DMV-GAMM Meeting Braunschweig March 7-11, 2016

March 9, 2016

Salma Kuhlmann ${ }^{1}$
Schwerpunkt Reelle Geometrie und Algebra,
Fachbereich Mathematik und Statistik,
Universität Konstanz,
78457 Konstanz, Germany
Email: salma.kuhlmann@uni-konstanz.de
The slides of this talk will be available at:
http://www.math.uni-konstanz.de/ kuhlmann/vortraege.htm

[^0]
Quasi-Orders: a uniform approach to orders and valuations

In model-theoretic algebra the classes of ordered algebraic structures / valued structures play a fundamental role:

- (totally) ordered sets / ultrametric spaces
- (totally) ordered abelian groups / valued abelian groups
- (totally) ordered fields / valued fields

The aim of this talk is to present a uniform approach to the ordered respectively valued cases.

1 Quasi-Orders

- A quasi-order (q.o.) on a set S is a binary relation \preceq which is reflexive and transitive. An order is a q.o which is in addition anti-symmetric.
- Here, we will deal only with total quasi-order, i.e. either $a \preceq b$ or $b \preceq a$, for any $a, b \in S$.
- The induced equivalence relation is defined by $a \asymp b$ if and only if ($a \preceq b$ and $b \preceq a$). We shall write $a \prec b$ if $a \preceq b$ but $b \asymp a$ fails.
- \preceq induces canonically a total order on S / \asymp. Conversely if \asymp is an equivalence relation on S such that S / \asymp is a total order, then \asymp induces canonically a q.o. on S.
- A subset E of S is \preceq-convex if for all a, b, c in S, if $a \preceq c \preceq b$ and $a, b \in E$, then $c \in E$.

2 Quasi-Ordered Fields

- A quasi-ordered field (K, \preceq) is a field K endowed with a quasi-order \preceq which satisfies the following compatibility conditions, for any $a, b, c \in K$.
qo1 If $a \asymp 0$, then $a=0$.
qo2 If $0 \preceq c$ and $a \preceq b$, then $a c \preceq b c$.
qo3 If $a \preceq b$ and $b \nprec c$, then $a+c \preceq b+c$.
Examples: An ordered field (K, \leq) is a q.o. field. The valuation on a valued field (K, v) induces a quasi-order: $a \preceq_{v} b$ if and only if $v(b) \leq v(a)$.
- Conversely, Fakhruddin showed that if \preceq is a q.o. on K, then \preceq is either an order or there is a (unique up to equivalence of valuations) valuation v on K such that $\preceq=\preceq_{v}$.

As an illustration, we re-consider two important problems from classical real algebra and valuation theory:
I. Fix an order on a field and then, study all valuations which are compatible with this order (convex valuations, rank of the ordered field)
II. Fix a valuation on a field and then, study all orderings which are compatible with it (Baer-Krull theorem, lifting orderings from the residue field)

Here we shall study Problem I. above but with a "quasiorder" instead of an order...

3 Compatible Valuations

Fix a q.o. \preceq on K. Given a valuation w on K, denote the valuation ring by K_{w}, its group of units K_{w}^{\times}by \mathcal{U}, its unique maximal ideal by I_{w}, the value group by $w\left(K^{\times}\right)$ and residue field K_{w} / I_{w} by $K w$. The valuation w is called

- convex with respect to \preceq if K_{w} is convex.
- compatible with \preceq if for all $a, b \in K$:

$$
0 \preceq b \preceq a \quad \Longrightarrow \quad w(a) \leq w(b) .
$$

- Equivalently, w is compatible with \preceq if and only if for all $a, b \in K$:

$$
0 \preceq b \preceq a \quad \Longrightarrow \quad b \preceq_{w} a .
$$

Remark 3.1 (i) If \preceq is an order, then this is the usual notion of compatibility for orders and valuations.
(ii) If $\preceq=\preceq_{v}$ is a p.q.o. then w compatible with \preceq_{v} just means that for all $a, b \in K$:

$$
v(a) \leq v(b) \quad \Longrightarrow \quad w(a) \leq w(b) .
$$

This in turn just means that $K_{v} \subseteq K_{w}$, i.e. that w is a coarsening of v.
(iii) For K a field endowed with two valuations v, w, w is coarser than v if and only if $a \preceq_{v} b$ implies $a \preceq_{w} b$, equivalently \asymp_{w} is coarser than \asymp_{v}. (If \sim_{1} and \sim_{2} are two equivalence relations defined on the same set, then \sim_{1} is said to be coarser than \sim_{2} if \sim_{2}-equivalence implies \sim_{1}-equivalence).

The following gives the characterization of valuations compatible with a quasi-order.

Theorem 3.2 Let (K, \preceq) be a q.o. field and w a valuation on K. The following assertions are equivalent:

1) w is compatible with \preceq,
2) w is convex,
3) I_{w} is convex,
4) $I_{w} \prec 1$,
5) the quasi-order \preceq induces canonically via the residue map $a \mapsto$ aw a quasi-order on the residue field $K w$.

- We note that If \preceq is an order then the induced quasiorder in 5) is also an order, if \preceq is a p.q.o then the induced quasi-order in 5) is also a p.q.o.
- Theorem 3.2 is in complete analogy to the characterization of valuations compatible with an order.
- We prove only the p.q.o. case:

Proof: Assume $\preceq=\preceq_{v}$ is a p.q.o. Compatible valuations are clearly convex, this follows from the definitions. Conversely if w is convex and $0=v(1) \leq v(a)$, i.e. $a \preceq 1$, then $a \in K_{w}$ by convexity. So w is a coarsening of v. This establishes the equivalence of $\mathbf{1}$) and 2).
If w is convex, $a \preceq b$ with $b \in I_{w}$, then $0<w(b) \leq$ $w(a)$ by compatibility, so $a \in I_{w}$. Conversely assume I_{w} convex, and let $a \preceq b$ with $b \in K_{w} \backslash I_{w}$. If $a \notin K_{w}$ then $a^{-1} \in I_{w}$. Now $b^{-1} \preceq a^{-1}$, so $b^{-1} \in I_{w}$, a contradiction This establishes the equivalence of 2) and $\mathbf{3}$).
If I_{w} is convex, then w is a coarsening of v, so $I_{w} \subseteq I_{v} \prec 1$. Conversely, assume $I_{w} \prec 1$ and let $a \preceq b$ with $b \in K_{w}$. If $a \notin K_{w}$, then $a^{-1} \in I_{w}$. So $a^{-1} b \in I_{w}$ whence $a^{-1} b \prec$ 1. Multiplying by a gives $b \prec a$, a contradiction. This establishes the equivalence of $\mathbf{3}$) and 4).
Now let w be a coarsening of v. Then v induces canonically a valuation v / w on the residue field $K w$, defined by $v / w(a w):=\infty$ if $a w=0$ and $v / w(a w):=v(a)$ otherwise. The p.q.o. $\preceq_{v / w}$ is precisely the induced well defined quasi-order in 5), i.e. $a w \preceq_{v / w} b w$ if and only if $a \preceq_{v} b$ holds. Conversely, let $\preceq_{v / w}$ be a p.q.o. on $K w$ induced by the residue map. This means that $a w \preceq_{v / w} b w$ if and only if $a \preceq_{v} b$ holds. Then w is a coarsening of v. This establishes the equivalence of 1) and 5).

4 The rank of a quasi-ordered field:

I. Let $(K,<)$ be an ordered field.

- The natural valuation on the ordered field is the valuation v whose valuation ring K_{v} is the convex hull of \mathbb{Q} in K. It is the finest $<-$ convex valuation of K. It is characterized by the fact that its residue field $K v$ is archimedean, i.e. the only archimedean equivalence classes are those of 0 and 1 .
- If w is a coarsening of a convex valuation, then w also is convex. Conversely, a convex subring containing 1 is a valuation ring.
- The set \mathcal{R} of all valuation rings K_{w} of convex valuations $w \neq v$ (i. e. all strict corsenings of v) is totally ordered by inclusion. Its order type is called the rank of the ordered field K.
- Theorem 3.2 is a characterization of the rank of the ordered field $(K,<)$.
II. Let (K, \preceq) is p.q.o.
- The unique valuation v such that $\preceq=\preceq_{v}$ is the natural valuation on the p.q.o. field. The natural valuation is the finest \preceq - convex valuation of K.
- A compatible valuation w is a coarsening of v. Thus, Theorem 3.2 is a characterization of the rank of the valued field (K, v), i. e. the order type of the totally ordered set \mathcal{R} of all strict corsenings of v.
- As we recalled in the proof of Theorem 3.2, the natural valuation v induces canonically a valuation v / w on the residue field $K w$ and v is the compositum of w and v / w.
- The p.q.o. $\preceq_{v / w}$ is precisely the induced quasi-order in Theorem 3.2 5). If $w=v$, then v / w is trivial. Thus v is characterized by the fact that the induced p.q.o on its residue field $K v$ is trivial, i.e. the only equivalence classes of \asymp are those of 0 and 1 .

[^0]: ${ }^{1}$ Supported by Ausschuß für Forschungsfragen der Universität Konstanz

