University of Konstanz Department of Mathematics and Statistics Prof. Dr. Robert Denk

December 12th, 2013

Stochastic partial differential equations Exercises and Questions

- **Question 1.** Show that subsets of separable metric spaces are separable but that this is not true in general topological spaces. (This was used in the proof of Lemma 2.2.)
- Question 2. Give an example of a compact operator A in a separable real Hilbert space for which $\sum_{n \in \mathbb{N}} \langle Ae_n, e_n \rangle < \infty$ holds for one orthonormal basis of H but not for all orthonormal bases.
- Question 3. Let $A \in L(H)$ be a compact operator in the separable real Hilbert space H. Show that if $\sum_{n \in \mathbb{N}} ||Ae_n||^2 < \infty$ holds for one orthonormal basis, then this holds for all orthonormal bases, and the value is independent of the choice of the basis.
- Question 4. Let H be a separable real Hilbert space, and let $A, B \in \mathscr{S}_2(H)$. Show that $AB \in \mathscr{S}_1(H)$ and $||AB||_{\text{tr}} \leq ||A||_{\text{HS}} ||B||_{\text{HS}}$. Show that equality holds if $B = A^*$. (This question maybe hard to solve without literature.)
- Question 5. Let $\{\beta_n : n \in \mathbb{N}\}$ be a sequence of real random variables for which every finite linear combination $\sum_{n=1}^{N} \lambda_n \beta_n$ is a real Gaussian random variable. Assume that $\mathrm{E}(\beta_i \mathrm{E}\beta_i)(\beta_j \mathrm{E}\beta_j) = 0$ holds for all $i \neq j$. Show that $\{\beta_n : n \in \mathbb{N}\}$ is independent.
- Question 6. Let H be an infinite-dimensional separable real Hilbert space. Show that L(H) (with operator norm) is not separable.
- **Question 7.** Let *H* be a separable real Hilbert space, and let $X : \Omega \to H$ be integrable. Is it true that $X \otimes X : \Omega \to L(H)$ is integrable?
- Question 8. Show that all *E*-valued stochastic processes with parameter set *J* can be characterized by their induced measures in the following sense: For every process $X: (\Omega, \mathscr{F}, P) \to S^J$ there exists an equivalent process $Y_0: (\Omega_0, \mathscr{F}_0, P_X) \to S^J$ with Ω_0, \mathscr{F}_0 and Y_0 being independent of *X*.
- Question 9. Prove Lemma 2.25.

Question 10. Let $A \in L(H)$ be compact. Show that the following statements are equivalent:

- (i) $A \in \mathscr{S}_1(H)$.
- (ii) There exists an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ with $\sum_{n \in \mathbb{N}} ||Ae_n|| < \infty$.
- (iii) For all orthonormal bases $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ we have $\sum_{n\in\mathbb{N}} |\langle Ax_n, y_n \rangle| < \infty$.
- (iv) There are $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}} \subset H$ with $A = \sum_{n \in \mathbb{N}} \langle a_n, \cdot \rangle b_n$ and $\sum_{n \in \mathbb{N}} ||a_n|| ||b_n|| < \infty$.

(This is an addendum to Question 2 and may also be used for the proof of Question 4.)

- Question 11. Let H_1, H_2, H be separable real Hilbert spaces and $T_i \in L(H_i, H)$ for i = 1, 2, and assume that $||T_1^*x||_{H_1} = ||T_2^*x||_{H_2}$ $(x \in H)$. Show that $R(T_1) = R(T_2)$ and $||T_1^{-1}x||_{H_1} = ||T_2^{-1}x||_{H_2}$ $(x \in R(T_1))$, where T_i^{-1} denotes the pseudo-inverse of T_i .
- Question 12. Let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, P)$ be a probability space with normal filtration. Define

$$\begin{split} \mathscr{L} &:= \{ X \colon [0,T] \times \Omega \to H \, | \, X \text{ adapted, left continuous with bounded paths} \}, \\ \mathscr{C} &:= \{ X \colon [0,T] \times \Omega \to H \, | \, X \text{ adapted, continuous} \}, \\ \mathscr{R} &:= \{ \{0\} \times A : A \in \mathscr{F}_0 \} \cup \{ (s,t] \times A : s < t, A \in \mathscr{F}_s \}. \end{split}$$

Show that for the generated σ -algebras on $[0,T] \times \Omega$ we have $\sigma(\mathscr{L}) = \sigma(\mathscr{C}) = \sigma(\mathscr{R})$.

Question 13. a) Define $H_0^1((0,\pi)) := \{ u \in H^1((0,\pi)) : u(0) = u(\pi) = 0 \}$ and the dual space

$$H^{-1}((0,\pi)) := \{ \varphi \colon (H^1_0((0,\pi)), \| \cdot \|_{H^1((0,\pi))}) \to \mathbb{R} \mid \varphi \text{ continuous, linear} \}.$$

Let Δ_D be the Dirichlet Laplacian in $L^2((0,\pi))$, i.e. $D(\Delta_D) := H^2((0,\pi)) \cap H^1_0((0,\pi))$ and $\Delta_D u := \Delta u$. Compute the eigenvalues and eigenvectors of $-\Delta_D$.

b) Use $A := (-\Delta_D)^{1/2}$ to show that the canonical embedding

$$J: L^2((0,\pi)) \to H^{-1}((0,\pi)), \ u \mapsto \varphi_u \text{ with } \varphi_u(v) := \int_0^\pi u(x)v(x)dx$$

is a Hilbert-Schmidt operator.