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ON GRADIENT METHODS FOR INTERFERENCE

CANCELATION

R. DENK, S. SCHARINGER, AND M. HUEMER

Abstra ct. In this note we discuss the pre-filtering unit as a part of the receiv er
in GSM mobile stations. Different cost functions lead to different filter coefficients.
W e discuss some approaches and compare their performance under the presence of
a co-channel interferer. In particular, we consider a v ersion of a constant modulus
algorithm (CMA) and gradient search connected with CMA.

1. Introduction

Due to the cell structure of mobile communication systems like GSM and EDGE, the
presence of unwanted interferers at the same time and frequency can – in principle
– be av oided. Howev er, when frequency hopping is applied there is some probability
that at least one mobile station in the neighboring cell uses the same frequency
and a time slot which has non-empty ov erlap with the user’s time slot. Such type
of interference is called co-channel interference in contrast to the adjacent channel
interference where the interfering signal uses another frequency.

During the last years, there has been an increasing demand on mobile communication
receiv ers for handling adjacent and co-channel interference to increase frequency
load and network capacity. In fact, single antenna interference cancelation (SAIC),
also called ARP (adv anced receiv er performance), will become mandatory in future
releases of the GERAN GSM standard [1]. Thus, there hav e been many recent
approaches to address this problem.

In contrast to the user signal, no known pilot symbols are av ailable for the unknown
interferer. Basically, we are in the situation of blind estimation of the interferer
signal. There are different approaches to interferer cancelation. The present paper
concentrates on cancelation by modifying the criteria for the equalization of the user
signal. Other methods include, for instance, blind estimation of the interferer signal
followed by subtraction of the estimated interferer signal from the receiv ed signal.

To explain the modification for the interferer case, we will shortly discuss a stan-
dard receiv er structure. Usually, a GSM mobile station receiv er performs some
pre-filtering of the receiv ed symbols in order to improv e the subsequent data detec-
tion (in most cases done by a Viterbi type algorithm). The coefficients of the FIR or
IIR pre-filter are chosen in accordance with an optimality criterion. In particular, if
z(k) denotes the symbol number k after the pre-filtering and if s(k) stands for the
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correct (transmitted) symbol, the square error |z(k) − s(k)|2 may be used as a cost
function. An optimal pre-filtering structure in this sense is one which minimizes the
mean square error E[|z(k)− s(k)|2]. We will also speak of the MSE approach. As a
general reference for receiv er structures and optimality of filters in this context, we
mention [2].

The pre-filter coefficients in the MSE approach can easily be computed if an esti-
mate for the channel impulse response is known. This is the case in most mobile
communication receiv ers. Moreov er, there exist efficient implementations for the
computation of the pre-filter coefficients (see [3]).

In the presence of interferers, the sketched approach has two main disadv antages:
• The optimality of the coefficients in the MSE sense does only hold in the case
of white noise (and the interferer destroys the whiteness of the noise).
• The number of known training symbols (midamble symbols) is too small for
sufficient performance in an interferer scenario.

We will discuss the performance of the standard MSE approach and v ariants thereof
in the subsequent sections. We will see that it is adv antageous not to use explicit
channel estimates, and we will discuss a modified cost function which can include
the whole burst instead of the midamble only. This cost function was defined by
Kuzminskiy [4] and is based on the Constant Modulus Algorithm (CMA) known
from the theory of blind detection. The constant modulus cost function is defined
without knowledge of the correct symbol and can be applied to unknown user data,
thus enlarging the number of symbols which can be used for pre-filter coefficients
computation.

The pre-filter coefficients minimizing Kuzminskiy’s cost function are solutions of
a non-linear equation system and, consequently, can be computed only iterativ ely.
Here, the iteration is usually based on some variant of gradient search methods. The
aim of the present note is to giv e some performance results for the different methods
mentioned abov e.

The paper is organized as follows. In Section 2, we will introduce our signal model
and the pre-filtering structure we are considering. In Section 3, we will compare the
MSE approach with and without use of explicit channel estimates. In Section 4, the
CMA approach will be discussed, and in the last section conclusions can be found.

2. Signal model and receiver structures

Equalization in GSM systems is based on the training sequence which is transmit-
ted as the midamble of ev ery burst. Here a known sequence of pilot symbols is
transmitted which is the basis for channel estimation and subsequent data detec-
tion. Whereas in GSM the Gaussian Minimum Shift Keying (GMSK) modulation
is used, for EDGE systems 8PSK modulation is applied. F or the present paper we
restrict ourselv es to the GSM case and approximate GMSK modulation, as usual,
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by BPSK. An idealized model of the receiv ed signal is giv en by

x(k) =
L∑

`=0

h`s(k − `) + n(k) (1)

where (s(k))k=0,...,Nb
is the sequence of the transmitted signal ov er the whole burst

(including midamble), h = (h0, . . . , hL)T denotes the channel impulse response which
is assumed to be of order L, and (n(k))k=1,...,Nb+L stands for additional white noise.

Note that in the signal model abov e we ignored non-ideal effects like additional DC,
IQ imbalance and other non-linear distortions. Moreov er, the additional symbol-by-
symbol π

2
-rotation in GSM systems is not included in the signal model as we assume

corresponding de-rotation in the receiv er. W e will also consider the channel impulse
response to be approximately constant within the duration of one burst. W e remark
that the latter assumption does not hold for large v elocities of the mobile station,
but in a first step SAIC will be introduced for low v elocities like in the GERAN
model where v elocity is restricted to 3 km/h.

In the presence of co-channel interference, it is reasonable to refine the signal model
(1). In addition to the user signal there is one or more interferer signals contained in
the receiv ed signal. This can be modeled explicitly, or we can include the interferer(s)
into the noise component n(k) resulting in non-white noise.

As already mentioned in the introduction, a typical receiv er structure includes a
pre-filtering unit. W e will distinguish between the feed-forward part (FIR filter of
order N) and the feedback part (IIR filter of order Lg) as shown in Figure 1. The
feedback part may be present or not.

sl i cer

-

x( n) y ( n) z ( n)

s( n)
com pute cost

f uncti on

J ( n)

tsc

s( n)^pref i l ter

p( n)

f eedback f i l ter

g( n)

Figure 1. General receiv er structure.

W e introduce some notation. For k = 0, 1, . . . we set x(k) := (x(k), x(k+1), . . . , x(k+
N))T . The feedforward filter coefficients are denoted by p = (p0, . . . , pN)T , and the
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feedback filter coefficients by g = (g1, . . . , gL)T . The signal after feedforward filter-
ing will be denoted by y(k), the signal after feedback filtering by z(k). The sequence
z(k) is the input of the slicer, the decisions are denoted by ŝ(k). We assume the
absence of decision errors, so we hav e ŝ(k) = s(k). The part of decided symbols
used for the feedback filter will be denoted by sF (k) = (s(k − 1), . . . , s(k − L))T .
With these notations, the signal after feedforward filtering is giv en as

y(k) = pH · x(k), (2)

where (·)H denotes the complex conjugate transposed v ector. The signal after feed-
back filtering equals

z(k) = y(k) − gH · sF (k) = pH · x(k) − gH · sF (k). (3)

3. MSE and LMS appr o ach

To describe the MSE approach, we start with white noise in the signal model (1)
with v ariance E[|n(k)|2] = σ2

n
, and with a known channel impulse response. The

user data s(k) are also assumed to be white with v ariance σ2
s

and independent of the
additiv e noise n(k). Note that the assumption of white user data is reasonable due
to channel coding which eliminates, to some extent, asymmetries in the user data.
Under these assumptions, the optimal (in the sense of minimal mean square error)
prefilter coefficients pMSE can be computed explicitly. In the interferer scenario
optimality is no longer giv en. The MSE approach consists in using pMSE also in
the interferer case. As an estimate for the channel impulse response h enters the
formula for pMSE, we will also speak of the h-based method.

We define the channel matrix H ∈ C
(N+1)×(N+L+1) by

H :=











h0 h1 · · · hL 0 · · · 0

0 h0 h1 · · · hL

. . .
...

...
. . . . . . . . . 0

0 · · · 0 h0 h1 · · · hL











.

We split H into two blocks

H =
[

H1 | H2

]

with H1 ∈ C
(N+1)×(N+1) and H2 ∈ C

(N+1)×L and set eN+1 := (0, . . . , 0, 1)T ∈ C
N+1.

Then the MSE feedforward coefficients are giv en by (see, e.g., [3])

p
(h)
MSE =

(

H1H
H

1 +
σ2

n

σ2
s

I

)

−1

H1eN+1, (4)

and the MSE feedback coefficients are giv en by

g
(h)
MSE = H2p

(h)
MSE. (5)
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Now let us consider the interferer case. Here the noise is no longer white, and a
least mean square (LMS) approach appears to be more suitable. Here we minimize

JLMS(p) :=
1

N0

n0+N0
∑

n=n0+1

|e(n)|2 (6)

with |e(n)|2 = |z(n) − s(n)|2, where the sum is taken ov er the midamble symbols
which are assumed to hav e indices n0+1, . . . , n0+N0. W e define the receiv ed sample
matrix

Ax :=
(

x(n0 + 1), · · · ,x(n0 + N0)
)H

∈ C
N0×(N+1)

and the data symbol matrix

As :=
(

sF (n0), · · · , sF (n0 + N0)
)H

∈ C
N0×L.

W e further set Axs := [Ax As] ∈ C
N0×(N+L+1) and s := (s(n0 +1), . . . , s(n0 +N0))

T .
W e can then easily compute the LMS filter coefficients which equal

(

pLMS

−gLMS

)

=
(

AH

xs
Axs

)

−1
AH

xs
s∗. (7)

Here ( )∗ denotes complex conjugation.

Let us remark that the LMS approach can be interpreted as a stochastic approach
with the mean v alue E[x(n)x(n)H ] being replaced by the av eraged sample correlation

1

N0

n0+N0
∑

n=n0+1

x(n)x(n)H .

In the LMS method we don’t use estimates of the channel h but directly the input
samples x. Thus, we will also speak of x-based filtering.

Figure 2 shows the comparison of the two approaches. The bit error rate (BER) is
shown as a function of the carrier-to-interferer ratio (CIR) with signal-to-noise ratio
(SNR) being fixed to 20 dB. All simulation results presented here are based on 5000
GSM frames. W e used the GERAN SAIC model defined in [1]. As expected, it can
be seen in Figure 2 that x-based prefiltering shows better results. In particular, for
high CIR and corresponding low BER the fact that the noise is not white becomes
significant. Here the h-based prefiltering has a performance loss of almost 5 dB
compared to the x-based v ersion.

4. Constant modulus algorithm

By construction, the MSE approach is restricted to the midamble where the trans-
mitted symbols s(n) are known. Another type of cost function was introduced by
Kuzminskiy ([4], [5]). In the following, we will only consider the case where the
feedback part of the prefilter unit is not present.
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Figure 2. Comparison of h and x-based channel estimation

The cost function in [5] combines the MSE and CMA approach with a parameter
ρ which gives the relative weight between these two components. The new cost
function is defined by

J =
1

N0

n0+N0
∑

n=n0+1

JMSE(n) + ρ
1

N1

n1+N1
∑

n=n1+1

JCMA(n) (8)

with

JMSE(n) = |pH
x(n) − s(n)|2 (9)

JCMA(n) =
(

|pH
x(n)| − 1

)2
(10)

The ranges of the MSE and CMA algorithm are visualized in Figure 3. As the
first sum in (8) equals the MSE part, it usually runs over the midamble (or some
enlargement of it). The second part is the constant modulus approach. Note that
a single term in the second sum vanishes if and only if the filtered sample p

H
x(n)

at time n has modulus 1. By definition of the GSM (and also EDGE) symbols, the
transmitted symbols lie on the unit circle. If all received symbols have the same
modulus, then the effective channel impulse response has only one tap. So if this
constant modulus condition holds after pre-filtering, we have equalized the channel
up to one tap. Starting from the midamble to both directions, usually we will set
n0 = n1.
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Figure 3. Cost function ranges for a joint MSE-CMA algorithm

In contrast to the MSE cost function, minimization of the CMA cost function has
to be done iterativ ely . For this some v ariant of gradient search method should be
applied.

The gradient of the combined cost function becomes

∂

∂pH
J =

1

N0

[(
n0+N0∑

n=n0+1

x(n)x(n)H

)

p −

(
n0+N0∑

n=n0+1

x(n)s(n)∗

)]

︸ ︷︷ ︸

MSE part

(11)

+ ρ ·
1

N1

[
n1+N1∑

n=n1+1

(
1 − |pH

x(n)|−1
)
xx

H

]

p

︸ ︷︷ ︸

CMA part

.

The simple gradient search iteration then has the form

p
(n+1) = p

(n) − µ
∂J

∂pH
. (12)

Here µ is a real parameter called the stepsize of the iteration. Note that the perfor-
mance of the gradient search iteration strongly depends on the choice of the stepsize.

As already mentioned, all CMA based cost functions can be seen as a blind method
to estimate the interferer. For CIR v alues below or near 0 dB, all blind methods
hav e the fundamental problem that they cannot distinguish between the desired user
signal and the unwanted interferer signal. This can also be seen in the BER curv es
in Figure 4. Here for negativ e CIR v alues the combined MSE and CMA approach
has no adv antages. For high CIR v alues, howev er, the CMA part can improv e the
performance up to 1 dB and more. In the simulations for Figure 4, the parameter ρ

was set to 1.

W e end this section with some remarks. First, simulations show that the perfor-
mance of the joint MSE-CMA approach is not v ery sensitiv e to the choice of the
parameter ρ. W e also want to stress that the performance gain of the CMA part is
rather small and depends also on the choice of the stepsize µ in the gradient iteration.
Due to these reasons, the CMA approach should be used carefully or with a more
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Figure 4. Comparison between MSE and joint MSE-CMA algorithm

sophisticated variant of the gradient search. Such variants are the Gauss-Newton
iteration (see [5]), and versions of conjugate gradient (cg) methods.

W e also want to remark that there are other possibilities to improve the performance
of the pre-filtering structure in the presence of interferers. F or instance, good per-
formance improvements can be achieved when the input signal is oversampled, so
we have several polyphases and use them in the pre-filtering structure. In this case
one can speak of virtual antennas, and the resulting pre-filtering will be similar to
a MIMO approach.

Another method uses an enlargement of the training sequence in the following sense:
in the first iteration, the MSE cost function is based on the known midamble sym-
bols. In a second iteration, we assume that the already decided symbols are correct.
Thus, we can use them for the MSE approach in the same way as the midamble,
enlarging the number of symbols which are the basis for the computation of the pre-
filter coefficients. This iterative midamble enlargement gives significant performance
improvement but also implies larger computational effort.

5. Conclusion

In the present note, we have considered the pre-filtering structure which is present
in almost every GSM mobile station receiver. Pre-filtering is used to improve the
signal’s properties before equalization is done. Pre-filtering becomes even more
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important in the presence of an interferer as in this case the noise is no longer
white.

The ‘optimal’ pre-filtering coefficients depend on the choice of the cost function.
W e discussed two main approaches: the MSE and the CMA approach. The MSE
approach is based on the midamble where the transmitted symbols are known. Here
we want to minimize the mean square error. There are two v ariants to address this
minimization. In the first (h-based) we explicitly use an estimate for the channel
impulse response. The second (x-based) is only based on the input samples of the
actual burst.

Although the h-based v ersion may hav e adv antages concerning computational effort,
it is not recommended in the presence of interferers. This is due to the fact that
the stochastic assumptions behind the h-based coefficients are no longer satisfied.
Therefore, it is no surprise to see that the x-based filter coefficients giv e significantly
better performance.

The CMA approach can be seen as a v ariant of blind estimation and signal suppres-
sion. As the cost function does not use the correct (transmitted) symbol, all input
samples of the GSM burst can be used to compute the CMA filter coefficients.

Simulations show that the CMA cost function has to be used v ery carefully. First,
the cost function is no longer quadratic which leads to an iterativ e minimization pro-
cedure. Usually, such iteration is done in some variant of gradient search. This giv es
additional numerical difficulties, in particular the choice of the stepsize for the itera-
tion. More sophisticated v ersions of gradient search can lead to high computational
effort.

A good choice for the cost function is a combination of MSE and CMA. Compared to
the MSE approach, we achiev e a performance gain of about 1 dB for v ery high CIR.
This can be explained as for high CIR the user signal can be clearly distinguished
from the interferer signal, so the CMA cost function forces the user signal to be
equalized.

The situation is different for low CIR (about 0 dB). Here the CMA method can
no longer distinguish between user and interferer signal, and the joint MSE-CMA
approach does not giv e better performance than the MSE method.

Summarizing, we can say that in an interferer scenario one should definitely use an
x-based v ersion of the MSE approach instead of an h-based v ersion. An additional
CMA part in the cost function may giv e better performance for high CIR but usually
giv es no improv ement for low CIR. For the gradient search method which is part of
the CMA algorithm, one has to be careful about the choice of the stepsize. A signif-
icantly better performance can possibly be obtained by more sophisticated gradient
search methods with resulting larger computational effort. There are additional
possibilities to improv e the pre-filtering in the interferer case, e.g., the combination
of sev eral polyphases of the input signal.
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