(\alpha, p, q) \in \aleph_1 \times \mathbb{Z}^2$, we denote $f_{\alpha, p, q}$ the germ at $+\infty$ of the transmonomial $\exp_3(h_\alpha(x)) g_{p,q}(x)$.

• These germs are defined in such a way that if $(\alpha, p, q) < (\alpha', p', q')$ for the lexicographic order, then $f_{\alpha, p, q} \prec f_{\alpha', p', q'}$. This set of germs Γ is thus totally ordered. We construct 2^{\aleph_1} left-shifts of pairwise distinct ranks on Γ . To this end, we consider the two automorphisms defined on $\Gamma_1 = \{g_{p,q}, (p,q) \in \mathbb{Z}^2\}$ by :

$$egin{array}{lll} \sigma\left(g_{p,q}
ight) &=& g_{p-1,q} \
ho\left(g_{p,q}
ight) &=& g_{p,q-1} \end{array}$$

It follows easily from the definition of $g_{p,q}$ that the rank of (Γ_1, σ) is 1 and the rank of (Γ_1, ρ) is \mathbb{Z} . We define now, for every $S \subset \aleph_1$, the decreasing automorphism τ_S on Γ by :

$$\tau_{S}(f_{\alpha,p,q}) = \begin{cases} f_{\alpha,p-1,q} = \exp_{3}(h_{\alpha}) \sigma(g_{p,q}) & \text{si } \alpha \in S \\ f_{\alpha,p,q-1} = \exp_{3}(h_{\alpha}) \rho(g_{p,q}) & \text{si } \alpha \notin S \end{cases}$$

The End