DMV-GAMM Meeting Braunschweig March 7-11, 2016

March 9, 2016

Salma Kuhlmann¹ Schwerpunkt Reelle Geometrie und Algebra, Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany

Email: salma.kuhlmann@uni-konstanz.de The slides of this talk will be available at: http://www.math.uni-konstanz.de/ kuhlmann/vortraege.htm

 $^{^1\}mathrm{Supported}$ by Ausschuß für Forschungsfragen der Universität Konstanz

Quasi-Orders: a uniform approach to orders and valuations

In model-theoretic algebra the classes of **ordered algebraic structures** / **valued structures** play a fundamental role:

- (totally) ordered sets / ultrametric spaces
- (totally) ordered abelian groups / valued abelian groups
- (totally) ordered fields / valued fields

The aim of this talk is to present a uniform approach to the ordered respectively valued cases.

1 Quasi-Orders

• A quasi-order (q.o.) on a set S is a binary relation \leq which is reflexive and transitive. An order is a q.o which is in addition anti-symmetric.

• Here, we will deal only with **total quasi-order**, i.e. either $a \leq b$ or $b \leq a$, for any $a, b \in S$.

• The **induced equivalence relation** is defined by $a \approx b$ if and only if $(a \leq b \text{ and } b \leq a)$. We shall write $a \prec b$ if $a \leq b$ but $b \approx a$ fails.

• \leq induces canonically a total order on S/\approx . Conversely if \approx is an equivalence relation on S such that S/\approx is a total order, then \approx induces canonically a q.o. on S.

• A subset E of S is \leq -convex if for all a, b, c in S, if $a \leq c \leq b$ and $a, b \in E$, then $c \in E$.

2 Quasi-Ordered Fields

• A quasi-ordered field (K, \preceq) is a field K endowed with a quasi-order \preceq which satisfies the following compatibility conditions, for any $a, b, c \in K$.

qo1 If $a \approx 0$, then a = 0.

qo2 If $0 \leq c$ and $a \leq b$, then $ac \leq bc$.

qo3 If $a \leq b$ and $b \not\asymp c$, then $a + c \leq b + c$.

Examples: An ordered field (K, \leq) is a q.o. field. The valuation on a valued field (K, v) induces a quasi-order: $a \leq_v b$ if and only if $v(b) \leq v(a)$.

• Conversely, Fakhruddin showed that if \leq is a q.o. on K, then \leq is either an order or there is a (unique up to equivalence of valuations) valuation v on K such that $\leq = \leq_v$.

As an illustration, we re-consider two important problems from classical real algebra and valuation theory:

I. Fix an order on a field and then, study all valuations which are compatible with this order (convex valuations, rank of the ordered field)

II. Fix a valuation on a field and then, study all orderings which are compatible with it (Baer-Krull theorem, lifting orderings from the residue field)

Here we shall study Problem I. above but with a "quasi-order" instead of an order...

3 Compatible Valuations

Fix a q.o. \leq on K. Given a valuation w on K, denote the valuation ring by K_w , its group of units K_w^{\times} by \mathcal{U} , its unique maximal ideal by I_w , the value group by $w(K^{\times})$ and residue field K_w/I_w by Kw. The valuation w is called

• **convex** with respect to \leq if K_w is convex.

• **compatible** with \leq if for all $a, b \in K$:

$$0 \preceq b \preceq a \quad \Longrightarrow \quad w(a) \leq w(b) \ .$$

• Equivalently, w is compatible with \preceq if and only if for all $a,b\in K$:

$$0 \preceq b \preceq a \implies b \preceq_w a .$$

Remark 3.1 (i) If \leq is an order, then this is the usual notion of compatibility for orders and valuations.

(ii) If $\preceq = \preceq_v$ is a p.q.o. then w compatible with \preceq_v just means that for all $a, b \in K$:

 $v(a) \leq v(b) \quad \Longrightarrow \quad w(a) \leq w(b) \; .$

This in turn just means that $K_v \subseteq K_w$, i.e. that w is a **coarsening** of v.

(iii) For K a field endowed with two valuations v, w, wis coarser than v if and only if $a \leq_v b$ implies $a \leq_w b$, equivalently \asymp_w is coarser than \asymp_v . (If \sim_1 and \sim_2 are two equivalence relations defined on the same set, then \sim_1 is said to be **coarser** than \sim_2 if \sim_2 -equivalence implies \sim_1 -equivalence). The following gives the characterization of valuations compatible with a quasi-order.

Theorem 3.2 Let (K, \preceq) be a q.o. field and w a valuation on K. The following assertions are equivalent:

- 1) w is compatible with \leq ,
- 2) w is convex,
- 3) I_w is convex,
- 4) $I_w \prec 1$,

5) the quasi-order \leq induces canonically via the residue map $a \mapsto aw$ a quasi-order on the residue field Kw. • We note that If \leq is an order then the induced quasiorder in 5) is also an order, if \leq is a p.q.o then the induced quasi-order in 5) is also a p.q.o.

• Theorem 3.2 is in complete analogy to the characterization of valuations compatible with an order.

• We prove only the p.q.o. case:

Proof: Assume $\leq \equiv \leq_v$ is a p.q.o. Compatible valuations are clearly convex, this follows from the definitions. Conversely if w is convex and $0 = v(1) \leq v(a)$, i.e. $a \leq 1$, then $a \in K_w$ by convexity. So w is a coarsening of v. This establishes the equivalence of **1**) and **2**).

If w is convex, $a \leq b$ with $b \in I_w$, then $0 < w(b) \leq w(a)$ by compatibility, so $a \in I_w$. Conversely assume I_w convex, and let $a \leq b$ with $b \in K_w \setminus I_w$. If $a \notin K_w$ then $a^{-1} \in I_w$. Now $b^{-1} \leq a^{-1}$, so $b^{-1} \in I_w$, a contradiction This establishes the equivalence of **2**) and **3**).

If I_w is convex, then w is a coarsening of v, so $I_w \subseteq I_v \prec 1$. Conversely, assume $I_w \prec 1$ and let $a \preceq b$ with $b \in K_w$. If $a \notin K_w$, then $a^{-1} \in I_w$. So $a^{-1}b \in I_w$ whence $a^{-1}b \prec 1$. Multiplying by a gives $b \prec a$, a contradiction. This establishes the equivalence of **3**) and **4**).

Now let w be a coarsening of v. Then v induces canonically a valuation v/w on the residue field Kw, defined by $v/w(aw) := \infty$ if aw = 0 and v/w(aw) := v(a) otherwise. The p.q.o. $\leq_{v/w}$ is precisely the induced well defined quasi-order in 5), i.e. $aw \leq_{v/w} bw$ if and only if $a \leq_v b$ holds. Conversely, let $\leq_{v/w}$ be a p.q.o. on Kw induced by the residue map. This means that $aw \leq_{v/w} bw$ if and only if $a \leq_v b$ holds. Then w is a coarsening of v. This establishes the equivalence of **1**) and **5**).

4 The rank of a quasi-ordered field:

I. Let (K, <) be an ordered field.

• The **natural valuation on the ordered field** is the valuation v whose valuation ring K_v is the convex hull of \mathbb{Q} in K. It is the finest < - convex valuation of K. It is characterized by the fact that its residue field Kv is archimedean, i.e. the only archimedean equivalence classes are those of 0 and 1.

• If w is a coarsening of a convex valuation, then w also is convex. Conversely, a convex subring containing 1 is a valuation ring.

• The set \mathcal{R} of all valuation rings K_w of convex valuations $w \neq v$ (i. e. all strict corsenings of v) is totally ordered by inclusion. Its order type is called the **rank of the ordered field** K.

• Theorem 3.2 is a characterization of the rank of the ordered field (K, <).

II. Let (K, \preceq) is p.q.o.

• The unique valuation v such that $\leq = \leq_v$ is the **natural** valuation on the p.q.o. field. The natural valuation is the finest \leq - convex valuation of K.

• A compatible valuation w is a coarsening of v. Thus, Theorem 3.2 is a characterization of the **rank of the valued field** (K, v), i. e. the order type of the totally ordered set \mathcal{R} of all strict corsenings of v.

• As we recalled in the proof of Theorem 3.2, the natural valuation v induces canonically a valuation v/w on the residue field Kw and v is the **compositum** of w and v/w.

• The p.q.o. $\leq_{v/w}$ is precisely the induced quasi-order in Theorem 3.2 5). If w = v, then v/w is trivial. Thus v is characterized by the fact that the induced p.q.o on its residue field Kv is **trivial**, i.e. the only equivalence classes of \asymp are those of 0 and 1.