A Tale of Two Cones: $P S D$ vs $S O S$ in equivariant situations

Charu Goel

Indian Institute of Information Technology Nagpur, India

Invited Session "Moment Problems, Convex Algebraic Geometry, and Semidefinite Relaxations"
MTNS 2022, Bayreuth, Germany
15. September, 2022

PSD vs SOS forms

- For $n \in \mathbb{N}$, a polynomial $p(x) \in \mathbb{R}[\underline{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called
- nonnegative or positive semidefinite (psd) if $p(x) \geq 0 \forall x \in \mathbb{R}^{n}$
- a sum of squares (sos) if $p=\sum_{i} q_{i}^{2}$ for some $q_{i} \in \mathbb{R}[\underline{x}]$
- Clearly every sos is psd.
- Converse: When can a psd polynomial written as a sos of poly's?
- Sufficient to consider this question for forms (i.e. homogeneous polynomials) of even degree.
- Let $\mathcal{F}_{n, 2 d}$ be the $\binom{n+2 d-1}{n-1}$-dimensional vector space of all real forms in n variables and degree $2 d$, called \mathbf{n}-ary $2 \mathbf{d}$-ics, where $n, d \in \mathbb{N}$.
- $\mathcal{P}_{n, 2 d}:=\left\{f \in \mathcal{F}_{n, 2 d} \mid f\right.$ is psd $\}$, the set of psd forms.
- $\Sigma_{n, 2 d}:=\left\{f \in \mathcal{F}_{n, 2 d} \mid f\right.$ is sos $\}$, the set of sos forms.

PSD vs SOS forms

Theorem (Hilbert, 1888):
$\mathcal{P}_{n, 2 d}=\Sigma_{n, 2 d}$ if and only if $n=2$ or $2 d=2$ or $(n, 2 d)=(3,4)$.

- Hilbert proved that $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$, and demonstrated that it is enough for all remaining cases, i.e.

Proposition [Reduction to Basic cases]:
If $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$, then
$\Sigma_{n, 2 d} \subsetneq \mathcal{P}_{n, 2 d}$ for all $n \geq 3,2 d \geq 4$ and $(n, 2 d) \neq(3,4)$.

- (Motzkin, 1967)

$$
M:=z^{6}+x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2} z^{2} \in \mathcal{P}_{3,6} \backslash \Sigma_{3,6} .
$$

- (Robinson, 1969)

$$
\begin{aligned}
& W:=x^{2}(x-w)^{2}+(y(y-w)-z(z-w))^{2} \\
&+2 y z(x+y-w)(x+z-w) \in \mathcal{P}_{4,4} \backslash \Sigma_{4,4}
\end{aligned}
$$

PSD vs SOS forms invariant under the action of S_{n}

- A form $f \in \mathcal{F}_{n, 2 d}$ is called symmetric if $\forall \sigma \in S_{n}$: $\sigma f\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ is equal to $f\left(x_{1}, \ldots, x_{n}\right)$.
- Let $S \mathcal{P}_{n, 2 d}$ and $S \Sigma_{n, 2 d}$ be the cones of n-ary $2 d$-ic symmetric forms which are psd and sos respectively.
- Theorem (Choi-Lam, 1976; G.-Kuhlmann-Reznick, 2015):
$S \mathcal{P}_{n, 2 d}=S \Sigma_{n, 2 d}$ iff $n=2$ or $2 d=2$ or $(n, 2 d)=(3,4)$.
Proposition [Reduction to Basic cases]:
If $S \Sigma_{3,6} \subsetneq S \mathcal{P}_{3,6}$ and $S \Sigma_{n, 4} \subsetneq S \mathcal{P}_{n, 4} \forall n \geq 4$, then
$S \Sigma_{n, 2 d} \subsetneq S \mathcal{P}_{n, 2 d}$ for all $n \geq 3,2 d \geq 4$ and $(n, 2 d) \neq(3,4)$.
- (Robinson, 1969)
$R:=x^{6}+y^{6}+z^{6}+3 x^{2} y^{2} z^{2}$
$-\left(x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}+x^{2} y^{4}+y^{2} z^{4}+z^{2} x^{4}\right) \in S \mathcal{P}_{3,6} \backslash S \Sigma_{3,6}$.
- (Choi-Lam, 1976)
$f_{4,4}:=\sum^{6} x^{2} y^{2}+\sum^{12} x^{2} y z-2 x y z w \in S \mathcal{P}_{4,4} \backslash S \Sigma_{4,4}$.
- (G.-Kuhlmann-Reznick, 2015)
$F_{n, 4} \in S \mathcal{P}_{n, 4} \backslash S \Sigma_{n, 4}$ for $n \geq 5$.

PSD vs SOS forms invariant under the action of $S_{n} \times \mathbb{Z}_{2}^{n}$

- A form $f \in \mathcal{F}_{n, 2 d}$ is called even symmetric if it is symmetric and in each term of f every variable has even degree.
- Let $S \mathcal{P}_{n, 2 d}^{e}$ and $S \Sigma_{n, 2 d}^{e}$ are cones of n-ary 2 d -ic even symmetric forms which are psd and sos respectively.
- Theorem (G.-Kuhlmann-Reznick, 2016): $S \mathcal{P}_{n, 2 d}^{e}=S \Sigma_{n, 2 d}^{e}$ iff $n=2$ or $d=1$ or $(n, 2 d)=(n, 4)_{n \geq 3}$ or $(3,8)$.
Proposition [Reduction to Basic cases]:
If $S \Sigma_{n, 2 d}^{e} \subsetneq S \mathcal{P}_{n, 2 d}^{e}$ for $(n, 6)_{n \geq 3},(n, 8)_{n \geq 4},(n, 10)_{n \geq 3},(n, 12)_{n \geq 3}$, then $S \Sigma_{n, 2 d}^{e} \subsetneq S \mathcal{P}_{n, 2 d}^{e}$ for all $n \geq 3,2 d \geq 6$ and $(n, 2 d) \neq(3,8)$.
- (Choi-Lam-Reznick, 1987)
$F_{n, 6} \in S \mathcal{P}_{n, 6}^{e} \backslash S \Sigma_{n, 6}^{e}$ for $n \geq 3$.
- (Harris, 1999)
$F_{n, 2 d} \in S \mathcal{P}_{n, 2 d}^{e} \backslash S \Sigma_{n, 2 d}^{e}$ for $(n, 2 d)=(3,10),(4,8)$.
- (G.-Kuhlmann-Reznick, 2016)
$F_{n, 2 d} \in S \mathcal{P}_{n, 2 d}^{e} \backslash S \Sigma_{n, 2 d}^{e}$ for $(n, 8)_{n \geq 4},(n, 10)_{n \geq 3}$ and $(n, 12)_{n \geq 3}$.

Finite Reflection Groups

- Goal: Hilbert's 1888 theorem for psd and sos forms invariant under the action of a finite reflection group
- Let V be a finite Euclidean space endowed with a positive definite symmetric bilinear form. Given a non-zero vector $\alpha \in V$, we define the linear operator s_{α} by $s_{\alpha}(\lambda):=\lambda-\frac{2\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha$ for any $\lambda \in V$.
- s_{α} is an orthogonal transformation, i.e. $\left.\left\langle s_{\alpha}(\lambda), s_{\alpha}(\mu)\right\rangle=<\lambda, \mu\right\rangle$ for all $\lambda, \mu \in V$.
- $s_{\alpha}^{2}=1$, i.e. s_{α} is an element of order 2 of the group $O(V)$ of all orthogonal transformations of V.
- A finite subgroup of $O(V)$ generated by reflections is called a finite reflection group ${ }^{1}$.

[^0]
Finite Reflection Groups

For $s \in G$, where G is a finite reflection group.

- If s is the linear operator on \mathbb{R}^{n} then the corresponding action on $\mathbb{R}[x]$ is defined as:

$$
\text { for } f \in \mathcal{F}_{n, 2 d}, \operatorname{sf}\left(x_{1}, \ldots, x_{n}\right):=f\left(s\left(x_{1}, \ldots, x_{n}\right)\right) \in \mathcal{F}_{n, 2 d}
$$

In particular if $G=S_{n}, G$ acts on \mathbb{R}^{n} by permuting the coordinates of a given n tuple of reals, so defining the corresponding action on $\mathbb{R}[x]$ gives
$s f\left(x_{1}, \ldots, x_{n}\right)=f\left(s\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(x_{s(1)}, \ldots, x_{s(n)}\right) \in \mathcal{F}_{n, 2 d}$.

- If the linear operator s on \mathbb{R}^{n} is represented w.r.t. the standard basis by the $n \times n$ matrix A_{s}, then the action description becomes:

$$
\text { for } f \in \mathcal{F}_{n, 2 d}, \operatorname{sf}\left(x_{1}, \ldots, x_{n}\right):=f\left(A_{s}\left[\begin{array}{c}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right]\right) \in \mathcal{F}_{n, 2 d}
$$

Finite Reflection Groups

- Let G be a finite group that acts linearly on $\mathbb{R}[x]$. Denote by

$$
\mathbb{R}[x]^{G}:=\{f \in \mathbb{R}[x] \mid \sigma . f:=f \forall \sigma \in G\}
$$

the subspace of G-invariant polynomials.

- For a group G, denote by $\Sigma_{n, 2 d}^{G}$ and $P_{n, 2 d}^{G}$ respectively the cones of n-ary 2 d -ic forms invariant under G which are psd and sos.
- When a reflection group G acts on $V=\mathbb{R}^{n}$ with no nonzero fixed points, we say that G is essential relative to V.
- Any real reflection group can be identified with a direct product of essential reflection groups.

Finite Reflection Groups

According to Coxeter classification, the real reflection groups have been classified and are precisely:

- the four infinite families of essential reflection groups:
- $\mathbf{A}_{\boldsymbol{n}}(\boldsymbol{n} \geq \mathbf{1})$ [identified with Symmetric S_{n+1}],
- $\mathbf{B}_{\boldsymbol{n}}(\boldsymbol{n} \geq 2)$ [identified with $S_{n} \times \mathbb{Z}_{2}^{n}$],
- $D_{n}(n \geq 4)$ [Subgroup of index 2 in the group of type B_{n}], and
- $\mathbf{I}_{\mathbf{2}}(\boldsymbol{m})(\boldsymbol{m} \geq 3)$ [Dihedral group of order $2 m$ acting on the euclidean plane]
- the six exceptional reflection groups $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}, \mathrm{H}_{3}, \mathrm{H}_{4}$.

PSD vs SOS forms invariant under the action of

 a finite reflection group- The dihedral group of order 2 m , denoted by $I_{2}(m)$, is the symmetry group of the regular m-gon and is a finite reflection group.
- Proposition:
$I_{2}(m)$-invariant forms are psd if and only if they are sos, i.e.,
$\sum_{2,2 d}^{I_{2}(m)}=\mathcal{P}_{2,2 d}^{\mathcal{L}_{2}(m)}$ for all n and d.
Proof. $I_{2}(m)$-invariant forms are bivariate. Thus, by Hilbert's 1888 characterisation, these forms are psd if and only if they are sos.
- The signed symmetric group, denoted by B_{n}, can be identified with $S_{n} \times \mathbb{Z}_{2}^{n}$. It is generated by the reflections at $\left\{X_{i}= \pm X_{j}\right\}$ for $1 \leq i \leq j \leq n$ and is a finite reflection group.
- Proposition:
$\sum_{n, 2 d}^{B_{n}}=\mathcal{P}_{n, 2 d}^{B_{n}}$ iff $n=2$ or $d=1$ or $(n, 2 d)=(n, 4)_{n \geq 3}$ or $(3,8)$.
Proof. Forms invariant under B_{n} corresponds to even symmetric forms.

PSD vs SOS forms invariant under the action of

a finite reflection group

- D_{n} can be identified with $S_{n} \times \mathbb{Z}_{2}^{n-1}$. It is the subgroup of B_{n} of index 2 , generated by the reflections at $\left\{X_{i}= \pm X_{j}\right\}$ for $1 \leq i \leq j \leq n$ with even no. of sign changes.
- Theorem (Debus-Riener):
$\sum_{n, 2 d}^{D_{n}}=\mathcal{P}_{n, 2 d}^{D_{n}}$ iff $n=2$ or $d=1$ or $(n, 2 d)=(n, 4)_{n \geq 3}$ or (3,8).
Proof. Since $f \in \mathcal{P}_{n, 2 d}^{B_{n}} \backslash \sum_{n, 2 d}^{B_{n}} \Rightarrow f \in \mathcal{P}_{n, 2 d}^{D_{n}} \backslash \sum_{n, 2 d}^{D_{n}}$, even symmetric psd not sos examples work.

For proving equality in $(4,4)$ case, they used the following result: $\Sigma_{n, 2 d}^{G}=\mathcal{P}_{n, 2 d}^{G}$ if and only if any extremal ray in the dual cone of $\Sigma_{n, 2 d}^{G}$ is generated by a point-evaluation.

PSD vs SOS forms invariant under the action of
 a finite reflection group

- $A_{n-1}(n \geq 2)$ can be identified with the symmetric group S_{n} acting on an $(n-1)$-dimensional euclidean space as a group generated by reflections, fixing no point except the origin.
- Work in progress (Debus, G., Kuhlmann, Riener):

For all $n \in \mathbb{N}, \sum_{n, 4}^{A_{n}}=\mathcal{P}_{n, 4}^{A_{n}}$.

- Ongoing work:

Complete the characterisation for forms invariant under the action of A_{n}.

PSD vs SOS forms invariant under the action of

 a finite reflection group- Consider forms invariant under products of the type $I_{2}(m)$:
- Theorem (Debus, 2019):

$$
\mathcal{P}_{4,4}^{I_{2}(4) \times I_{2}(4)}=\sum_{4,4}^{I_{2}(4) \times I_{2}(4)}
$$

- Proposition (Debus, G., Kuhlmann, Riener):

$$
\mathcal{P}_{4,4}^{I_{2}(2) \times I_{2}(2)} \supsetneq \sum_{4,4}^{I_{2}(2) \times I_{2}(2)}
$$

Proof. Choi-Lam-Reznick's psd symmetric quaternary quartic which is not sos.

- Ongoing work: Consider forms invariant under
- all products of factors of types $A_{n}, B_{n}, D_{n}, I_{2}(m)$
- the exceptional reflection groups $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}, \mathrm{H}_{3}, \mathrm{H}_{4}$
- all products from $A_{n}, B_{n}, D_{n}, I_{2}(m)$ and exceptional reflection groups

References

(i. G. Blekherman, Nonnegative polynomials and sums of squares, Journal of the American Math. Society, 25(3), (2012), 617-635.
R. Glekherman and Cordian Riener, Symmetric nonnegative forms and sums of squares, arXiv:1205.3102, 2012. Discrete and Computational Geometry, 2020.
E M.D. Choi, T.Y. Lam, An old question of Hilbert, Proc. Conf. quadratic forms, Kingston 1976, Queen's Pap. Pure Appl. Math. 46 (1977), 385-405.

R M.D. Choi, T.Y. Lam and B. Reznick, Even Symmetric Sextics, Math. Z. 195 (1987), 559-580.
嗇 C. Goel, Extension of Hilbert's 1888 Theorem to Even Symmetric Forms, Thesis, University of Konstanz, 2014.
C. Goel, S. Kuhlmann, B. Reznick, On the Choi-Lam Analogue of Hilbert's 1888 theorem for symmetric forms, Linear Algebra and its Applications, 496 (2016), 114-120.

References

雷 C．Goel，S．Kuhlmann，B．Reznick，The Analogue of Hilbert＇s 1888 theorem for even symmetric forms，Journal of Pure and Applied Algebra， 221 （2017），1438－1448．
凅 S．Debus，Non－negativity versus Sums of squares in equivariant situations，Master thesis，University of Vienna， 2019
國 S．Debus，C．Riener，Reflection groups and cones of sums of squares，arXiv：2011．09997， 2020.
（ W．R．Harris，Real Even Symmetric Ternary Forms，J．Algebra 222 （1999），no．1，204－245．
D．Hilbert，Über die Darstellung definiter Formen als Summe von Formenquadraten，Math．Ann．， 32 （1888），342－350；Ges．Abh．2， 154－161，Springer，Berlin，reprinted by Chelsea，New York， 1981.
囯 J．E．Humphreys，Reflection groups and Coxeter groups，Cambridge University Press， 1992.
B．Bturmfels，Algorithms in Invariant Theory，Springer Verlag， Vienna and New York， 1993.

Thank You

[^0]: ${ }^{1}$ (Reflection groups and Coxeter groups, J.E. Humphreys, page-3)

