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PSD vs SOS forms

I For n ∈ N, a polynomial p(x) ∈ R[x ] = R[x1, . . . , xn] is called

I nonnegative or positive semidefinite (psd) if p(x) ≥ 0 ∀x ∈ Rn

I a sum of squares (sos) if p =
∑
i

q2
i for some qi ∈ R[x ]

I Clearly every sos is psd.

I Converse: When can a psd polynomial written as a sos of poly’s?

I Sufficient to consider this question for forms (i.e. homogeneous
polynomials) of even degree.

I Let Fn,2d be the
(n+2d−1

n−1

)
-dimensional vector space of all real forms

in n variables and degree 2d , called n-ary 2d-ics, where n, d ∈ N.
I Pn,2d := {f ∈ Fn,2d | f is psd }, the set of psd forms.

I Σn,2d := {f ∈ Fn,2d | f is sos}, the set of sos forms.



PSD vs SOS forms
Theorem (Hilbert, 1888):
Pn,2d = Σn,2d if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).

I Hilbert proved that Σ3,6 ( P3,6 and Σ4,4 ( P4,4, and demonstrated
that it is enough for all remaining cases, i.e.

Proposition [Reduction to Basic cases]:
If Σ3,6 ( P3,6 and Σ4,4 ( P4,4, then
Σn,2d ( Pn,2d for all n ≥ 3, 2d ≥ 4 and (n, 2d) 6= (3, 4).

I (Motzkin, 1967)

M := z6 + x4y2 + x2y4 − 3x2y2z2 ∈ P3,6 \ Σ3,6.

I (Robinson, 1969)

W := x2(x − w)2 +
(
y(y − w)− z(z − w)

)2
+2yz(x + y − w)(x + z − w) ∈ P4,4 \ Σ4,4



PSD vs SOS forms invariant under the action of Sn
I A form f ∈ Fn,2d is called symmetric if ∀ σ ∈ Sn:
σf (x1, . . . , xn) := f (xσ(1), . . . , xσ(n)) is equal to f (x1, . . . , xn).

I Let SPn,2d and SΣn,2d be the cones of n-ary 2d-ic symmetric forms
which are psd and sos respectively.

I Theorem (Choi-Lam, 1976; G.-Kuhlmann-Reznick, 2015):
SPn,2d = SΣn,2d iff n = 2 or 2d = 2 or (n, 2d) = (3, 4).
Proposition [Reduction to Basic cases]:
If SΣ3,6 ( SP3,6 and SΣn,4 ( SPn,4 ∀ n ≥ 4, then
SΣn,2d ( SPn,2d for all n ≥ 3, 2d ≥ 4 and (n, 2d) 6= (3, 4).

I (Robinson, 1969)
R := x6 + y6 + z6 + 3x2y2z2

−(x4y2 + y4z2 + z4x2 + x2y4 + y2z4 + z2x4) ∈ SP3,6 \ SΣ3,6.
I (Choi-Lam, 1976)

f4,4 :=
∑6 x2y2 +

∑12 x2yz − 2xyzw ∈ SP4,4 \ SΣ4,4.
I (G.-Kuhlmann-Reznick, 2015)

Fn,4 ∈ SPn,4 \ SΣn,4 for n ≥ 5.



PSD vs SOS forms invariant under the action of Sn × Zn
2

I A form f ∈ Fn,2d is called even symmetric if it is symmetric and
in each term of f every variable has even degree.

I Let SPe
n,2d and SΣe

n,2d are cones of n-ary 2d-ic even symmetric
forms which are psd and sos respectively.

I Theorem (G.-Kuhlmann-Reznick, 2016):
SPe

n,2d = SΣe
n,2d iff n = 2 or d = 1 or (n, 2d) = (n, 4)n≥3 or (3, 8).

Proposition [Reduction to Basic cases]:
If SΣe

n,2d ( SPe
n,2d for (n, 6)n≥3, (n, 8)n≥4, (n, 10)n≥3, (n, 12)n≥3,

then SΣe
n,2d ( SPe

n,2d for all n ≥ 3, 2d ≥ 6 and (n, 2d) 6= (3, 8).

I (Choi-Lam-Reznick, 1987)
Fn,6 ∈ SPe

n,6 \ SΣe
n,6 for n ≥ 3.

I (Harris, 1999)
Fn,2d ∈ SPe

n,2d \ SΣe
n,2d for (n, 2d) = (3, 10), (4, 8).

I (G.-Kuhlmann-Reznick, 2016)
Fn,2d ∈ SPe

n,2d \ SΣe
n,2d for (n, 8)n≥4, (n, 10)n≥3 and (n, 12)n≥3.



Finite Reflection Groups

I Goal: Hilbert’s 1888 theorem for psd and sos forms invariant
under the action of a finite reflection group

I Let V be a finite Euclidean space endowed with a positive definite
symmetric bilinear form. Given a non-zero vector α ∈ V , we define
the linear operator sα by sα(λ) := λ− 2<λ,α>

<α,α> α for any λ ∈ V .

I sα is an orthogonal transformation, i.e. < sα(λ), sα(µ) >=< λ, µ >
for all λ, µ ∈ V .

I s2α = 1, i.e. sα is an element of order 2 of the group O(V ) of all
orthogonal transformations of V .

I A finite subgroup of O(V ) generated by reflections is called a finite
reflection group1.

1(Reflection groups and Coxeter groups, J.E. Humphreys, page-3)



Finite Reflection Groups

For s ∈ G , where G is a finite reflection group.

I If s is the linear operator on Rn then the corresponding action on
R[x ] is defined as:

for f ∈ Fn,2d , sf (x1, . . . , xn) := f (s(x1, . . . , xn)) ∈ Fn,2d .

In particular if G = Sn, G acts on Rn by permuting the coordinates
of a given n tuple of reals, so defining the corresponding action on
R[x ] gives
sf (x1, . . . , xn) = f (s(x1, . . . , xn)) = f (xs(1), . . . , xs(n)) ∈ Fn,2d .

I If the linear operator s on Rn is represented w.r.t. the standard
basis by the n × n matrix As , then the action description becomes:

for f ∈ Fn,2d , sf (x1, . . . , xn) := f (As

x1. . .
xn

) ∈ Fn,2d .



Finite Reflection Groups

I Let G be a finite group that acts linearly on R[x ]. Denote by

R[x ]G := {f ∈ R[x ] | σ.f := f ∀ σ ∈ G}

the subspace of G -invariant polynomials.

I For a group G , denote by ΣG
n,2d and PG

n,2d respectively the cones of
n-ary 2d-ic forms invariant under G which are psd and sos.

I When a reflection group G acts on V = Rn with no nonzero fixed
points, we say that G is essential relative to V .

I Any real reflection group can be identified with a direct product of
essential reflection groups.



Finite Reflection Groups

According to Coxeter classification, the real reflection groups have been
classified and are precisely:

I the four infinite families of essential reflection groups:

I An(n ≥ 1) [identified with Symmetric Sn+1],

I Bn(n ≥ 2) [identified with Sn × Zn
2],

I Dn(n ≥ 4) [Subgroup of index 2 in the group of type Bn], and

I I2(m)(m ≥ 3) [Dihedral group of order 2m acting on the euclidean
plane]

I the six exceptional reflection groups E6, E7, E8, F4, H3, H4.



PSD vs SOS forms invariant under the action of
a finite reflection group

I The dihedral group of order 2m, denoted by I2(m), is the symmetry
group of the regular m-gon and is a finite reflection group.
I Proposition:

I2(m)-invariant forms are psd if and only if they are sos, i.e.,

Σ
I2(m)
2,2d = P I2(m)

2,2d for all n and d .

Proof . I2(m)-invariant forms are bivariate. Thus, by Hilbert’s 1888
characterisation, these forms are psd if and only if they are sos.

I The signed symmetric group, denoted by Bn, can be identified with
Sn × Zn

2. It is generated by the reflections at {Xi = ±Xj} for
1 ≤ i ≤ j ≤ n and is a finite reflection group.
I Proposition:

ΣBn

n,2d = PBn

n,2d iff n = 2 or d = 1 or (n, 2d) = (n, 4)n≥3 or (3, 8).

Proof . Forms invariant under Bn corresponds to even symmetric
forms.



PSD vs SOS forms invariant under the action of
a finite reflection group

I Dn can be identified with Sn × Zn−1
2 . It is the subgroup of Bn of

index 2, generated by the reflections at {Xi = ±Xj} for
1 ≤ i ≤ j ≤ n with even no. of sign changes.

I Theorem (Debus-Riener):

ΣDn

n,2d = PDn

n,2d iff n = 2 or d = 1 or (n, 2d) = (n, 4)n≥3 or (3, 8).

Proof . Since f ∈ PBn

n,2d \ ΣBn

n,2d ⇒ f ∈ PDn

n,2d \ ΣDn

n,2d , even symmetric
psd not sos examples work.

For proving equality in (4, 4) case, they used the following result:
ΣG

n,2d = PG
n,2d if and only if any extremal ray in the dual cone of

ΣG
n,2d is generated by a point-evaluation.



PSD vs SOS forms invariant under the action of
a finite reflection group

I An−1 (n ≥ 2) can be identified with the symmetric group Sn acting
on an (n − 1)-dimensional euclidean space as a group generated by
reflections, fixing no point except the origin.

I Work in progress (Debus, G., Kuhlmann, Riener):

For all n ∈ N, ΣAn
n,4 = PAn

n,4.

I Ongoing work:
Complete the characterisation for forms invariant under the action
of An.



PSD vs SOS forms invariant under the action of
a finite reflection group

I Consider forms invariant under products of the type I2(m):

I Theorem (Debus, 2019):

P I2(4)×I2(4)
4,4 = Σ

I2(4)×I2(4)
4,4 .

I Proposition (Debus, G., Kuhlmann, Riener):

P I2(2)×I2(2)
4,4 ) Σ

I2(2)×I2(2)
4,4 .

Proof . Choi-Lam-Reznick’s psd symmetric quaternary quartic which
is not sos.

I Ongoing work: Consider forms invariant under
I all products of factors of types An,Bn,Dn, I2(m)

I the exceptional reflection groups E6, E7, E8, F4, H3, H4

I all products from An,Bn,Dn, I2(m) and exceptional reflection groups
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